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Abstract: Presented is a methodology to explicitly identify and account for cloud-free satellite
measurements below a sensor’s measurement detection level. These low signals can often be found
in satellite observations of minor atmospheric species with weak spectral signals (e.g., ammonia
(NH3)). Not accounting for these non-detects can high-bias averaged measurements in locations that
exhibit conditions below the detection limit of the sensor. The approach taken here is to utilize the
information content from the satellite signal to explicitly identify non-detects and then account for
them with a consistent approach. The methodology is applied to the CrIS Fast Physical Retrieval
(CFPR) ammonia product and results in a more realistic averaged dataset under conditions where
there are a significant number of non-detects. These results show that in larger emission source
regions (i.e., surface values > 7.5 ppbv) the non-detects occur less than 5% of the time and have a
relatively small impact (decreases by less than 5%) on the gridded averaged values (e.g., annual
ammonia source regions). However, in regions that have low ammonia concentration amounts (i.e.,
surface values < 1 ppbv) the fraction of non-detects can be greater than 70%, and accounting for these
values can decrease annual gridded averaged values by over 50% and make the distributions closer
to what is expected based on surface station observations.

Keywords: non-detects; CrIS Ammonia Cloud Detection Algorithm (CACDA); ammonia; Satellite
Detection; CrIS

1. Introduction

Measurements from any instrument have a minimum observable limit. Any values
that are below this limit cannot be detected, and we will refer to them as non-detects. The
existence of these non-detects complicates statistical analysis. When averaged over regions
or periods, not accounting for these non-detects leads to high biases, as the averaged value
is generated excluding values below the detection limit, which will typically be lower
than the measured values. A number of procedures for handling non-detects have been
used, including simply ignoring them [1], substituting in zero values [2], and substitut-
ing in values derived from the minimum detection limit [3]. More advanced methods
identify measurements below the detection limit and substitute in values derived from a
distribution of well-calibrated measurements [4–6], and this is the approach taken in this
study. Accounting for non-detects in the satellite remote sensing observations of trace gases
(e.g., ammonia (NH3), formic acid (HCOOH), peroxyacetyl nitrate (PAN)) is important,
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as these can include a significant number of atmospheric states where background levels
dip below the sensor’s detection limit. Non-detects in trace gas measurements are caused
by a lack of signal in the spectral region used to detect the species; in more precise terms,
they occur when the absolute value of the signal-to-noise ratio (SNR) for the measured
species falls below 1. In this study, we propose an approach for determining and handling
non-detects in the Ammonia (NH3) data obtained from an infrared sensor, the Cross-Track
Infrared Sounder (CrIS), which is deployed on several polar orbiters (SNPP, NOAA-20, and
NOAA-21).

NH3 is produced principally by fertilizer application and animal waste [7], but in
some periods and regions, biomass burning [8] and automobile exhaust [9] are also signif-
icant sources. NH3 concentrations are rising due to the increase of large-scale, intensive
agricultural activities [10], which are often accompanied by greater use of fertilizers and
concentrated animal feedlots. NH3 is a significant precursor of PM2.5 particles and thus
contributes to poor air quality in many regions. Urban areas downwind of biomass burning
events and/or with high volumes of traffic (e.g., Delhi or Los Angeles) are especially
impacted by this trend. As stricter controls on other PM2.5 precursors (SO2 and NOx) are
implemented, NH3 may become the limiting factor on PM2.5 production. Furthermore,
when NH3 is deposited onto the ground or into bodies of water, it acts as a fertilizer and
disrupts local ecosystems. Typical examples of these disruptions are algal blooms, which
occur in the Gulf of Mexico and the Chesapeake Bay.

NH3 is highly reactive and thus has a short lifetime on the order of hours in the
boundary layer [11]. This leads to high variability in space and time. Concentrations can
vary by orders of magnitude with distance from a strong source, such as Confined Animal
Feedlot Operations (CAFO).

The identification and inclusion of non-detects reduce the potential for high bias in
regions where the ammonia sources either vary (e.g., seasonal events, episodic events such
as forest fires, etc.) or in general tend to approach zero. A more extreme example of this
would be large forest fire plumes over northern latitude regions where there are no other
significant sources of ammonia. In this case, if non-detects were not taken into consideration
then weekly or monthly means over the region would include only a few days of the smoke
source but not the days where ammonia levels were below the detection limit, leading to a
high bias in results. Whereas, when non-detects are taken into consideration the average
ambient ammonia concentrations are better represented over this region during this period.
In general, accounting for non-detects is important as inaccuracies in NH3 retrievals can
cause issues in applications such as integrated satellite-derived emission [7], deposition
estimates [12], and chemical transport model evaluations [13].

In this paper, we apply our approach for determining and handling non-detects to the
CrIS Fast Physical Retrieval (CFPR) NH3 product. This is a post-processing step after the
CFPR retrieval is carried out, whose objective is to handle pixel-level retrievals where the
CrIS signal from NH3 is below the detection limit. This can be a result of either (i) clear-
sky non-detect conditions where the atmospheric signal (mainly a function of ammonia
concentrations) is below the detection limit of the sensor, or (ii) thick cloudy conditions
(cloud optical depths > 1) where the satellite sensor cannot detect the ammonia below the
clouds [14]. NH3 from anthropogenic emissions is generally concentrated below the clouds
near the surface due to short boundary layer NH3 lifetimes [11]. Ignoring these pixels
entirely, or assuming a low NH3 value if they are cloudy, leads to biases in regional means.
Here we use the Visible Infrared Imaging Radiometer Suite (VIIRS) CIMG product [15] to
identify cloudy and clear CrIS observations; non-detects under thick clouds are rejected
and non-detects under clear skies are assigned representative values. The representative
values were developed using in-situ surface observations. This study analyzes the effects
of accounting for non-detects in the CrIS-SNPP (CrIS1) NH3 pixel level (Level 2) data from
May 2012 to May 2021. This analysis includes comparisons between surface and satellite
distributions, and demonstrates the spatial representation of the effect of applying the
pixel-level non-detects globally, separated by season.
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Here we define a source region as an area that has active and detectable ammonia
sources in the time frame under consideration (e.g., day, season); conversely, a non-source
region has no active sources at the measurement time. Some locations, such as the American
Midwest, are source regions in the warm seasons, but not in winter. A background region
is an area that usually has no active sources, but may experience sporadic large emission
events, such as forest fires.

2. Data Sources
2.1. CrIS Ammonia Observations

This general methodology can be used for many different satellite retrieval method-
ologies, but here we demonstrate our approach for handling non-detects with CrIS NH3
retrievals obtained from the CrIS Fast Physical Retrieval algorithm (CFPR), which is de-
scribed in detail by Shephard and Cady-Pereira [16], with updates in Shephard et al. [17].
Briefly, CFPR uses an optimal estimation approach to retrieve ammonia profiles from CrIS
radiances in the NH3 ν2 band centered around 967.5 cm−1. This NH3 band is in the “atmo-
spheric window”, where the atmosphere is nearly transparent and thus is less impacted
by interference from other species. Only a narrow range of the CrIS spectrum is used
(962.50–968.75 cm−1, or 10 channels). The optimal estimation process includes satellite-
retrieved water vapor and temperature profiles in its forward model, which are obtained
from the NOAA NESDIS-unique CrIS-ATMS product system (NUCAPS) products [18].
Thus, the retrieval can remove the effects of temperature and water vapor on the measured
ammonia signal [16], and then determine how much NH3 is needed to account for the
residual in the NH3 band, which can be greater than 1 K in brightness temperature over a
scene with high NH3 amounts and good thermal contrast. CrIS NH3 retrievals typically
have approximately one degree of freedom for signal (DOFS). By allowing the shape of
the profile to vary, the CFPR algorithm captures the change in vertical sensitivity due to
different atmospheric conditions.

CrIS is a Fourier transform spectrometer (FTS) launched by the U.S. NOAA and NASA
on the Suomi National Polar-orbiting Partnership (S-NPP) satellite on 28 October 2011,
NOAA-20 satellite on 29 November 2017, and NOAA-21 on 10 November 2022. The CrIS
footprint is 14 km at nadir and the swath width is 2200 km. In this study, we focus on
nine years of CrIS SNPP satellite observations, which are in a sun-synchronous low Earth
orbit with approximate overpass times of 01:30 and 13:30 local solar time. Note that in the
nine-year CrIS SNPP NH3 dataset from May 2012 to May 2021 has missing observations
between March 2019 and August 2019 due to instrument issues.

CrIS has a spectral resolution of 0.625 cm−1 and low spectral noise (0.04 K at 280 K) in
the NH3 spectral region [19]. This long-wave band of CrIS also has the advantage of being
identical for both normal spectral resolution (NSR) and full spectral resolution (FSR) radi-
ance files. The high CrIS SNR (~1600), combined with the high thermal contrast associated
with the early afternoon overpasses, provides enhanced sensitivity in the boundary layer
where NH3 is mostly concentrated. Even with this sensor sensitivity, there are significant
numbers of observations where the atmospheric NH3 signal falls below the detection
limit of the sensor. We define the NH3 SNR as the ratio of the online/off-line brightness
temperature difference divided by the instrument noise in the NH3 spectral region; if this
ratio is less than 1, the NH3 signal is below the detection limit. The CrIS NH3 detection
limit in the infrared depends mainly on the amount of NH3 and the surface temperature
and its vertical profile, and ranges from ~0.3 to 1.0 ppbv. Currently, the uncertainty in the
spatial and temporal variability of ammonia emission inventories is such that no reasonable
prior assumptions are available from traditional sources (e.g., climatologies or chemical
transport model fields that vary seasonally and by latitude and longitude). This is particu-
larly true for background amounts as natural and small anthropogenic sources of ammonia
are not well known. Therefore, the CFPR algorithm selects an a priori profile from three
possible choices based on the estimated strength of the NH3 signal [14,16]. Retrievals of
minor species with a weak atmospheric signal (e.g., NH3) in background conditions that
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utilize radiative transfer forward model perturbations may fall into null-space (since the
Jacobians approach 0), which often results in the retrieval not converging. Thus, in the
CFPR approach if the signal falls below the noise then the observations are identified as a
non-detect and the full retrieval, which can be computationally time-consuming and may
provide no additional observational information, is skipped. This is a common occurrence
in cold wintertime conditions with no local NH3 emission sources, which can result in a
high proportion of unattempted retrieval. This can lead to statistical biases when the data
are temporally or spatially averaged if not explicitly identified and accounted for in the
product. This has been shown in comparisons of CrIS observations with ground-based
Fourier transform infrared (FTIR) observations where the lowest concentration values of
the CFPR have a positive bias relative to the FTIR observations [20].

Figure 1 is a single-day scene of CrIS surface NH3 pixel observations overlaid on
VIIRS true color images for 12 August 2017. This plot contains clouds and non-source
regions, as well as various NH3 sources including smoke from large forest fires (including
fires in British Columbia), and NH3 agricultural source locations. As non-detects were not
accounted for in this figure it does not have values for pixels below the detection limit (i.e.,
have an absolute NH3 SNR value below 1). An example of this is seen over Hudson Bay in
Canada (dark water area near the center of the map) where there are a very limited number
of ammonia observations with signals above the CrIS noise level.
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2.2. VIIRS Observations 

Figure 1. CrIS satellite surface NH3 observation pixels combined with VIIRS true color image
showing clouds and smoke on 12 August 2017 over Canada and the US. (Underlying VIIRS image
obtained from NASA Worldview—https://worldview.earthdata.nasa.gov/, last access: 10 February
2023) (Underlying Google Earth Image obtained from Google Earth© 2022 Google Earth https:
//earth.google.com/web, last access: 10 February 2023).

2.2. VIIRS Observations

The VIIRS instrument is also deployed on the SNPP, NOAA-20, and NOAA-21 satel-
lites. It provides broadband measurements across five infrared channels and eleven visible
channels. It is used to generate Earth Data Records (EDR), among them surface tempera-
ture, aerosol optical depth, cloud fraction, vegetation indices, and ocean color properties.
VIIRS has a much finer spatial resolution than CrIS (750 m vs. 14 km at nadir). Here we
use the recently developed University of Wisconsin Space Science and Engineering Center

https://worldview.earthdata.nasa.gov/
https://earth.google.com/web
https://earth.google.com/web
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(SSEC) CrIS IMG product [15] that averages the VIIRS brightness temperatures, reflectances,
and cloud fraction over all the VIIRS pixels (~200) contained within the larger CrIS pixels
(hereafter referred to as Field of View (FOV)). This product provides additional information
that can be used to discriminate between CrIS’s FOVs obscured by clouds and FOVs with
low NH3 amounts (see Section 3.1). This CIMG product is the basis of the CrIS Ammonia
Cloud Detection Algorithm (CACDA) developed to flag cloudy conditions observed by
CrIS. The specific elements of the CIMG product used in the CACDA are explained in
detail in Appendix A.

2.3. In-Situ Surface Observations

In-situ surface observations in non-emission source regions are used to generate rep-
resentative ammonia surface values for the clear sky observations identified below the
NH3 detection limit of the CrIS satellite. Ideally, continuous temporal sampling (e.g., ≤1-h
intervals) in-situ surface ammonia observations from non-source regions would be used as
they can be better matched up with the CrIS overpass time. There are a limited number
of continuous surface monitoring observations available in non-source regions, as most
surface stations are located in areas to measure elevated NH3 amounts. In this initial study,
we used two U.S. Southeastern Aerosol Research and Characterization (SEARCH) network
measurement sites in Centreville, Alabama (CTR) (32.90N, 87.25W, rural) and Pensacola,
Florida (OLF) (30.55N, 87.38W, suburban) [21,22]. We also used the Pinehouse Lake (PHL)
(rural) Canadian Air and Precipitation Monitoring Network (CAPMoN) network site lo-
cated in northern Saskatchewan, Canada (55.51N, 106.72W). The continuous measurements
of NH3 at the PHL site were made using a modified Thermo 42i trace level chemilumines-
cence based analyzer, which has a detection limit of ~0.1 ppbv [23]. The continuous NH3
observations from these three sites are used to determine representative values based on
the different temperature bins as described in Section 3.2.

To demonstrate the impact of accounting for the non-detects in the satellite observa-
tions we then compare the instantaneous regional satellite surface ammonia statistics with
integrated point source National Atmospheric Deposition Program (NADP) Ammonia
Monitoring Network (AMoN) [24], surface station sites that are reported in bi-weekly
intervals for the period from May 2012 to May 2021 (see Section 4). The AMoN stations use
Radiello diffusive passive samplers for surface NH3 measurements, which have a detection
limit of ~0.1 ppbv [25]. An interactive map of station location and metadata information is
provided at https://nadp.slh.wisc.edu/maps-data/amon-interactive-map/ (accessed on
10 February 2023)

3. Identifying and Accounting for Non-Detects

Two of the challenges in accounting for non-detects in satellite retrievals are identifying
“clear” non-detects in a sample, and assigning them reasonable representative values. Often
retrievals either ignore these conditions, or do not identify them at all and implicitly assign
them a value (e.g., zero or an a-priori profile value). Here we present a procedure that
both explicitly identifies these non-detect observations and assigns them a representative
value based on well-calibrated surface observations. This procedure differentiates non
ammonia spectral signals in clear and cloudy conditions, and then accounts for these
observations in clear conditions by inserting representative ammonia values derived from
in-situ observations in background regions.

3.1. Cloud and Non-Detect Flag (CNF)

The CACDA was developed to separate the low signal FOVs due to clouds severely
attenuating the signal, which provides no information on NH3 amounts, from those due to
ammonia amounts below the detection limit of the sensor. Appendix A contains a detailed
description of the development of the CACDA. The CACDA is specifically designed to
be used for ammonia and incorporates the VIIRS visible and infrared cloud information
from the CIMG product as well as the VIIRS cloud fraction. This cloud information is then

https://nadp.slh.wisc.edu/maps-data/amon-interactive-map/
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used to develop the CFPR Cloud and Non-detect Flag (CNF) shown in Table 1. The CNF is
generated for each CrIS FOV except for those where the retrieval did not converge. Note
that some FOVs with NH3 values above their detection limit will be flagged as cloudy
(CNF = 1). This implies that the NH3 signal is strong enough to be detected through thin
clouds, but the uncertainty in the retrieved NH3 will be greater than for a cloud-free FOV.

Table 1. Table containing Cloud and Non-detect Flag (CNF) categories found in the CFPR Level 2
NH3 product dataset, as well as the physical conditions the CNF categories represent.

Cloud Flag Descriptor Comment

−1 No cloud information Corresponding VIIRS cloud information
was missing.

0 Clear retrieval Retrieval under cloud-free conditions.

1 Cloudy retrieval Retrieval under cloudy conditions

2 Smoke cloud
CrIS FOV that were initially identified by VIIRS
as cloudy, but were identified as smoke plumes

by the CACDA.

3 Non-detect Representative data for cloud-free CrIS FOV
below the detection limit of the sensor.

Note: Cloudy pixels with no signal are not retrieved or included in the dataset. “Cloud Flag” is the variable name
used in the product files for this flag.

Implementing the CACDA as a post processing step has the advantage of reducing
the computation burden of performing retrievals. The post-processing implementation
in combination with the CFPRs skipping retrievals below the detection limit, reduces the
computational burden of global retrievals by 36% on average, while still accounting for the
roughly 12% of pixels that are non-detects in the CrIS ammonia dataset.

The CNF allows the user of the CFPR Level 2 product to select which data to use in
their analyses. Note that if the FOV is flagged as cloudy and there was no retrieval because
the NH3 signal is low, this FOV is excluded from the dataset. It is recommended for most
analyses that the user select the CNF flag that keeps all FOVs except those with CNF = 1.

Figure 2 shows the CNF for the same CrIS data used in Figure 1. Over the non-
source regions (e.g., Hudson Bay in Canada) there are a number of non-detect (CNF = 3;
purple) FOVs added to the image. Thick smoke plumes are also identified by the CACDA
algorithm (CNF = 2; red). Thick cloudy regions are white without any retrieved values as
the instrument cannot detect ammonia below the thick clouds. There are some locations
(mainly near the edges of cloud systems) where the CACDA algorithm detects thin clouds
and a retrieval was performed (CNF = 1; yellow); these retrievals have higher uncertainties
and should be used with caution.

3.2. Non-Detects Values

In-situ data was used to generate representative ammonia concentrations under CrIS
non-detect conditions. As noted earlier, there are a very limited number of continuous
surface stations in non-source locations. Here, we used continuous measurement of surface
NH3 and temperature data, from three background measurement sites. Two stations are
from the SEARCH measurement network (CTR and OLF) for the period of 2012–2016,
and one is from CAPMoN measurement network (PHL)) from 2016–2017. We used the
continuous in situ measurements between 13:00–14:00 h to match the in situ measurement
to the satellite overpass (i.e., 13:30 h) on a daily basis. As temperature is one of the main
drivers in the volatilization of ammonia from the surface to the air [26,27] we generated
these initial representative non-detect ammonia concentration values as a simple function
of temperature. As more data becomes available this approach can be refined to include
other potential dependences (i.e., wind speed, humidity, soil moisture, etc.).
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Figure 2. The CFPR cloud and non-detect flag for the same 12 August 2017 image shown in Figure 1.
(Underlying VIIRS image obtained from NASA Worldview-https://worldview.earthdata.nasa.gov/,
last access: 10 February 2023) (Underlying Google Earth Image obtained from Google Earth© 2023
Google Earth https://earth.google.com/web, last access: 10 February 2023).

The daily matched values are then used to calculate the median values of surface NH3
concentrations for different surface temperature bins at each of the three stations. More
than 50 observations were used to calculate the median value for each of the temperature
bins. Then, to account for the geo-meteorological variability in North America the average
value of the median surface NH3 concentration from all three stations is calculated and
used for the representative non-detect values in Table 2.

Table 2. Table of non-detect NH3 surface values as a function of surface temperature.

Temperature (◦C) Non-Detect NH3 Surface Values (ppbv)

<−25 0.0

[−25 to −20] 0.0423

[−20 to −15] 0.0732

[−15 to −10] 0.0959

[−10 to −5] 0.1705

[−5 to 0] 0.1720

[0 to 5] 0.2244

[5 to 10] 0.2666

[10 to 15] 0.3863

>15 0.4649

Figure 3 is the same surface ammonia example used in Figure 1, but with the non-
detects shown in Figure 2. The clear-sky non-source conditions with sparse retrieved values
(e.g., Hudson Bay, Arctic) now include the representative background values that will help
provide better statistics for gridded and averaged products.

https://worldview.earthdata.nasa.gov/
https://earth.google.com/web
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Figure 3. Accounting for non-detects in the 12 August 2017 daily plot of CrIS satellite surface
NH3 observations shown in Figure 1. (Underlying VIIRS image obtained from NASA Worldview—
https://worldview.earthdata.nasa.gov/, last access: 10 February 2023) (Underlying Google Earth
Image obtained from Google Earth© 2023 Google Earth https://earth.google.com/web, last access:
10 February 2023).

Figure 4 presents three overlaid histograms illustrating the changes in CrIS NH3 dis-
tribution over the PHL surface site when non-detects are included, and how they compare
to the in-situ distribution. PHL is a background surface location that experiences a broad
range of surface temperatures from winter to summer, and is a good station to demonstrate
the procedure of accounting for non-detects. The in-situ values in the histograms were
chosen by co-locating the PHL average surface observations with CrIS observations, in-
cluding the non-detects (blue), that occurred in the same hour (i.e., 13:00–14:00 h) as CrIS
overpass time (i.e., ~13:30 local time) and 15 km of the center of a CrIS footprint. For
values > 0.5 ppbv the satellite histogram values with (blue) and without (red) non-detects
are the same, which is expected as the additional non-detect values have a maximum
value below 0.5 ppbv (see Table 2). Note that for the instantaneous observations below
0.5 ppbv adding the non-detects significantly improves the agreements with the in-situ
data. This is expected given that the representative data used for the non-detects was
generated using the in-situ data from the PHL site. This result simply demonstrates that
the methodology implemented works as designed, and that accounting for non-detects will
improve statistically averaged background conditions. This is also shown in the mean and
median values: accounting for non-detects reduces the overall 2-year mean (median) values
of the datasets from 1.3 (1.1) ppbv to 0.8 (0.5) ppbv, approaching the in-situ mean values
of 0.5 (0.4) ppbv. Also provided are the median absolute deviations (MAD) values of the
distributions, where half the data points are within one MAD of the median value in either
direction. An evaluation of including non-detects with bi-weekly AMoN observations is
provided in Section 4.

https://worldview.earthdata.nasa.gov/
https://earth.google.com/web


Remote Sens. 2023, 15, 2610 9 of 20

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 22 
 

 

were chosen by co-locating the PHL average surface observations with CrIS observations, 
including the non-detects (blue), that occurred in the same hour (i.e., 13:00–14:00 h) as 
CrIS overpass time (i.e., ~13:30 local time) and 15 km of the center of a CrIS footprint. For 
values > 0.5 ppbv the satellite histogram values with (blue) and without (red) non-detects 
are the same, which is expected as the additional non-detect values have a maximum value 
below 0.5 ppbv (see Table 2). Note that for the instantaneous observations below 0.5 ppbv 
adding the non-detects significantly improves the agreements with the in-situ data. This 
is expected given that the representative data used for the non-detects was generated us-
ing the in-situ data from the PHL site. This result simply demonstrates that the method-
ology implemented works as designed, and that accounting for non-detects will improve 
statistically averaged background conditions. This is also shown in the mean and median 
values: accounting for non-detects reduces the overall 2-year mean (median) values of the 
datasets from 1.3 (1.1) ppbv to 0.8 (0.5) ppbv, approaching the in-situ mean values of 0.5 
(0.4) ppbv. Also provided are the median absolute deviations (MAD) values of the distri-
butions, where half the data points are within one MAD of the median value in either 
direction. An evaluation of including non-detects with bi-weekly AMoN observations is 
provided in Section 4. 

 
Figure 4. Histograms demonstrating the effect of including non-detects over a PHL station from 
2016 to 2017 for PHL. The CrIS histograms are shown both without non-detects (red) and the over-
plotted accounting for non-detects (blue); the in-situ surface observations for the PHL surface station 
are shown in black. 

Figure 4. Histograms demonstrating the effect of including non-detects over a PHL station from 2016
to 2017 for PHL. The CrIS histograms are shown both without non-detects (red) and the overplotted
accounting for non-detects (blue); the in-situ surface observations for the PHL surface station are
shown in black.

4. Surface Evaluations including Non-Detects

Provided here are comparisons of the distribution of CrIS observations with and
without non-detects against in-situ surface observations. The purpose here is not a detailed
validation of the CrIS satellite observations, especially since sampling differences between
the in-situ point source surface stations and coarser CrIS observations, which can have a
significant impact in inhomogeneous conditions, have not been taken into account. The
main purpose here is to demonstrate the impact of including non-detects on the CrIS
distributions, and how these new distributions compare to an expected distribution over
a region as observed by in-situ surface observations. It is important to note that the
AMoN observations are bi-weekly integrated observations, whereas the corresponding
CrIS values are 2-week averages of instantaneous 01:30 daytime overpass observations. For
this evaluation, we selected background AMoN surface stations, with a significant number
of very low (<1.0 ppbv) ambient ammonia values. The impact of accounting for non-detects
is expected to be more significant at such stations. We chose stations where the impact of
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spatial sampling differences between in-situ point source surface stations and coarser CrIS
observations is not large (i.e., a more homogenous ammonia field). This gives a reasonable
comparison to CrIS observations. We used CrIS Level 2 NH3 observations with quality
flag ≥ 4, cloud flag 6= 1, co-located within 15 km of the AMoN station. Figure 5 shows that
accounting for non-detects shifts the distribution towards smaller values that are in closer
agreement with the in-situ observations (black).
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Figure 5. Histogram of bi-weekly average NH3 concentrations from in situ and CrIS satellite observa-
tions with and without non-detect values for AMoN stations located in background regions.

5. Application to CrIS NH3 Satellite Observations

Non-detects are accounted for at the single pixel level (Level 2), since the conditions
that lead to a non-detect vary from pixel-to-pixel. However, the overall impact of accounting
for non-detects is more evident when averaging the single pixel values (Level 2) to generate
gridded (Level 3) data. CrIS gridded and averaged Level 3 values were created on a
uniform 0.1◦ × 0.1◦ grid with quality flag ≥ 4 [17] and averaged over the 9-year time
period from May 2012 to May 2021 (Figure 6). The top left plot in Figure 6 shows the
multi-year average plot not accounting for non-detect pixels, whereas the top right shows
the corresponding plot with non-detects included. Comparing these two plots shows
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that in general, accounting for non-detects reduces the average surface values in non-
source or background regions. At the same time, the values in the regions with strong
year-round sources remain relatively unchanged. Differencing the two datasets (Figure 6,
lower left) shows that the largest impacts are in the regions with no significant sources, or
predominantly seasonal sources such as fires. These are also the regions with the greatest
number of non-detects (Figure 6, lower right) since the ammonia values are frequently
below the detection limit of the satellite sensor. The corresponding results for the total
column amounts are provided in Appendix C.
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Figure 6. (Upper left) CrIS global averaged surface observations for the May 2012 to May 2021
period without including non-detects (ND); (Upper Right) CrIS observations over the same period,
but including the non-detects; (Lower Left) the relative difference between including and excluding
non-detects; (Lower Right) percentage of non-detects added to the global dataset.

The impact of including the non-detects can be quantified by looking at the relative
differences as a function of the ammonia amounts, as in Figure 7. The average surface
values decrease by over 50% in non-source regions (<1 ppbv), but by less than 5% in strong
source regions (>7.5 ppbv). A similar impact is observed when looking at the fraction of
non-detects as a function of ammonia amounts (Figure 8). The percentage of non-detects
ranges from ~70% in low source background regions (<1 ppb) to <5% in strong source
regions (>7.5 ppbv). Over this period of time, no regions experience an increase in the
average measured ammonia level as a result of the inclusion of non-detects. These show
that the impact of including the non-detects for total column mean values is similar to
the surface values, as would be expected, since the total column values are the integrated
values of the profile values generated from the surface values (see Appendix B).

As indicated earlier, seasonal variability can also influence the impact and occurrence
of non-detects. Seasonally binned multi-year annual average NH3 values (Figure 9) and
percentage of non-detects (Figure 10) show that regions with strong seasonal variability
will have more non-detects in cooler weather. This is due to a combination of factors:
NH3 sources are much weaker (e.g., there is no fertilizer application in winter); NH3
emissions are much lower at colder temperatures, and biomass burning, another strong
but localized NH3 source, is also rare in cold weather. This is evident in many regions
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around the globe. For example, NH3 source regions above 45 N latitude in North America
and Europe have significantly more non-detects in the winter months (upper left) than
during warmer periods (lower left), when fires can be significant localized sources. In some
of these regions, the percentage of non-detects can range from >60% in the wintertime to
<15% in the warm seasons.
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Figure 7. Box-and-whiskers plot of the relative differences in the annual gridded surface NH3 values
from including non-detects as a function of surface value magnitudes. Data points use the same
spatial and temporal period as Figure 6. The whiskers are the 5th and 95th percentiles, the box is
the 25th and 75th percentile, where the orange line is the median value, and the triangle is the mean
value in each bin. Data points are binned using the original surface NH3 values without non-detects.
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Figure 9. CrIS multi-year (May 2012–May 2021) surface observations split up into the seasons of
(Upper Left) winter (December-January-February), (Upper Right) spring (March-April-May), (Lower
Left) summer (June-July-August), and (Lower Right) fall (September-October-November).
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6. Conclusions

Even though the CrIS sensor has an excellent sensor signal-to-noise ratio (~1600) in
the spectral region used for NH3 retrievals, accounting for non-detects can have an impact
on satellite NH3 products. The impact is most evident in regions or seasons with weak
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emissions. In this study, we developed a post-retrieval processing approach to identify and
take into account non-detects in the CFPR NH3 single observation retrievals. This involved
creating a CFPR Cloud and Non-detect Flag (CNF), which required the development of a
new CrIS Ammonia Cloud Detection Algorithm (CACDA) and the generation of non-detect
distribution of surface concentrations. The CACDA separates the CrIS FOVs with low
ammonia signals due to clouds from those due to low amounts of ammonia below the
detection limit of the sensor. The CrIS FOVs that are placed in the latter group are then
populated with representative data values. The frequency of non-detects ranged from
<5% in strong source regions, to >~70% in background regions (<1 ppbv); in regions with
strong seasonal sources such as fires this frequency varies seasonally. The resulting relative
impact of accounting for non-detects on the ammonia surface concentrations goes from
decreasing values by over 50% in non-source conditions (<1 ppbv), to less than 5% in strong
source regions (>7.5 ppbv). Comparison with in-situ surface stations shows satellite NH3
observations better represent the lower distribution of surface stations when non-detects
are included, even given the potential difference in sampling between the two types of
observations. An additional benefit of identifying the non-signal conditions and handling
the non-detects in a post-processing step is that it greatly reduces the computational burden
of global retrievals as this removes the need for performing full retrievals when there is
no NH3 signal in the satellite spectrum. For example, this approach of adding in non-
detects in a post-processing step for daytime retrievals reduces the computation burden by
36% on average, while still allowing for the roughly 12% of pixels that are non-detects to
be accounted for. In the future, as more instantaneous background surface observations
over various background conditions become available, they can be used to refine the
inserted representative data used to populate the satellite non-detects. Non-detects are
available in the CFPR product starting from Version 1.6. Version 1.6 has already been used
to obtain improved emission estimates of NH3 over the United Kingdom and globally,
respectively [28,29].
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Appendix A CrIS Ammonia Cloud Detection Algorithm (CACDA)

The CIMG files contain VIIRS data averaged over all the VIIRS pixels within each CrIS
pixel, hereafter referred to as an FOV for clarity. Among the variables in the CIMG files
are cloud fraction, and brightness temperatures (BT) in the infrared channels. Separate
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averages over the clear and cloudy VIIRS pixels are also provided (Figure A2, top right and
lower left; blank regions in either plot indicate CrIS FOVs that are completely cloudy, or
completely clear).

An initial attempt to classify all CrIS FOVs with a cloud fraction greater than 0.2 as
cloudy rejected a significant fraction of FOVs that provided low but physically reasonable
NH3 amounts, as shown in the left panel of Figure A4. Instead, we utilized the brightness
temperature (BT) data in the 10.8 µm VIIRS infrared channel, which encompasses the
spectral feature used by the CFPR algorithm for the NH3 retrievals, to create a more subtle
mask. Note that for demonstration purposes retrievals in Figures A2 and A4 were carried
out over all FOVs.

We hypothesized that if the brightness temperature difference between the clear and
cloudy portion of an FOV was below some threshold in the band where NH3 is radiatively
active, then the cloudy area in that FOV would still allow a reasonable fraction of the NH3
signal to reach the CrIS sensor. To determine this threshold we calculated the BT at the top
of a cloudy layer as a function of cloud optical depth, using Beer’s Law. We did this for
a range of surface skin temperatures, then subtracted the calculated BT from the surface
BT. As stated in Section 2, the NH3 spectral feature is in a window region, where the BT
measured at the top of the atmosphere is very close to the BT measured at the surface if
there are no clouds (Figure A3). We found that a difference of 25 K or less allowed 45%
to 70% of the NH3 signal to pass through the cloud. Accepting FOVs that pass this test
leads to significantly fewer rejections, as can be seen by comparing the left and right panels
in Figure A4. It could be argued that this lower criterion is simplistic and too loose and
allows for cloud-contaminated data to be accepted. However, our objective is to include as
much information on NH3 amounts as possible and let the user decide what they want to
include in their analysis. This is in effect a quality control test, and such tests frequently
require empirical cutoffs. While the presence of some very thin clouds may interfere with
ammonia retrievals, they do not totally obscure the NH3 signal and thus provide some
information. These are identified in the CFPR cloud and non-detect flag (CNF = 1) allowing
the user the flexibility to determine if they would like to use these less reliable “thin cloud”
pixels in their analysis. Below are the detailed steps of the CACDA to generate the CNF
(also represented as a flowchart in Figure A1):

1. If the CIMG cloud fraction in an FOV is less than 0.25, the FOV is flagged as clear
(CNF = 0).

2. If the CIMG cloud fraction is greater than 0.9 the FOV is flagged as cloudy. If a
retrieval was performed then it will have (CNF = 1), otherwise, the pixel will be
skipped from the CFPR product as we currently do not consider non-signal cloudy
pixels.

3. If the CIMG cloud fraction is greater than or equal to 0.25 and less than or equal to
0.9, but the BT difference between the clear and cloudy averages is less than 25 K, the
FOV is flagged as clear; otherwise, it is flagged as cloudy (CNF = 1).

4. If a pixel is identified in the first three steps using CIMG as being clear, but no retrieval
was attempted(NH3 SNR < 1 in the NH3 window) then the pixel is flagged as a
Non-detect(CNF = 3).

5. If a pixel is identified in the first three steps using CIMG as being cloudy, but the
estimated NH3 SNR > 5 in the NH3 retrieval window, then the CrIS FOV is flagged
as smoke filled (CNF = 2). This final step is required because the VIIRS processing
flags often incorrectly flags thick smoke pixels as clouds. Note that the NH3 SNR is a
linear function of the ammonia spectral signal divided by the CrIS noise in the NH3
spectral region [16], which provides a measure of the spectral strength of the NH3
signal. A high NH3 signal over a cloudy FOV is a strong indicator of the presence of
NH3 from fires. Thus, applying this last step on cloudy pixels will retain these smoky
pixels, which are a source of large NH3 concentrations. An example of this is shown
in Figure 2 where thick smoke pixels from large forest fires are shown in red.
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Figure A3. Difference in brightness temperature between the clear and cloudy portions of FOVs as a
function of cloud OD (or transmittance) for a range of surface temperatures.
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Figure A4. (Left) Surface CrIS NH3 from 22 April 2015 with only CrIS FOVs with cloud fraction less 
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Figure A4. (Left) Surface CrIS NH3 from 22 April 2015 with only CrIS FOVs with cloud fraction less
than 0.2. (Right) Same data with only FOVs determined to be clear as described in Section 3.1.

Appendix B Non-Detect CFPR Product Parameters

It is desirable that the identified non-detect pixels also contain all the additional pa-
rameters that are provided in the CFPR product (e.g., averaging kernels, error covariances,
etc.) for the retrieved pixels. Thus, representative values are provided in the files to go
along with the non-detect surface ammonia concentration values. The representative av-
eraging kernel, measurement covariance error matrix, and total covariance error matrix
were derived by averaging CrIS retrievals with very little signal (|NH3 SNR| < 1.01) close
to the sensor’s detection limit in a region over North America 100 to 80 W and 45 to 60 N.
These average values for 2017 binned by season are shown in Figure A5. For CFPR v1_6
we selected just the average winter values as these had the lowest signals. An NH3 profile
is generated by scaling an unpolluted profile [14] by the representative non-detect surface
value, with a corresponding total column value computed by integrating up the profile
NH3 concentrations.
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Figure A5. Seasonal plots of the averaging kernel, measurement, and total error covariances matrices
plotted as a function of the retrievals levels starting from the surface (level 0) up to the top-of-the
atmosphere (level 14) from retrievals with low signals (NH3 SNR < 1.01) in 2017 for a region over
central Canada.

Appendix C Total Columns

The retrieved profiles can be integrated to provide vertical column densities. Thus,
the corresponding total column values associated with the annual averaged values shown
in Figure 6 are provided in Figure A6. Similar to Figure 6, the identification and accounting
for non-detects has a greater impact in the non-local source regions where there are more
occurrences of conditions below the detection limit of the sensor (Figure 6 bottom right).
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Figure A6. (Upper Left) The CrIS global averaged vertical total column values for May 2012 to May 
2021 period without including non-detects. (Upper Right) The CrIS observations over the same pe-
riod, but including the non-detects. (Lower Left) The relative difference between including and ex-
cluding non-detects (Minimum and maximum values for normalization are set to −100 and 0 respec-
tively). (Lower Right) The percentage of non-detects added to the global dataset is the same for both 
the surface concentrations and total column, (just provided for reference). 
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