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Abstract: The technology of remote sensing-assisted tree species classification is increasingly devel-
oping, but the rapid refinement of tree species classification on a large scale is still challenging. As
one of the treasures of ecological resources in China, Arxan has 80% forest cover, and tree species
classification surveys guarantee ecological environment management and sustainable development.
In this study, we identified tree species in three samples within the Arxan Duraer Forestry Zone based
on the spectral, textural, and topographic features of unmanned aerial vehicle (UAV) multispectral
remote sensing imagery and light detection and ranging (LiDAR) point cloud data as classification
variables to distinguish among birch, larch, and nonforest areas. The best extracted classification
variables were combined to compare the accuracy of the random forest (RF), support vector machine
(SVM), and classification and regression tree (CART) methodologies for classifying species into three
sample strips in the Arxan Duraer Forestry Zone. Furthermore, the effect on the overall classification
results of adding a canopy height model (CHM) was investigated based on spectral and texture
feature classification combined with field measurement data to improve the accuracy. The results
showed that the overall accuracy of the RF was 79%, and the kappa coefficient was 0.63. After adding
the CHM extracted from the point cloud data, the overall accuracy was improved by 7%, and the
kappa coefficient increased to 0.75. The overall accuracy of the CART model was 78%, and the kappa
coefficient was 0.63; the overall accuracy of the SVM was 81%, and the kappa coefficient was 0.67;
and the overall accuracy of the RF was 86%, and the kappa coefficient was 0.75. To verify whether
the above results can be applied to a large area, Google Earth Engine was used to write code to
extract the features required for classification from Sentinel-2 multispectral and radar topographic
data (create equivalent conditions), and six tree species and one nonforest in the study area were
classified using RF, with an overall accuracy of 0.98, and a kappa coefficient of 0.97. In this paper,
we mainly integrate active and passive remote sensing data for forest surveying and add vertical
data to a two-dimensional image to form a three-dimensional scene. The main goal of the research
is not only to find schemes to improve the accuracy of tree species classification, but also to apply
the results to large-scale areas. This is necessary to improve the time-consuming and labor-intensive
traditional forest survey methods and to ensure the accuracy and reliability of survey data.
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1. Introduction

Forest resources are a major component of terrestrial ecosystems and play an in-
creasingly important role in regulating the global carbon balance and mitigating climate
change [1–3]. The quantity and quality of forest areas are, therefore, of great importance, as
is monitoring forests to ensure the stability of forest ecosystems [4]. However, traditional
manual monitoring methods are not only time-consuming and labor-intensive but also
subject to human error [5]. Remote sensing monitoring provides a rich source of data, and
the applied remote sensing methods are constantly being updated [6]; thus, such methods
have played an increasingly important operational role in the implementation of national
forest inventories (NFIs).

Research using remotely sensed data to classify and map tree species dates back several
decades. Several studies of tree species classification based on data sources to improve
accuracy have shown that classifiers that combine image pixels with spectra outperform
pure spectral classifiers [7–9]. Although optical remote sensing is sufficiently mature, in
many cases, it is difficult to identify small differences (e.g., similar species) in land cover
classification due to the similar spectral characteristics [10]. However, the accuracy of
stand identification based only on single features is very limited [11]. Combining textural
features and vertical structure information can improve the accuracy of the classification
results obtained with optical remote sensing techniques [12]. In some research based on the
optimization of classification methods, classification methods based on remotely sensed
data have advantages and disadvantages; usually, different classification methods are better
for different regional features [13]. The CART methodology assesses the nonparametric
discriminative statistical relationships among multiple data layers and generates a binary
tree [14,15]. However, the limitations of the decision tree approach are its potential for
overfitting and underfitting [16]. SVMs are machine learning methods with powerful
generalization capabilities [17,18]; they have been shown to be powerful for local feature
recognition in images [19,20]. The RF methodology is another approach for identifying local
features in images. It is an integrated learning technique that builds multiple classification
trees based on random bootstrap samples of training data [21,22]. In RFs, redundant
variables can be removed automatically using the best classification tree [23]. In recent years,
RF has been widely used in land cover and forest classification. Ke et al. integrated spectral
and LiDAR data and used machine learning decision trees to construct classification rule
sets. The results of a quantitative segmentation quality assessment and the classification
accuracy showed improved forest classification accuracy in image segmentation and object-
based classification [24].

Drones can carry a variety of sensors that can acquire a variety of different data types
and resolutions. Because UAV remote sensing data acquisition requires considerable money
and has various limitations, such as flight altitude, the application of satellite active–passive
remote sensing data is needed to classify the entire Duraer Forestry Zone, which contains
a large range of tree species. Satellite-based studies are becoming more common due to
the increasing availability of satellite data, image resolution and time series datasets, and
time and computational costs [25]. Researchers reported an overall accuracy of 83.2% for
a model constructed using only Sentinel-2 data and an improvement in overall accuracy
(OA) for combined Sentinel-1 broadleaf and conifer groups, with significant improvements
in producer accuracy (PA) and user accuracy (UA) for all species and relatively good
separation of the two species, which could not be separately classified using Sentinel-1
data alone [26]. This difference was because of the time-consuming satellite data search
and download activities of traditional methods and the huge storage space required for
aerial remote sensing data. In addition, the increased number of classified areas and
tree species affects the difficulty and workload of the classification process, requiring
strong computational processing power to manage all the data and run different algorithms.
Therefore, cloud-based platforms, also known as virtualized supercomputer infrastructures,
provide a more user-friendly approach [27]. In this respect, Google Earth Engine (GEE)
has been successful because it is a cloud-based platform used for geospatial analysis that
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allows users to efficiently solve the main problems related to managing large quantities of
data and their storage, integration, processing, and analysis [28].

The forest resources in the Arxan region cover 80% of the area, affecting the local
ecosystem and representing a national reserve forest resource and a treasure trove of
ecological resources [3]. The topography of the Duraer Forestry Zone is complex and
mountainous, and its slope orientation has a direct impact on the growth of forest stands.
Therefore, integrating multiple data sources [29] and optimal classification features [30] and
selecting the best classification method are key to the classification of tree species. The aim
of this study is to provide a logical basis for forest management measures to better support
the monitoring and conservation of forests and their sustainable development [31,32].

2. Materials and Methods
2.1. Study Area

The study area of this paper is in Duraer National Forest in Arxan, northwest of
Xing’an League, Inner Mongolia Autonomous Region (119◦28′–120◦01′E, 47◦15′–47◦35′N),
at the southwest foothills of the Greater Khingan Mountains, bordering Mongolia in the
west and Xin Barag Right Banner in Hulun Buir, Inner Mongolia in the north (Figure 1).
The total area of forestry operation is 49,812 hectares, with 33,466 hectares of forestry land,
including 14,603 hectares of forested land; a total timber accumulation of 900,000 cubic me-
ters; and a forest coverage rate of 40%. The area has a cold-temperate continental monsoon
climate, with long and severe winters, hot summers with short periods of precipitation,
and large daily and annual temperature differences. First, the Duraer Forestry Zone is a
comprehensive management forestry plantation with natural forests (the main species is
birch), planted forests (the main species is larch), farms, breeding, gathering, and wood
processing. We classified three sample strips of birch and larch in the Duraer Forest with the
same size from aerial photographs: sample a, 950 m × 2150 m; sample b, 910 m × 1970 m;
and sample c, 450 m × 4250 m (Figure 1). The number of small classes covered by the
three sample strips reached 62, with the number of forest classes being 13 and 2 major tree
species being present (birch and larch). Satellite data were then used to create equivalent
conditions to classify six species of trees throughout the forest site: willow, poplar, spruce,
camphor pine, birch, larch, and nonforest.

2.2. Data
2.2.1. Field Survey Data

Data collected in the field included UAV multispectral data, airborne LiDAR data, UAV
orthophotos, and forest sample survey data. Due to the border location of the study area,
UAV flight work required multiple applications for permission. All aerial photography was
completed between 10 July 2021 and 19 July 2021. Field tree survey work was performed
from 10 July 2021 to 19 July 2021 and 16 to 25 July 2022. The forest survey mainly included
sample coordinates, tree coordinates, community structure, woodland status, origin, slope
orientation, and tree species height.

The orthophotos played an auxiliary role in building the prediction model. The main
operation of the orthophoto shooting used Pegasus V10 large-load vertical takeoff and
a landing unmanned aerial system (UAS) (Figure 2), and for the complex terrain of the
survey area, a variable accuracy model of 8 cm for low flat areas and 13 cm for high steep
standing areas was adopted for the route; the regional flight height was approximately 500
to 800 m from the ground. To ensure the accuracy of the model edge, the route exceeded
the national border line by 100 to 1000 m.
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2.2.2. Drone Multispectral Data

UAV multispectral image data acquisition was performed using the Pegasus V300
product equipped with a camera model Mica Sense Red Edge-MX aerial survey (Figure 3).
This product was equipped with an all-in-one multispectral imaging system, using five
multispectral cameras (blue, green, red, red edge, and NIR) to form a multispectral im-
age. There were no clouds during the aerial photography, the resolution was adjusted to
10–20 cm for the complex terrain in the survey area, the starting flight altitude was 220 m,
and there was no altitude change throughout the survey; the airspeed was 16 m/s, the
heading overlap was 80%, and the side overlap was 60%; the camera characteristics are
shown in Table 1; and the radiation calibration was performed using a whiteboard.
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Table 1. Multispectral band information.

Band Band Name Wavelength Wave Width

Band 1 Blue (B) 475 20
Band 2 Green (G) 560 20
Band 3 Red (R) 668 10
Band 4 Near-infrared (NIR) 840 40
Band 5 Red edge (RE) 717 10

The processing of the raw data was performed by the fully automated and fast UAV
data processing software Pix4Dmapper from the Swiss company Pix4D. The software is
based on the principle of photogrammetry and multivision reconstruction and can be used
to quickly obtain point cloud data from aerial footage and process it in postprocessing.
We loaded the acquired image into the software to automatically identify the coordinate
information and added the image control points to obtain the stitched multispectral image.

2.2.3. UAV Lidar Data

The UAV LiDAR data were collected from a Hurtigruten six-rotor UAV Long-120
equipped with the Hurtigruten ARS-1000 L long-range LiDAR measurement system
(Hurtigruten, Wuhan, China) (Figure 4); the core parameters are shown in Table 2. Li-
DAR data were collected between 12 July 2021, and 17 July 2021, covering a total area of
21.8 km2. The platform flew at altitudes between 200 and 400 m, with flight speeds of 6 m/s
to 10 m/s and an overlap of 60% in the side direction and 70% in the heading direction.
The LiDAR sensor beam divergence fraction was 0.5 rmad, so the acquired data footprint
diameter was between 0.1 m and 0.2 m.
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LiDAR measurement system.

Table 2. Lidar sensor core parameters.

Core Parameters ARS-1000 L

Maximum flight height 1350 m
Range resolution ±5 cm
Scanning angle ±330◦

Angle resolution 0.001◦

Pulse frequency 820 KHZ
Laser wavelength Near-infrared
Beam divergence 0.5mrad

The processing of raw data was handled using Inertial Explorer (IE) postprocessing
software, an open-source software developed by NovAtel’s Waypoint product group, and
by UAV Butler, a one-stop commercial software for intelligent geographic information
systems (GIS) launched by Pegasus Robotics. IE is powerful and highly configurable
postprocessing software for processing all available GNSS IE and processing all available
GNSS data for decomposition and export to the SBET (OUT) format, which is recognized
by common commercial software and can provide high-precision combined navigation
information, including position, velocity, and attitude information. The SBET (OUT) format
is then converted to the LAS (las) format common to general geoprocessing software using
the Drone Butler Smart Laser.

2.2.4. Satellite Data

The Sentinel-2 satellite carries a multispectral imager (MSI) with an altitude of 786 km;
it covers 13 spectral bands with an amplitude of 290 km. The ground resolutions are 10 m,
20 m, and 60 m, and the revisit period is 10 days for one satellite and 5 days for two
complementary satellites. With different spatial resolutions, from visible and near-infrared
to shortwave infrared, the Sentinel-2 data are the only data with three bands in the red-edge
range among the available optical data; thus, Sentinel-2 products are very effective for
monitoring vegetation health information (Table 3).
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Table 3. Spectral bands of the Sentinel-2 sensors (S2A).

Band Number Band Name Band Length (nm) Bandwidth (nm) Resolution (m)

1 Coastal Aerosol 443.9 27 60
2 Blue 496.6 98 10
3 Green 560.0 45 10
4 Red 664.5 38 10
5 Vegetation red edge (RE) 703.9 19 20
6 Vegetation red edge (RE) 740.2 18 20
7 Vegetation red edge (RE) 782.5 28 20
8 Near-infrared (NIR) 835.1 145 10
8a Vegetation red edge (RE) 864.8 33 20
9 Water Vapour 945.0 26 60
10 SWIR_Cirrus 1373.5 75 60
11 SWIR 1613.7 143 20
12 SWIR 2202.4 242 20

NASA SRTM Digital Elevation 30 m (SRTM DEM) is a joint effort between NASA and
the Department of Defense’s National Mapping Agency (NIMA), as well as German and
Italian space agencies, and was completed by the U.S.-launched Space Shuttle Endeavour
with the SRTM system on board. The SRTM system was used to obtain a near-global DEM.
This SRTM V3 product (SRTM Plus) was provided by NASA JPL and has a resolution of
1 arc second (~30 m). This dataset underwent a void-filling process using open-source data
(ASTER GDEM2, GMTED2010, and NED), while other versions contained voids or were
filled with voids from commercial sources.

ALOS DSM: Global 30 m v3.2 (AW3D30) is a global digital surface model (DSM)
dataset with a horizontal resolution of approximately 30 m (1 arc second grid). The dataset
is a DSM dataset based on the world’s 3D topographic data (5 m grid version). Version
3.2, released in January 2021, is an improved version created by reconsidering the format,
ancillary data, and processing methods at high latitudes. The elevations of the AW3D
DSM are calculated via an image-matching process that uses pairs of stereo-optical images.
Clouds, snow, and ice are automatically identified during processing and mask information
is applied.

Data processing is performed using the Google Earth Engine (GEE) code editor, an
interactive environment for developing Earth Engine applications, with a central panel
that provides a JavaScript code editor. The application programming interface (API) is the
core functionality of GEE and is the platform that GEE users are most concerned about.
Compared to the graphical user interface (GUI), the API can call all the data and functions
in the GEE platform.

2.3. Methods
2.3.1. Extraction of Spectral Features and Texture Features

The vegetation index is very suitable for discriminating vegetation over large areas,
where the deviation of the general reflectance curve of vegetation between red and near-
infrared constitutes a variable that is sensitive to the presence of green vegetation [33].
For example, depreciation of the NDVI can distinguish unvegetated areas [34], and the
EVI belongs to atmospheric impedance [35]. The RVI can assess and monitor vegetation
cover [33], and the GRVI is sensitive to subtle disturbances and differences in ecosystem
types due to visible red-green band reflectance [36], both of which are sensitive in densely
vegetated areas. The VDVI was proposed because chlorophyll absorbs red and blue light
and reflects green light, so the classification principle in the study is to determine whether
the average value of red and blue light is greater than that of green light and also to
distinguish between soil and plants [37]. Other vegetation indices such as the DVI and
simple ratios in the NIR and blue bands are more sensitive to the spectral response of green
plants [38]. The OSAVI is an optimized index of the Soil Adjusted Vegetation Index (SAVI)
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which can reduce soil background effects during classification [39]. The IPVI is a linear
extension of the NDVI, which can avoid negative numbers during classification [40]. Details
of these vegetation indices are shown in (Table 4). In remote sensing, texture describes the
variation between light intensity values reflected to the sensor to distinguish valuable data
associated with different objects [41]. The red-edge band is valuable in measuring plant
health and helping in vegetation classification [42]. The difference in reflectance between
birch and larch in the images of the study area in this analysis was more obvious in the
red-edge band and the near-infrared band (Figure 5), so these two bands were used in the
selection of texture features. The band operation equation is given as follows.

Band = (NIR + RE)/2 (1)

* NIR: near-infrared band; RE: red-edge band

Table 4. Feature information in this research.

Features Abbreviation Formula Reference

Normalized Difference
Vegetation Index NDVI NDVI = NIR − R

NIR + R [34]

Ratio Vegetation Index RVI RVI = NIR
R [33]

Enhanced Vegetation
Index EVI EVI = 2.5 ∗ (NIR − R)

NIR + 6 ∗ R − 7.5 ∗ B + 1 [35]

Difference Vegetation
Index DVI DVI = NIR − R [38]

Green-Red Vegetation
Index GRVI GRVI = G − R

G + R [36]

Infrared Percentage
Vegetation Index IPVI IPVI = NIR

NIR + R [40]

Near infrared and Blue Band Ratios - NIR
B [38]

Renormalized Difference Vegetation Index RDVI RDVI = NIR − R√
NIR + R

[43]

Visible-band Difference Vegetation Index VDVI VDVI = (G − R) + (G − B)
G + R + G + B [37]

Optimized Soil Adjusted Vegetation Index OSAVI OSAVI = NIR − R
NIR + R + 0.16 [39]

Grayscale Symbiosis Matrix GLCM

Mean
Variance
Contrast

Homogeneity
Dissimilarity
Correlation

Angular Second Moment
Entropy

Edge Enhancement -

Median
Sobel

Roberts
User-defined

Statistical Filter -

Data range
Mean

Variance
Entropy

Skewness
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reflectance of white birch; the green line represents the spectral reflectance of larch.

2.3.2. Extraction of Vertical Features

The digital elevation model (DEM), digital surface model (DSM), and CHM were
obtained from LiDAR360 software developed by Digital Green Earth. This software can
preprocess point cloud data with functions such as noise removal, ground point normaliza-
tion, and extraction of various parameters.

First, the point cloud data were smoothed, resampled, and denoised to ensure that
the abnormal point clouds were removed. Then, the ground points were classified, and
subsequently, the DEM and DSM were extracted. After obtaining the DEM and DSM, the
CHM was extracted and used to segment the airborne point cloud into single trees. Finally,
the number of single tree species in a small class was estimated based on the classification
results obtained. When classifying by forest landscape (coniferous, broadleaf, and mixed
coniferous), we determined whether the ratio of single species in a small class reached 7:3.
Simply put, if the percentage of the dominant species was 70% or less, it was considered
a mixed forest. When classifying by tree species (birch, larch, mountain poplar, etc.), the
specific location of each tree was verified. However, due to the limitations of airborne data,
it was not possible to achieve 100% accuracy with the single-wood segmentation.

CHM = DSM − DEM (2)

2.3.3. Classification Technique

A CART decision tree is a binary tree that can be “pruned” after it is generated [44].
That is, each nonleaf node can only lead to two branches, so when a nonleaf node is a
discrete variable with multiple levels (more than 2), the variable has the potential to be used
multiple times. CART can be used not only for classification but also for regression. SVMs
represent a class of supervised learning that performs binary classification of data [45]. The
SVM classification method separates samples belonging to different classes by tracking
the maximum-edge hyperplane in the kernel space of the sample mapping [46]. An
RF is an integrated classifier consisting of multiple decision trees, where the strength of
individual trees and the correlation between trees can be used to generalize the error [21].
RF methodology is an augmentation of traditional decision trees that classifies new data by
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taking a majority vote among the classification results of all constructed decision trees [47].
In an RF, each node is split using the best combination in a randomly selected subset of
feature variables at that node [31].

2.3.4. Confusion Matrix

A confusion matrix summarizes the classification results from a machine learning method
in the form of a matrix that classifies the records in a dataset according to two features: the true
category and the category predicted by the classification model. In this study, the results of
the classification by the machine learning method were considered the predicted category,
and the classification results derived from secondary forest inventory data and orthophotos
were considered the true category. We analyzed the comparison matrix summarizing
the number of image elements and ground tests in every category [48]. The confusion
matrix can provide three descriptive accuracy metrics: overall accuracy (OA), producer
accuracy (PA), and user accuracy (UA). The OA is equal to the sum of correctly classified
pixels divided by the total number of pixels and directly reflects the proportion of correctly
classified pixels. PA is the ratio of the number of images that the classifier correctly classifies
into a category to the total number of true references in that category. UA is the ratio of the
number of pixels correctly classified into a class to the total number of pixels classified into
the same class by the classifier. The kappa coefficient is based on the confusion matrix and
is used to assess the classification accuracy, and the higher the kappa value is, the greater
the classification accuracy of remote sensing images. The value of the OA varies for each
category, and the kappa value decreases once the classification result of a category is poor.

2.3.5. GEE Workflow

In the following section, we only describe the conditions created in the GEE to verify
the applicability of our proposed scheme to a larger area for the equivalent of Scheme II.
Our workflow in the GEE is divided into the following main parts.

(1) Data query and display based on the study area boundary, where the study area vector
boundary (feature collection: ao) is imported and the retrieved data are cropped based
on the boundary.

(2) Extraction of the best classification elements, which include the best spectral bands,
vegetation indices, and texture features (glcm), as well as the CHM derived from the
DEM and DSM.

(3) Importation of training sample data based on feature combination, for which the
extracted elements are combined and imported into the region of interest (ROI).

(4) Comparison of classification methods and accuracy check, for which the classification
accuracy of three classifiers in the ROI are combined to obtain the confusion matrix.
Finally, the classification results, accuracy, and kappa of each classifier are calculated,
as are the PA and UA of individual tree species.

3. Results
3.1. Comparison of Tree Species Classification Schemes

When classifying image information, one should focus on how to define a meaningful
set of features to describe the entire image. Once the best combination of features for
classification is selected, the images can be classified using RF in machine learning methods.
We designed two schemes based on the above classification features. Scheme I is a combi-
nation of the six bands of multispectral reflectance and the extracted vegetation index and
texture features, while Scheme II is an additional CHM based on the combination of the six
bands of multispectral reflectance and the extracted vegetation index and texture features.
RF was used to assess the accuracy of the above two schemes for enhancing tree species
classification. As seen in Table 5, the overall accuracy of Scheme I was 79%, and the kappa
coefficient was 0.63. The overall accuracy of Scheme II with one more CHM vertical feature
was improved by 7%, and the kappa coefficient was 0.75 compared with that of Scheme I.
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Table 5. Comparison of the accuracy of Scheme I and Scheme II.

Birch Larch Nonforest

Scheme I

PA 80% 48% 85%
UA 87% 51% 76%

OA: 79% Kappa: 0.63

Scheme II

PA 90% 70% 84%
UA 91% 83% 87%

OA: 86% Kappa: 0.75

The results of classification Schemes I and II demonstrated that tree species classifica-
tion can significantly improve the classification accuracy by increasing its vertical structure
on top of the two-dimensional image. This also indicates that canopy height is effective
in distinguishing forest from nonforest areas and in classifying tree species. The addition
of CHM not only significantly improved the classification accuracy of birch and larch but
also significantly improved the misclassification between species, and CHM had no effect
on the misclassification of nonforest areas. Therefore, we believe that the hypothesis that
the participation of vertical features will improve the classification accuracy of tree species
is valid, i.e., Scheme II is the best classification scheme. Among the species, birch was
classified most accurately by both schemes and with fewer misclassifications; larch was
classified with low accuracy and with more misclassifications relative to other categories.
With the addition of CHM, the classification accuracy of both birch and larch improved
significantly, and the misclassification rate also decreased significantly. In particular, the
classification accuracy of larch was significantly improved, and the misclassification de-
creased significantly; the classification accuracy of nonforest areas was also significantly
improved, but the misclassification was not decreased.

As shown in (Figure 6), group (a) images show the spectral features of tree species,
and group (b) includes the CHM features extracted from the point cloud data for the
corresponding locations in group (a). The CHM can distinguish tree species from tree
height and can compensate for misclassification caused by the shadowed part in the
spectral images. Individual trees can also be classified accurately in mixed forests, and
low trees do not affect the interpretation of the classifier even if they are blocked by the
shadows of taller trees. Small clearings in large woods cannot be discerned spectrally, but
the CHM fills this gap well. This is the advantage and notable contribution of active remote
sensing in classification.

3.2. Comparison of Tree Species Classification Methods

Based on classification Scheme II, the comparison of tree classification by applying the
CART, SVM, and RF is shown in Table 5. The overall accuracy of RF was higher than SVMs
and the CART, with 5% and 8% improvement, respectively, and the kappa coefficient was
also the highest, indicating that RF has the best classification performance. In addition, we
found (Table 6) that RF not only had higher classification accuracy for birch than for other
categories, but also led to the lowest misclassification rate for all three categories, and the
distinction between birch and larch was more accurate. Although we found that the SVMs
and CART classified larch and nonforest areas slightly better than RF, they led to higher
misclassification rates. Compared to the SVMs and CART, RF had the least misclassification
of larch and nonforest, with 18% and 26% lower misclassification rates for larch and 12%
and 14% lower misclassification rates for nonforest areas, respectively. The overall average
height of birch was higher than that of the other categories, so each classification method
generally classified birch higher than larch and nonforest. The overall accuracy of tree
classification improved by 7% with the addition of vertical features; 4% for birch; 32%
for larch; and 9% for nonforest areas; with a 10% reduction in misclassification for birch;
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22% for larch; and no effect on misclassification for nonforest areas. The improvement of
misclassification for larch using RF was significant compared to that for birch and nonforest
areas. Overall, RF was the best tree classification method for the data source and the
selected scheme of this study, as well as for the Duraer Forestry Zone site.
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Table 6. Comparison of the classification accuracy of machine learning methods.

RF SVM CART

Birch
PA 90% 93% 95%
UA 91% 77% 75%

Larch
PA 70% 52% 44%
UA 63% 65% 62%

Nonforest
PA 84% 72% 70%
UA 87% 93% 90%

OA 86% 81% 78%
kappa 0.75 0.67 0.63

3.3. Spatial Distribution of the Tree Species Classification Based on RF

(Figure 7) shows the spatial distribution of tree species (birch, larch, and nonforest)
areas covered by the three sample strips within the Duraer Forestry Zone in Arxan. From
left to right in the figure are sample strips (a), sample strips (b), and sample strips (c). The
difference image is highlighted in yellow (representing birch in the tree species classifica-
tion image), orange (representing larch in the tree species classification image), and RGB
(representing nonforest areas in the tree species classification image) to show the difference
between the three types. The tree species classification in the figure was the result of the RF
with the best accuracy. The nonforest RGB image shows that very few tree species were not
classified and that small clearings in the forest were accurately classified as nonforest areas.
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3.4. Spatial Distribution of the Tree Species Classification Based on GEE

Due to the different data sources, classification schemes, and classification methods
used for different data products, the suitability and accuracy of data in some specific
areas are often uncertain. Therefore, it is crucial to produce more precise and accurate
classification products for a given region [49]. We tested the applicability of the UAV-
based study protocol and the various classification features by fusing active and passive
satellite data over a large study area. Regions of interest (ROIs) were established based on
field-sampled data, and the accuracy of the overall classification results was assessed.

The OA of the CART decision tree classification was 0.96, and the kappa coefficient
was 0.94. The OA of the SVM classifier was 0.96, and the kappa coefficient was 0.95. The
results of the RF classifier with the highest accuracy are shown in (Figure 8). The OA of the
RF reached 0.98, and the kappa coefficient was 0.97. The most common forest type in the
Duraer Forestry Zone is natural forest (most of the coniferous forests are planted forests,
which are arranged in a regular way; larch is the most planted; and spruce (landscape
forest) is mostly planted along the roadside), and the UA reaches 0.98. The UA of nonforest
reaches 0.99 because the addition of the CHM contributes greatly to nonforest classification.
Therefore, under the same conditions the satellite data are suitable not only for large areas,
but also for specific terrain areas.
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(Table 7) shows the results of the confusion matrix analysis using ground truth ROIs
for the case of applying RF in GEE. To visualize the significance of the variables of the
training sample and the test dataset, the rows of the matrix represent the actual categories,
while the columns represent the predicted categories. Because the distribution of nonforest
and birch is the widest within the Duraer Forestry Zone, the addition of CHM makes the
difference in nonforest and birch height obvious. Therefore, the judgments for nonforest
and birch are more accurate, and less misjudged. The confusion between birch and larch is
most frequent. Most of the larch in the forest is planted, with different planting years, and
some early planted larch do not differ significantly in height from immature birch, so the
contribution of the CHM to the classification of these two categories is reduced. Because
the differences between pine species are more obvious in the leaves, Sphagnum pine is
more often misclassified as larch.

Table 7. Confusion matrix using ground truth ROIs.

Swamp Willow
(ROI)

Poplar
(ROI)

Spruce
(ROI)

Sphagnum Pine
(ROI)

Birch
(ROI)

Larch
(ROI)

Nonforest
(ROI) Total

Swamp Willow 2125 2 6 2 0 16 4 2155
Poplar 1 2259 0 1 9 23 1 2294
Spruce 7 0 2004 6 0 2 14 2033

Sphagnum pine 12 4 12 8742 16 70 7 8863
Birch 28 33 7 21 31,750 100 58 31,997
Larch 37 30 29 41 24 11,866 38 12,065

Nonforest 19 0 10 26 25 26 16,561 16,667
Total 2229 2328 2068 8839 31,824 12,103 16,683 76,074

4. Discussion

Optical sensors have been widely used in classification for a long time, but they are
sensitive only to the upper layers of the canopy and have low intercategory separation and
high intracategory variability [50]. The quality of a sensor’s work is influenced by many
environmental factors, and data need to be collected at midday when the sun is shining
without cloud cover. In alpine woodland areas, the difficulty of the work can be challenging
and data quality can be low due to the terrain and the forest landscape [51,52], making the
data can be difficult to separate spectrally. LiDAR radar systems can identify forest canopy
structures very well [53] and provide information on understory vegetation [54]. Airborne
laser scanning is an active remote sensing data acquisition technique that can provide high-
quality vertical structure details [55]; however, its application to forest surveys is limited by
the inherent complexity of the canopy structure, and the quality of point clouds collected in
naturally dense stands is usually not as good as that in sparse, evenly distributed stands [56].
In conclusion, the remote sensing data obtained from different sensors complement each
other [57]. Although many data sources or region-specific methods have been proposed
regarding the application of remote sensing data in tree species classification in recent
decades, the application to tree species inventoried at large geographic scales remains
one of the greatest challenges in this research area [58]. Z. Xie and others found that RF
and SVM classification methods performed particularly well when using multisource data
and that adding canopy height features to multisource data improved the classification
accuracy for some tree species [39]. Researchers verified the classification of individual
tree species by combining laser-scanned point clouds and spectral reflectance data and
mapping the LiDAR-generated canopy features to the corresponding pixels in multispectral
images, resulting in a significant improvement in the overall classification accuracy of all
the classified species groups. The results of this study were also consistent with the findings
of the above study, concluding that canopy height contributes to tree species classification
and significantly influences the classification results among tree species.

Data redundancy may occur when machine learning methods are used to process
complex categorical variables, and methods should be chosen considering whether they
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positively affect classification accuracy. Machine learning methods are efficient and accurate
automated techniques but are prone to overfitting when processing large amounts of com-
plex data [15,50]. RFs are integrated models with many classification trees and classifiers
and work internally based on a tree pruning mechanism by automatically filtering the
input classification features and then voting on the classification results to generalize the
classification error [21,59]. In this study, the classification method automatically generated
multiple classification trees internally. These classification trees consisted of multiple deci-
sion trees related to the reflectance of multispectral bands; the trees were used to extract
multiple vegetation indices, textural signatures, and vertical structures. The design of the
classification scheme was determined based on the response of the classification accuracy
of the RF method to different combinations of the above indices and features. The final
combination with the highest classification accuracy constituted a runnable decision tree.
Until now, most of the studies on forest classification optimization based on RFs achieved
greater than 90% classification accuracy. Part of the reason why the accuracy was not as
high in this study was the effect of the predictive classification model when calculating
the confusion matrix. The prediction model was based on the most recent forest Scheme
II inventory data using the dominant tree species and established species in small classes
with the aid of UAV orthophotos and field survey data. However, based on the tree species
classification method, the gaps in the forest within small groups were classified as nonforest
areas, and there were some large gaps or single trees in nonforest areas that differed from
the predicted classification result; therefore, the classification accuracy was affected when
calculating the confusion matrix. Although the classification accuracy in this paper was
not as good as that of the previous classification optimization study, the objectives of this
study were to investigate whether the use of the CHM could improve the classification
accuracy of tree species and to compare three machine learning methods to identify the
most suitable classification method for the selected study area. Therefore, the classification
accuracy we observed was sufficient given the nature of the study. GEE is currently used in
various fields, such as agriculture, forestry, ecology, economics, and medicine, with forest
and vegetation being the most frequently applied disciplines, followed by land use and
land cover [60]. Its development environment supports popular coding languages, and
these core features enable users to discover, analyze, and visualize geospatial big data in a
powerful way without the use of supercomputers or specialized coding knowledge [61]. In
the field of remote sensing and geospatial data science, GEE has become a new method and
a key tool for researchers. However, during our research, we found that the accuracy was
insufficient if the training sample was too large or complex. Therefore, we relied on the
training samples obtained from field surveys for accuracy testing. However, using forest
type II survey data to verify accuracy may result in metrics that indicate lower modeling
performance than if other less-accurate verification data are used.

In the context of ecologically sustainable development, the United Nations, to ensure
the sustainable development of forest ecosystems and woodlands, established measures for
different forest types to protect biodiversity and functions [62,63]. Tree species diversity is
a key parameter for describing forest ecosystems [47]. The classification of tree species also
plays an important role in sustainable forest management. Most of the current research
on tree species classification tends to focus on how to optimize the classification results,
with few targeted applications. The single-wood segmentation mentioned in this paper can
extract information such as absolute coordinates, tree height, and crown width of a single
wood. Combining these data with the classification results can solve the time-consuming
and labor-intensive problem of traditional forest two-class inventory operations. Although
airborne multispectral data and airborne LiDAR data can be effective for tree species
surveys in small groups, they are also difficult to implement in forest surveys due to their
relatively expensive acquisition costs. Due to the geographical environment of the Duraer
Forestry Zone and the natural dense birch forest, the difficulty of airborne LiDAR scanning
and data quality cannot be guaranteed. Moreover, the extraction of canopy height requires
overlapping points to complement the integrity of forest canopy data, and the contribution
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of the CHM is affected by the small number of overlapping points in the edge of the scanned
area. In addition, the larch in the study area was of an immature plantation forest, so the
classification may be confused with taller shrubs (marsh willow, mountain wattle, hoodia,
etc.) in terms of height, thus affecting the classification accuracy. In this regard, time series
data may improve the identification of larch and thus the classification accuracy of tree
species in the entire forest. Recently, some researchers have proposed alpha integrals that
can integrate multi-class classifiers, which can combine the best scores to each class by all
classifiers separately, thus breaking the limitations of individual classifiers and optimizing
the classification results [64,65]. Therefore, the most critical factor to optimize tree species
classification is to find the best classification method for individual tree species. Eventually,
multiple classification models are fused to obtain the best tree species classification results.

5. Conclusions

The main findings of this paper can be summarized with the following points.

(1) When the classification features were selected, we found that the addition of the CHM
to the combination of spectral and textural features for classification improved the
overall classification results, indicating that the CHM is an important indicator for
improving the classification accuracy of tree species and is important in distinguishing
forest from nonforest and white birch from larch.

(2) Comparing the accuracy of machine learning methods under the conditions of choos-
ing equal classification elements, we observed the clear advantage of the random
forest among a group of machine learning methods when classifying tree species. This
also indicated that RF was the best tree classification method applicable to the data
source and the selected scheme of this paper and to the Duraer Forestry Zone.

(3) Our study showed that combining the spectral features, textural features, and vertical
features of multisource data (UAV multispectral, LiDAR data, and auxiliary data) and
using RF could effectively improve the forest species classification accuracy in the
three sample strips within the Duraer Forestry Zone in Arxan.

(4) When applied to a large area following the above research process, the use of the GEE
program combined with the required satellite data can support accurate, complex, and
rapid tree species classification. The classification results are not limited to specific
environments or in cases with data-limited conditions.
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