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Abstract: Deep learning networks based on CNNs or transformers have made progress in spectral
reconstruction (SR). However, many methods focus solely on feature extraction, overlooking the
interpretability of network design. Additionally, models exclusively based on CNNs or transformers
may lose other prior information, sacrificing reconstruction accuracy and robustness. In this paper,
we propose a novel Unmixing-Guided Convolutional Transformer Network (UGCT) for interpretable
SR. Specifically, transformer and ResBlock components are embedded in Paralleled-Residual Multi-
Head Self-Attention (PMSA) to facilitate fine feature extraction guided by the excellent priors of
local and non-local information from CNNs and transformers. Furthermore, the Spectral–Spatial
Aggregation Module (S2AM) combines the advantages of geometric invariance and global receptive
fields to enhance the reconstruction performance. Finally, we exploit a hyperspectral unmixing (HU)
mechanism-driven framework at the end of the model, incorporating detailed features from the
spectral library using LMM and employing precise endmember features to achieve a more refined
interpretation of mixed pixels in HSI at sub-pixel scales. Experimental results demonstrate the
superiority of our proposed UGCT, especially in the grss_d f c_2018 dataset, in which UGCT attains
an RMSE of 0.0866, outperforming other comparative methods.

Keywords: spectral reconstruction; convolutional transformer; hyperspectral unmixing; multi-head
self-attention; hyperspectral image

1. Introduction

Hyperspectral image (HSI) refers to a three-dimensional data cube generated through
the collection and assembly of numerous contiguous electromagnetic spectrums, which are
acquired via airborne or spaceborne hyperspectral sensors. Unlike regular RGB or grayscale
images, HSI provides more information in the band dimension, which allows subsequent
tasks to distinguish materials and molecular components that are difficult to distinguish
from normal RGB through their stored explicit or implicit distinctions. As a result, HSI
has distinct advantages in a variety of tasks, including object detection [1,2], water quality
monitoring [3–5], intelligent agriculture [6–8], geological prospecting [9,10], etc.

However, hyperspectral imaging often requires long exposure times and various
costs, making it unaffordable to collect sufficient data using sensors for many tasks with
restricted budgets. Instead, acquiring a series of RGB or multispectral images is often
a fast and cost-effective alternative. Therefore, using SR methods to inexpensively re-
construct the corresponding HSI from RGB or multispectral images (MSI) is a valuable
solution. Currently, there are two main reconstruction approaches: the first involves fus-
ing paired low-resolution hyperspectral (lrHS) and high-resolution multispectral (hrMS)
images to produce a high-resolution hyperspectral (HrHs) image [11–13] with both high
spatial and spectral resolutions, and the second approach generates the corresponding
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HSI by learning the inverse mapping from a single RGB image [14–19]. Commonly, image
fusion-based methods [11–13] require paired images of the same scene, which can still
be overly restrictive. Although reconstruction only from RGB images [14–16,20,21] is an
ill-posed task due to the assumptions of inverse mapping, theoretical evidence demon-
strates that feasible solutions exist under low-dimensional manifolds [22], and it provides
sufficient cost-effectiveness.

Utilizing deep learning to model the inverse mapping in single-image reconstruction
problems has been widely studied. Initially, numerous methods leveraged the excellent
geometric feature extraction capabilities of CNNs [15–19] to achieve success in SR tasks.
However, with the outstanding performance of transformers in various computer vision
tasks, many transformer-based approaches [14,23,24] have recently emerged. These ap-
proaches take advantage of the transformer’s global receptive field and sophisticated
feature parsing abilities to achieve more refined HSI reconstruction. Nonetheless, current
methods are predominantly limited to single-mechanism-driven frameworks, which often
implies that the transformer architecture sacrifices the exceptional geometric invariance
prior offered by CNNs. In fact, to ingeniously combine the advantages of both, numerous
computer vision tasks have attempted to employ convolutional transformers to enhance the
capability of feature extraction in their models, yielding highly impressive results [25–28].
Hence, employing a convolutional transformer to integrate the outstanding characteristics
of both approaches is a clearly beneficial solution in SR.

Additionally, to achieve a higher signal-to-noise ratio in hyperspectral imaging, a trade-
off between spectral resolution and spatial resolution is inevitable [29]. Most airborne
hyperspectral sensors typically have a spatial resolution lower than 1 m/pixel [30,31], while
satellite-based sensors, such as the Hyperion dataset of Ahmedabad, only have a 30 m/pixel
resolution [32]. This significantly limits the effectiveness of HSI in capturing geographic
spatial features. As a result, numerous approaches concentrate on employing mature
CNNs or advanced transformer architectures to enhance feature extraction capabilities
while overlooking the interpretability of the modeling itself and the pixel-mixing issues
that arise during the imaging process.

In recent studies, the HU has been mostly composed of the linear mixing model
(LMM) [33], the bilinear mixing model (BMM) [34], and the nonlinear mixing model
(NMM) [35]. Among them, LMM has long been a focal point, achieving notable results
in balancing time and computational costs, as demonstrated in Figure 1. In real-world
environments, it is relatively uncommon for electromagnetic waves to be captured by
sensors after only one reflection or refraction, which means NMM often aligns more closely
with practical modeling. However, nonlinear unmixing inherently takes into account too
numerous complex factors, such as the actual scene distribution, and still faces significant
limitations in practical applications. As a result, utilizing the more mature LMM model
to obtain the linear abundance distribution and subsequently extract HSI information
at the sub-pixel level is a judicious and convenient choice. As one of the most crucial
HSI processing tasks, employing a highly interpretable HU architecture enables sub-pixel
interpretation of the collected HSIs. In edge regions where pixel mixing is severe and under-
standing the imagery is critical, the HU mechanism extracts more refined features through
unmixing. Consequently, leveraging the HU framework to enhance image understanding
and interpretability for the SR network [31,36] would result in notable improvements.

In this paper, we propose a novel hyperspectral reconstruction network that combines
the LMM and convolutional transformer blocks. By leveraging the HU mechanism, this
network aims to enhance the mathematical interpretability of SR modeling and improve
the accuracy of HSI reconstruction at a sub-pixel, fine-grained level. By employing end-
members from a filtered spectral library, the input RGB images are mapped to an HSI with
high resolution. Our model capitalizes on the geometric invariance between the original
prior of the transformer and the convolutional mechanisms. Our model combines the
global receptive field of transformers with the geometric invariance of CNN mechanisms,
simultaneously extracting both local and non-local features from the image. Furthermore,
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to mitigate spectral distortion arising from insufficient channel dimension modeling in
CNNs [37], we embed channel position encoding by mapping transformer features into
CNNs. It bolsters the capability of the convolutional transformer, ultimately yielding a
precise reconstruction of HSIs. The primary contributions of our work can be summarized
as follows:

Figure 1. Linear Mixing Model.

1. We introduce an SR network, the UGCT, which tackles HSI recovery from RGB tasks
using the LMM as a foundation while employing convolutional transformer to drive
fine spectral reconstruction. By employing an unmixing technique and convolutional
transformer block, the reconstruction performance of mixed pixels has been notably en-
hanced. The experiments on two datasets demonstrate that our method’s performance
is state of the art in the SR task.

2. The Spectral–Spatial Aggregation Module (S2AM) adeptly fuses transformer-based
and convolution-based features, thereby enhancing the feature merging capability
within the convolutional transformer block. We embed the channel position encoding
of the transformer into ResBlock to address positional inaccuracies during the genera-
tion of abundance matrices. Notably, such errors can lead to spectral response curve
distortions in the reconstructed HSIs.

3. The Paralleled-Residual Multi-Head Self-Attention (PMSA) module generates a more
comprehensive spectral feature by synergistically leveraging the transformer’s excep-
tional complex feature extraction capabilities and the CNN’s geometric invariance.
To the best of our knowledge, we are among the first to incorporate a parallel convolu-
tional transformer block within the single-image SR.

2. Related Work
2.1. Spectral Reconstruction (SR) with Deep Learning

Deep learning technology in SR task encompasses two distinct aspects. The first
involves a fusion method based on paired images, while the second entails a direct re-
construction approach that leverages a single image such as those from CASSI or RGB
systems. In the first category, a simultaneous capture of lrHS and hrMs images is employed,
both possessing the same spectral and spatial resolution as HSIs separately. For example,
Yao et al. [11] views hrMS as a degenerate representation of HSI in the spectral dimension
and lrHS as a degenerate representation of HSI in the spatial dimension. It is suggested
to use cross-attention in coupled unmixing nets based on the complementarities of the
two features. Hu et al. [13], on the other hand, employed the Fusformer to obtain the
implicit connection between global features and to solve the local neighborhood issue of the
finite receptive field of the convolution kernel in the fusion problem using the transformer
mechanism. The training process’s data load is decreased by learning the spectral and
spatial properties, respectively. However, the majority of the models’ prior knowledge was
created manually, which frequently results in a performance decrease when the domain is
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changed. Using the HSI denoising iterative spectral reconstruction approach based on deep
learning, the MoG-DCN described by Dong et al. [38] has produced outstanding results in
numerous datasets.

For the second category, where only single images are input, the model will learn the
inverse function of the camera response function of a sensor using a single RGB image
as an example. It will separate the RGB image’s hidden hyperspectral feature data from
it and then combine it with the intact spatial data to reconstruct a fine HSI. Shi et al. [15],
for instance, replaced leftover blocks with dense blocks to significantly deepen the network
structure and achieved exceptional results in NTIRE 2018 [20]. The pixel-shuffling layer
was employed by Zhao et al. [19] to achieve inter-layer interaction, and the self-attention
mechanism was used to widen the perceptual field. Cai et al. [14] presented a cascade-
based visual transformer model, MST++, to address the numerous issues with convolution
networks in SR challenges. Its designed S-MSA and other modules further improved the
ability of model to extract spatial and spectral features and achieved outstanding results in
a large number of experiments.

The aforementioned analysis reveals that most previous models predominantly fo-
cused on enhancing feature extraction capabilities while neglecting the interpretability of
physical modeling. This oversight often resulted in diminished performance in practical
applications. In response, an SR model with robust interpretability was developed, cap-
italizing on the autoencoder’s prowess in feature extraction and the simplicity of LMM.
By harnessing the ability of LMM to extract sub-pixel-level features, ample spatial infor-
mation is concurrently gathered from RGB images. Subsequently, high-quality HSIs are
restored during the reconstruction process.

2.2. Deep Learning-Based Hyperspectral Unmixing

Several deep learning models based on mathematical or physical modeling have
been suggested recently and used in real-world tests with positive outcomes due to the
growing demand for the interpretability of deep learning models. Among these, HU
has made significant progress in tasks such as change detection (CD), SR, and other HSI
processing tasks. Guo et al. [39] utilized HU to extract sub-pixel-level characteristics from
HSIs to integrate the HU framework into a conventional CD task. In order to obtain the
reconstructed HSI, Zou et al. [40] used the designed constraints and numerous residual
blocks to obtain the endmember matrix and abundance matrix, respectively. Su et al. [41]
used the paired lrHs and hrMs to learn the abundance matrix and endmember from the
planned autoencoder network and then rearranged them into HSI using the fundamental
LMM presumptions.

Moreover, deep learning-based techniques are frequently used to directly extract the
abundance matrix or end endmembers from the HU mechanism. According to Hong et al. [42],
EGU-Net can extract a pure-pixel directed abundance matrix extraction model and estimate
the abundance of synchronous hyperspectral pictures by using the parameter-sharing mech-
anism and the two-stream autocoder framework. By utilizing the asymmetric autoencoder
network and LSTM to capture spectral information, Zhao et al. [43] were able to address
the issue of inadequate spectral and spatial information in the mixed model.

Based on the aforementioned research, utilizing the HU mechanism to drive the SR task
evidently improves interpretability. In light of this, our method introduces a parallel feature
fusion module that combines the rich geometric invariance present in the residual blocks
with the global receptive field of the transformer. This approach ensures the generation of
well-defined features and aligns the channel-wise information with the endmembers of the
spectral library.

2.3. Convolutional Transformer Module

The transformer-based approach has achieved great success in the field of computer
vision, but using it exclusively will frequently negate the benefits of the original CNN
structure and add a significant amount of computing burden. Due to this, numerous
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studies have started fusing the two. Among these, Wu et al. [25] inserted CNN into the
conventional vision transformer block, replacing linear projection and other components,
and improved the accuracy of various computer vision tasks. Guo et al. [26] linked the two
in succession, created the CMT model with both benefits, and created the lightweight visual
model. He et al. [27] created the parallel CNN and transformer feature fusion through the
developed RAM module and the dual-stream feature extraction component.

The integration of CNN and transformer is inevitable because they are the two most
important technologies in the field of image processing. Many performance comparisons
between the two have produced their own upsides and downsides [44,45]. Important
information will inevitably be lost when using a single module alone. It is crucial to
understand how to incorporate the elements that can be derived from both. In order to
perform feature fusion for the parallel structure of PMSA, the channel size of the CNN
that lacks modeling [37] can be well constrained utilizing the channel information in
the transformer.

3. The Proposed Method

In this section, we present an overview of the LMM in the SR network, including the
development of an extensive endmember library. We then introduce the UGCT frame-
work, as illustrated in Figure 2, and describe the HSI reconstruction process, comprising
the abundance generator framework and LMM architecture. Furthermore, we provide a
comprehensive account of the convolutional transformer architecture, driven by the fine
abundance generator, as depicted in Figure 3. Subsequently, the PMSA and S2AM are dis-
cussed, which are two crucial components of feature extraction. The process of seamlessly
integrating transformer and ResBlock features within S2AM will be thoroughly illustrated
in Figure 4. Lastly, we explore the loss function and delve into the implementation and
configuration of various details.

Figure 2. The Struction of Unmixing-Guided Convolutional Transformer Network (UGCT).
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Figure 3. The Struction of Unmixing-Guided Convolutional Transformer Abundance Genera-
tor (UGCA).

Figure 4. The Paralleled-Residual Multi-Head Self-Attention (PMSA) block and Spectral-Spatial
Aggregation Module (S2AM).

3.1. Hu-Based Modeling

During the imaging process of airborne and spaceborne hyperspectral image sensors,
a considerable amount of spatial information becomes intermingled within mixed pixels
due to factors such as atmospheric absorption, sensor performance complexity, and the
actual distribution of ground objects. This substantially reduces the spatial resolution of
HSIs. At present, HU is among the most effective algorithms for addressing pixel mixing,
with the LMM being one of the most well-developed fundamental modeling algorithms [46].
The HSI, Y ∈ RH×W×C, composed of mixed pixels can be divided into finite pure pixels
r ∈ RN×C and corresponding abundance matrices A ∈ RH×W×N in the classic LMM model.

Y = Ar + b (1)



Remote Sens. 2023, 15, 2619 7 of 20

in which b ∈ RH×W×C means the noise matrices, H and W represent the spatial scale and
N is the number of the endmembers.

With the help of Equation (1), we can create HSIs with high spatial resolution at
sub-pixel scales by obtaining a complete endmember library L of HSIs and their corre-
sponding fine abundance matrices. Because of the low spatial resolution of hyperspectral
imaging, multiple ground objects are quite common in the same pixel. Within a mixed
pixel, the abundance matrix describes the pure pixel content ratio. According to the basic
assumption in the LMM [47], only one reflection and refraction of light occurs between
emitting and being captured by the sensor.

yn =
N

∑
i=1

αiri + β (2)

where αi ∈ A and ri ∈ r and yn represent the n-th pixel in the mixing HSI. It should be
noted that ri is the i-th endmember vector from a well-known complete spectral library,
which represents continuous spectral data obtained by sensors under pure light from
certain pure ground objects such as bushes and gravels. Furthermore, αi is the spectral
abundance of the i-th endmember corresponding to the nth mixed pixel. The β denotes
noise disturbances, which include complex atmospheric noise as well as environmental
disturbances. It is simply modeled as a bias matrix due to difficulties in accurate modeling
or being eliminated in the preprocessing section.

The abundance matrix has practical physical significance, and during calculation,
LMM specifies two constraints for it: a sum-to-one constraint and a non-negative abundance
constraint [31]. Because the information content of the mixed pixel cannot exceed that of
the pure pixel itself in the actual imaging process and because the proportion of a pure
pixel included in the pixel cannot be negative, the following constraints will be used:

αi ≥ 0; α>1 = 1 (3)

The entire spectrum library L is already available which was obtained in the labora-
tory and during onboard practical testing [48]. As a result, obtaining a fine abundance
matrix from a single RGB image input is central to improving the performance of spectral
reconstruction tasks based on the HU mechanism. This does not imply that we will only
use the weak spectral information in RGB to reconstruct a complete HSI. On the contrary,
the highly effective, complete, and pure pixels collected will be used as a key reference
index to guide model training. In fact, for a high level of a priori comprehensiveness, a deep
layer-by-layer autoencoder network utilizing a convolutional transformer will be used.

3.2. The Struction of UGCT

In our network, we employ the Unmixing-Guided Convolutional Transformer Abun-
dance Generator (UGCA) in Figure 3, denoted as F , which is specifically designed for the
generation of fine abundance matrices. By providing an accurate remote sensing RGB and
a complete spectral set [48] of endmembers from the relevant band, the created network
will recover all of its abundance values pixel by pixel using learnable parameters θl and
then combine them into a complete spectral abundance matrix.

A = Sof t(A) = F (X|θl) (4)

in which X represents the upsampled RGB input and Sof t(·) stands for the softmax
operator in order to fit the sum-to-one constraint in Formula (3).

X = Upsampling(X) (5)

In an effort to emulate the complex mixing process of light propagation, an autoen-
coder approach is employed to obtain the full abundance. In this method, the input RGB
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X must first undergo a predefined spectral upsampling to map it to the initial spectral
features X. As illustrated in Figure 3, the abundance matrix A is processed through an
encoding–decoding procedure where upsampling and downsampling modules are mod-
eled as conv4 and deconv layers, respectively, to facilitate the spatial feature transformation
while accommodating the corresponding channel dimension changes.

It is worth noting that this may lead to redundant features and parameters if upsam-
pling and downsampling operations are not incorporated in an autoencoder framework [14],
which inevitably leads to redundant features and parameters. To alleviate the pressure from
excessive parameters and invalid repetitive features on the training process, they are widely
employed in such frameworks. Specifically, as the encoder progresses deeper, the channel
dimension will gradually undergo upsampling, while the spatial dimension will experience
downsampling. Subsequently, in the decoder section, the spatial dimension is incrementally
upsampled in accordance with the input feature scale. Concurrently, the processing of
spatial dimensions facilitates the model in acquiring features at different scales. Overall,
the model is designed with a symmetric architecture and employs a Conv2D (mapping)
layer after the original skip connection to map the features to the desired abundance matrix.

A = Map(PMSA(n)(X) + X|θmap) (6)

The input hyperspectral features undergo processing through an n-layer PMSA
PMSA(n) module, which encodes them into abundance features using trainable parame-
ters. A skip connection is then employed to project these features into refined abundance
representations that fulfill the specified requirements. The n-layer PMSA module can be
dissected into three primary components: encoder, bottleneck, and decoder.

PMSAi
encoder = [ f i−1

T ⊗ f i−1
C ]↓ (7)

During the encoder phase, the original features are partitioned into two separate
streams, which are subsequently processed by transformer blocks and residual blocks
(ResBlock). Distinct from conventional transformer blocks, the PMSA module harnesses the
combined power of convolutional and transformer networks’ prior knowledge to execute
accurate abundance extraction driven by local and non-local information.

The i-th encoder module, denoted as PMSAi
encoder, employs a S2AM ⊗ to integrate

the two acquired features, thereby maximizing their exceptional extraction capabilities
in both spatial and channel dimensions. Following this, a downsampling operation ↓
is utilized to guarantee that no erroneous features impede the learning process while
expanding band dimensions. Within the S2AM module in the encoder, image features
undergo upsampling (doubling) in the channel dimension. To prevent the generation of
an excessive number of redundant features, spatial downsampling operations ↓ prove
to be highly advantageous. To avert irregularities during model training, a finer feature
representation is either recommended for subsequent computation or utilized in a skip
connection, ensuring a more stable and accurate learning process.

PMSAj
decoder = Concat(PMSAi

encoder, PMSAj−1
decoder)

↑ (8)

The encoder process maps hyperspectral features to abundance matrix features within
the bottleneck section while maintaining consistent feature spatial and spectral scales. In the
subsequent decoder step, spectral features and abundance features from the prior decoder
section are amalgamated in the channel dimension using the concatenation operation.

Contrasting the previously described encoder module, the decoder section PMSAdecoder
upsamples features in the spatial dimension to augment the spatial information of the abun-
dance matrix features while simultaneously compressing channel characteristics. Spatial
upsampling ↑ and channel downsampling operations are implemented within the same
deconvolution layer in order to maintain the symmetry of the autoencoder structure. This
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method ensures an effective balance between spatial and spectral information in the final
abundance matrix feature.

Finally, we will discuss in detail the issue of setting the number of blocks in the
Discussion section.

3.3. Paralleled-Residual Multi-Head Self-Attention

A Paralleled-Residual Multi-Head Self-Attention (PMSA) block is composed of four
key components: two parallel convolutional transformer blocks, an S2AM, and a sampling
module (either upsampling or downsampling, excluding the bottleneck layer). In this
architecture, the input features are explicitly divided into two separate parts, which are
then fed independently into the CNN and transformer blocks.

X̂ i
= MSA(X i−1) + X i−1

X i
t = FFN(X̂ i

) + X̂ i
(9)

in which MSA means the multi-head self-attention module, and FFN consists of three
Conv2D and two GELU operations.

In the ResBlock, as illustrated in Figure 4, the input must first undergo two consecutive
2D convolution and batch normalization layers (Conv2D+BN). The inclusion of a residual
connection assists the model in training and converging more effectively. In the encoder and
decoder part, the final ShortCut operation becomes a 2D convolution with a convolution
kernel of one, while in the bottleneck section, this part is set as an empty layer.

The PMSA block leverages the strengths of both the CNN and transformer architec-
tures to process multi-scale features effectively. The block can capture both local and global
contextual information simultaneously. The parallel transformer and CNN outputs are
combined in the feature fusion S2AM module to further improve the model’s capacity
for pattern recognition. Finally, the sampling module adjusts the spatial resolution of the
features as required, depending on the specific layer in the network.

X i = [X i
t ⊗ X i

c]
↓ (10)

The main distinction between features X i
t and X i

c lies in their methods for handling
scale within their respective blocks. Feature X i

t implements channel upsampling within the
resblock, which results in an increase in the number of channels while preserving spatial
dimensions. On the other hand, Feature X i

c maintains the same scale within the transformer
block, retaining both the spatial dimensions and the number of channels. The S2AM is
then employed to fuse the features from both X i

t and X i
c, even though they have different

scales. This fusion process enables the model to combine the information from various
scales effectively, capturing diverse contextual information and improving the overall
performance of the network.

Specifically, as depicted in Figure 2, within the encoder section, we first take input
X i−1 ∈ Rh,w,c and feed it into the parallel convolutional transformer section. Following this,
it passes through a channel upsampling module with a convolution with one kernal size
in ShortCut(), and X i

c ∈ Rh,w,2c is output after ResBlock. Subsequently, within the built-in
upsampling module of S2AM, features X i

c and X i
t ∈ Rh,w,c are fused to produce output

X̄ i ∈ Rh,w,2c. To reduce feature redundancy and prevent additional complexity, spatial
downsampling is applied to X̄ i, ultimately yielding X i ∈ R h

2 , w
2 ,2c. In a similar manner,

the decoder section will exhibit symmetry with the encoder.

3.4. Spectral–Spatial Aggregation Module

Transformer and CNN models use distinctly different priors and feature extraction
techniques. We suggest the S2AM in Figure 4, which addresses ResBlock’s inaccurate
assumption of channel dimensions brought on by convolutional kernel constraints [37]
in order to significantly increase the benefits of both models. This module utilizes the
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transformer block to encode the weights of features along the channel dimension. These
encoded weights are then embedded into the ResBlock to assist in aligning features along
the channel dimension. This integration results in the reconstruction of a more detailed HSI.

Enhancing each feature separately and achieving feature scale alignment along the
channel dimension are prerequisites for efficiently processing features X i

t and X i
c in si-

multaneous transmission. Both features must go through a careful preprocessing stage to
achieve this.

X̂ i
t = τ(X i

t)

X̂ i
c = δ(X i

c)
(11)

in which δ represents a 3 × 3 dilation convolution, and τ represents a group convolution.
Utilizing the δ’s expansion factor gives features a larger spatial receptive field, which
aids in capturing more contextual information from the input. Group convolution, on the
other hand, helps reduce the redundant parameters introduced by the transformer during
channel dimension alignment. These enhanced features can then be effectively fused and
processed in subsequent layers of the network. Next, the feature X̂ i

t will be encoded as a
one-dimensional position code along the channel dimension.

T i = X̂ i
c � sig

(
£
(

Avgpool
(

X̂ i
t

)))
(12)

where £ stands for the fully connected layer and sig(·) is the sigmoid operator to map the
feature with 0–1.

It becomes difficult to model the distribution of many ground objects and their re-
lationships when pixels are mixed. This complexity significantly affects the generation
of abundance matrices, which are crucial for understanding the composition of mixed
pixels in remote sensing and hyperspectral imaging applications. In the position encoder
component of the S2AM, three cascaded, fully connected layers £ are employed to simulate
the complex relationships between ground objects.

X i+1 = T i + X̂ i
t (13)

In conclusion, the aligned transformer features and the position-encoded embed-
ded ResBlock information are carefully combined through element-wise addition. This
process achieves information aggregation for the transformer, enabling the model to ef-
fectively fuse the strengths of them. By integrating the position-encoded information and
leveraging the S2AM module, the model is better equipped to handle the challenges of
spectral reconstruction.

3.5. Loss Function and Details

Our model is specifically designed to address the single-image SR task. It begins
by taking a three-channel image as input, and through model mapping, it produces a
reconstructed HSI Y . To ensure that it closely resembles the ground-truth HSI Ŷ , it is
essential to constrain the model to learn the inverse function of the camera response
function. Designing a superior loss function is a key component of achieving this objective.
We primarily use the mean relative absolute error (MRAE) loss as the loss function for this
purpose. By using MRAE loss, the model is encouraged to learn a more accurate mapping
between the input three-channel image and the corresponding HSI, resulting in improved
reconstruction quality.

Loss(Y , Ŷ) =
1
N

N

∑
i=1

|Y i − Ŷ i|
Ŷ i

(14)

It is important to note that due to the presence of a significant number of zero values
(minimum values) in some datasets (AVIRIS [49]), the MRAE loss calculation may fail.
For all comparative experiments involving such datasets, we use the L1 loss as a substitute
for the previously mentioned loss function.
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In order to generate a more sufficient abundance matrix and subsequently reconstruct
the HSI, we have adopted a dual-stream PMSA architecture to process features. This design
choice enables the model to leverage the strengths of both convolutional and transformer-
based methods, resulting in improved feature representation and fusion. During the design
process, the number of blocks in the backbone network is set to 7, including two symmetric
encoder and decoder blocks in Figure 3, with one serving as the bottleneck layer. This
configuration allows for a more efficient flow of information through the network while
maintaining an appropriate balance between the model’s complexity and performance.

Additionally, the spectral dimension is designed with a reference point of 32 in X to
ensure the stability of parameter quantities and model performance. This choice helps to
keep the number of model parameters at a manageable level while still achieving high-
quality SR.

4. Experiments and Results
4.1. Spectral Library

The success of incorporating LMM into the SR task depends on the a priori integra-
tion of the accurate spectral library. The quality and completeness of this endmember
library directly influence the model’s effectiveness in practical applications. To ensure a
comprehensive and accurate data source, we have chosen the United States Geological
Survey (USGS) [50] Spectral Library Version 7. This library offers an extensive collection of
well-characterized reference spectra, enhancing the reliability of our model. To maximize
compatibility with various hyperspectral datasets, we selected the 2014 version of the Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) [49] sensor measurements, owing
to its wide spectral range (0.4–2.5 µm) and a fine spectral resolution of 10 nm. This choice
ensures that our model can accommodate the widest possible range of hyperspectral cubes.

However, the USGS v7 includes a large number of spectra that cannot be detected by
airborne or satellite-based sensors, such as those of laboratory-made substances. Including
these redundant spectra not only increases the number of parameters but also potentially
impacts the recontruction HSIs performance. Therefore, it is crucial to carefully curate the
spectral library by eliminating irrelevant spectra and retaining only those pertinent to the
specific remote sensing application.

To improve the spectral library’s precision, we first undertook a rigorous data-cleaning
process. This involved the removal of officially calibrated invalid spectral locations, result-
ing in the elimination of 914 targets containing invalid channels. After that, we concentrated
on identifying ground objects that are typically difficult to detect in remote sensing images,
such as minerals and lab-created organic compounds, in their pure pixels. Through this
process, we identified 1019 pure pixels that met our criteria for further analysis. In order to
optimize our results, we conducted additional screening to isolate pure pixels that were
not needed, as in Refs. [31,36]. This comprehensive screening process ultimately yielded
345 calibrated endmembers, which are expected to significantly improve the quality and
precision of our spectral analysis.

4.2. Datasets and Training Setup

We experiment with the UGCT on the grss_d f c_2018 [31] and AVIRIS [51] datasets.
The IEEE grss_d f c_2018 dataset is a remote sensing dataset for change detection analysis.
It was collected on 16 February 2017 by the National Center for Airborne Laser Mapping
(NCALM) from Houston University. The dataset includes hyperspectral data acquired by
an ITRES CASI 1500 sensor with a spectral range of 380–1050 nm and 48 bands. It covers
two urban areas, Las Vegas and Paris, with a total of 180 image pairs. The original dataset
consisted of 27, 512× 512 pixel hyperspectral image patches. We randomly selected 24
of these patches for training and 3 for testing. Since the original dataset did not provide
corresponding RGB channels, we chose to superimpose the features of channels 23, 12,
and 5 to create RGB input.
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The AVIRIS [49] dataset is a collection of high-spectral-resolution images captured
by the AVIRIS sensor, which has 224 contiguous spectral bands between 0.4 and 2.5 µm
and a spatial resolution of 10–20 m. Its large imaging coverage is a major advantage.
After preprocessing, we extracted 48 spectral features in the 380–1050 range to form the
hyperspectral image (HSI) and selected three channels similar to those in the grss_d f c_2018
dataset as RGB inputs. In total, 3768 patches of size 64× 64 were used as the training set,
and a large image of size 500× 1000 was used as the validation set.

The proposed UGCT model was trained on an RTX2080Ti GPU for approximately 6 h.
The training data for the model input were divided into patches of size 64× 64. The batch
size was set to 20, and the optimizer used was Adam [52] with βi = 0.9 and β2 = 0.999.
The learning rate was initialized at 0.0004, and a cosine annealing [53] learning rate strategy
was used for 100 epochs. Due to the limited size of the training set, random rotation and
flipping augmentation methods were used to enhance the data [54].

We selected several SR methods for comparison to demonstrate the superiority of our
method, including AWAN [16], HRNet [19], HSCNN+ [15], MST++ [14], and Restormer [55].
Additionally, Ours− was introduced, representing the UGCT model without LMM model-
ing. To ensure a fair comparison, each method was fully optimized and retrained in the
same scene.

MRAE =
1
N

N

∑
i=1

|Y i − Ŷ i|
Ŷ i

(15)

RMSE =

√√√√ 1
N

N

∑
i=1

(Y i − Ŷ i)2 (16)

To quantitatively compare the results, we used several parameters, including Root
Mean Square Error (RMSE) [14,15], Mean Relative Absolute Error (MRAE), Structural
SIMmilarity (SSIM) [17], Peak Signal-to-Noise Ratio (PSNR) and Spectral Angle Mapper
(SAM) [56]. The RMSE, MRAE, and SAM are metrics for evaluating the accuracy of the
reconstructed results, where lower values indicate better reconstruction. Meanwhile, higher
SSIM and PSNR values indicate better performance.

4.3. Comparision with Other Networks

Figure 5 showcases the performance results of different methods on the grss_d f c_2018
dataset. Five channels were selected as examples to demonstrate the MRAE loss error of
the comparison model on the validation set. It should be noted that if the reconstructed
result performs poorly in terms of MRAE, the pixel will appear brighter. Conversely, if the
reconstruction is similar to HSI, the image will appear darker as a whole.

Due to its large number of parameters, HRNet tends to overfit when faced with small
sample datasets, resulting in widespread errors in the spectral response curve of a patch
in Figure 6. Although HSCNN+, MST++, and Restormer generally maintain alignment in
spatial features when compared to HRNet, displaying only minor and consistent distortions
at the fine edges, they still exhibit more severe reconstruction errors in comparison to UGCT.

The Ours−, which removes the LMM, achieves results that are comparable to the afore-
mentioned models. However, by incorporating spectral library priors, our method clearly
provides more accurate reconstruction results. For the 830 nm feature, other approaches
exhibit distortions on the streets, whereas our method, due to the inclusion of priors,
demonstrates a significant advantage in maintaining the accuracy of the reconstructed HSI.
Based on the data presented in Table 1, our proposed method achieves competitive results
across multiple metrics. In terms of RMSE, our approach outperforms the second-best
result by 0.0048, while for MRAE, our method and the UGCT variant without LMM obtain
the best and second-best results, respectively. These outcomes collectively demonstrate the
effectiveness of our method in comparison to the competing algorithms.
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Figure 5. Visual error map of five selected bands on the grss_d f c_2018 validation dataset.

Table 1. The quantitative results of the grss_d f c_2018 validation dataset. The best and second-best
methods are bolded and underlined.

Method RMSE ↓ MRAE ↓ SSIM ↑ SAM ↓

HRNet [19] 0.2020 0.1630 0.882 8.53
AWAN [16] 0.1027 0.0757 0.970 4.64

HSCNN+ [15] 0.1001 0.0724 0.967 4.09
MST++ [14] 0.0914 0.0649 0.972 4.17

Restormer [55] 0.0973 0.0668 0.971 3.96
Ours− 0.0954 0.0614 0.977 3.89
Ours 0.0866 0.0587 0.979 3.91
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Figure 6. Spectral response curve of the patch (a–f) of the validation set for grss_d f c_2018.

Due to the validation images in the AVIRIS dataset being large, with dimensions
of 1010× 662, we have reduced computational costs by dividing the images into three
overlapping 515 × 512 patches. To demonstrate our results in comparison with other
models, we have displayed the MRAE error maps for five selected channels in Figure 7 and
the spectral response curves for two selected regions in Figure 8. The closer the curve is to
the ground truth, the better the reconstruction performance, and vice versa.

As the results of Table 2 demonstrate, our method achieves the best performance in all
four metrics and exhibits the highest similarity to the ground truth curve in the spectral
response curves. Notably, HRNet and HSCNN+ appear unable to obtain adequate training
or extract sufficient features, leading to substantial distortion in the results, as depicted in
Figure 7, which implies that the AVIRIS dataset, characterized by its limited data volume
and elevated image noise, demands a more robust feature extraction capability from the
network. In contrast, the more lightweight MST++ achieves comparatively improved
results, demonstrating a markedly better fit of the spectral response curve in Figure 8 when
compared to the previously mentioned methods. While the UGCT exhibits a marginally
lower performance than Ours− in SAM metrics, it is evident that both methods substan-
tially outperform other comparison techniques, which indicates the superiority of the
convolutional transformer in feature extraction. It is worth noting that the removal of LMM
from UGCT results in a significant decline in the performance of the three indexes, which
can be attributed to the loss of prior knowledge from the spectral library. When faced
with the smaller, noisier AVIRIS dataset, this approach encounters considerable challenges.
However, it still manages to produce satisfactory reconstruction results, ranking near the
top overall.
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Figure 7. Visual error map of five selected bands on the AVIRIS validation dataset.
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Figure 8. Spectral response curve of the patch of the validation set for AVIRIS.

Table 2. The quantitative results of the AVIRIS validation dataset. The best and second-best methods
are bolded and underlined.

Method RMSE ↓ MRAE ↓ SSIM ↑ SAM ↓

HRNet [19] 0.1400 0.8158 0.105 59.63
AWAN [16] 0.0408 0.2141 0.779 12.30

HSCNN+ [15] 0.0775 0.4744 0.716 9.08
MST++ [14] 0.0446 0.2806 0.748 12.61

Restormer [55] 0.0324 0.1883 0.846 8.38
Ours− 0.0357 0.2424 0.875 7.71
Ours 0.0271 0.1451 0.886 6.80

The superior performance of our method on the two small-sample remote sensing
datasets demonstrates its enhanced reconstruction capabilities for scenes with low spatial
resolution, limited sample size, and high noise when compared to alternative approaches.
This improvement stems from the integration of the exceptional feature extraction ca-
pabilities in the convolutional transformer with the sub-pixel information interpretation
offered by the LMM. This combination enables a more effective extraction of mixed pixel
information and refined HSI reconstruction.

Specifically, we showcase the superiority of our method on the dataset through
Tables 1 and 2. Moreover, to observe the reconstruction ability of our method on remote
sensing datasets from the channel dimension, we randomly selected five channel visual-
ization error maps from two datasets, 380 mm, 530 mm, 680 mm, 830 mm and 980 mm
in the grss_d f c_2018 dataset and 395 mm, 470 mm, 785 mm, 905 mm and 1035 mm in
the AVIRIS dataset. It is evident that our method achieved better results/lower error
(indicated by darker colors) in both complex scene regions and simple, consistent regions.
This demonstrates that the local and non-local features extracted by the convolutional
transformer are effectively utilized in the task. Furthermore, spectral response curves serve
as a valuable method for visualizing reconstruction tasks. By observing the degree of curve
fitting in the selected area, we can clearly see that our method has achieved the best results
in multiple comparisons.

In summary, based on the comprehensive comparison results, we found that the
Unmixing Guided Convolutional Transformer (UGCT) driven by the LMM model outper-
forms the model without the unmixing module Our-, indicating that the unmixing-driven
model excels in spectral reconstruction tasks. Furthermore, employing the Spectral–Spatial
Aggregation Module to combine the benefits of CNN and transformer models surpasses
those models that use either convolution or transformer alone. Lastly, our initial attempt at
utilizing the self-encoder structured convolutional transformer for SR tasks demonstrated
a state-of-the-art performance.

5. Discussion

We further discuss and analyze the impact of the modules and hyperparameter settings
on the results through ablation experiments. The ablation study was divided into two parts.
The first part compared the performance of different parameter settings, including spectral
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dimension and block number. The second part focused on the internal modules of the
UGCT model, including the LMM module and the PMSA module, etc.

5.1. Network Details

In the first part, we compared the performance of different parameter settings to
determine the optimal configuration for spectral dimension and block number in the
grss_d f c_2018 dataset. We modified the spectral dimension while keeping other param-
eters constant, and we evaluated the results by measuring the corresponding indicators.
The results showed that when the initial spectral dimension of the X̂ channel was set to 32,
the model achieved higher performance, as shown in Table 3.

Table 3. Ablation study about the setting of spectral dim and block number.

Spectral Dim RMSE MRAE SSIM PNSR

8 0.0924 0.0624 0.976 25.39
16 0.0943 0.0667 0.973 25.34
32 0.0865 0.0587 0.979 25.69
48 0.0877 0.0602 0.978 25.60

Block Number Params RMSE MRAE SSIM

5 2.41M 0.0882 0.0618 0.977
7 9.56M 0.0865 0.0587 0.979
9 38.12M 0.0975 0.0678 0.969

In summary, for the hyperparameter design of the model, setting the spectral dimen-
sion to 32 and the block number to 7 is the optimal choice. All subsequent experiments will
be conducted under these settings.

On the other hand, we also examined the effect of block number on the performance
of the model while keeping the spectral dimension at 32. It should be noted that the block
number significantly affects the model’s parameter count due to channel expansion, so we
only conducted experiments on three block number values: 5, 7, and 9. According to the
table above, although the optimal value 7 has a larger parameter compared to 5, this is a
trade-off. As the block number further increases, the parameter count will sharply increase,
and the performance may decrease. Therefore, 7 is a relatively better choice.

5.2. Module Ablation Analysis

In this section, we will investigate three aspects of the model: the S2AM feature fusion
component, the dual-stream parallel convolutional transformer part, and the LMM module
in Table 4.

Table 4. The module ablation analysis in the grss_d f c_2018 validation dataset.

Description Ra Rb Rc Rd Re Ours

LMM " " " % % "
S2AM % % % % " "

Resblock " % " " " "
Transformer " " % " " "

MRAE ↓ 0.0638 0.0642 0.0712 0.0674 0.0614 0.0587

Firstly, in the comparison between Ra and Ours, we find that the removal of the
S2AM module results in a significant decrease in the reconstruction capability in terms
of MRAE. This is because although the PMSA block can effectively extract two excellent
features, the lack of a suitable combination method may cause the features to interfere with
or mask each other. The results of Ra are similar to those of Rb, which also demonstrates
the masking effect of the transformer on the ResBlock features.
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Secondly, in Rb and Rc, we tested the reconstruction effects of retaining only one part
of the dual-stream model to demonstrate its working principle. Both experiments showed a
decline in performance, but it is evident that the transformer plays a leading role in feature
extraction, while ResBlock also has a crucial function when the S2AM module is present.

Lastly, in Re, we demonstrated the crucial role of the LMM mechanism, as the loss of
the excellent prior knowledge from the spectral library led to a significant decline in the
results. To illustrate the impact of the implicit relationship between the spectral position
encoding embedded in the S2AM module and the endmember positions in the spectral
library on reconstruction accuracy, we compared Experiment Rd with Experiment Re.
The results highlight the importance of the position encoder in S2AM.

6. Conclusions

In this study, we present a novel SR network, UGCT, which is based on the LMM.
Specifically, the backbone of the UGCT model consists of several dual-stream PMSA blocks,
divided into encoder, bottleneck, and decoder sections. The convolutional transformer
block PMSA is a combination of the transformer model and the CNN with various levels.
Additionally, considering that CNN does not explicitly model the band dimension, we
propose S2AM to fuse the dual-stream features and obtain globally refined image features.
To enhance the model’s interpretability and incorporate the clear prior knowledge from
the spectral library, we propose an HU-based model framework. Finally, comparative
experiments conducted on two small and noisy datasets demonstrate the superiority of
UGCT in reconstruction accuracy and spectral response curve fitting.
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