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Abstract: Deep learning approaches have sparked much interest in the AI community during the last
decade, becoming state-of-the-art in domains such as pattern recognition, computer vision, and data
analysis. However, these methods are highly demanding in terms of training data, which is often a
major issue in the geospatial and remote sensing fields. One possible solution to this problem comes
from the Neuro-Symbolic Integration field (NeSy), where multiple methods have been defined to
incorporate background knowledge into the neural network’s learning pipeline. One such method is
KENN (Knowledge Enhanced Neural Networks), which injects logical knowledge into the neural
network’s structure through additional final layers. Empirically, KENN showed comparable or
better results than other NeSy frameworks in various tasks while being more scalable. Therefore,
we propose the usage of KENN for point cloud semantic segmentation tasks, where it has immense
potential to resolve issues with small sample sizes and unbalanced classes. While other works enforce
the knowledge constraints in post-processing, to the best of our knowledge, no previous methods
have injected inject such knowledge into the learning pipeline through the use of a NeSy framework.
The experiment results over different datasets demonstrate that the introduction of knowledge rules
enhances the performance of the original network and achieves state-of-the-art levels of accuracy,
even with subideal training data.

Keywords: point clouds; semantic segmentation; neural network; knowledge enhancement; neuro-
symbolic integration

1. Introduction

The introduction of semantic information using AI approaches represents a key step
in the understanding of point cloud datasets. In the geospatial and remote sensing fields,
there is still an open debate between standard machine learning (ML) approaches and
more innovative deep learning (DL) methods for point cloud semantic segmentation [1].
Although ML approaches have proven to perform effectively in various scenarios [2,3], they
still generate some inevitable noise, resulting in unsmooth outputs since the segmentation
does not consider contextual features of points [4]. On the other hand, DL strictly depends
on the quality and amount of available training data. Optimal results have been achieved
in recent years [5] thanks also to the growing availability of different point cloud bench-
marks [3,6–9]. However, point cloud semantic segmentation still faces a major challenge
in dealing with unbalanced classes, which refer to a situation where the number of points
belonging to different semantic classes is highly imbalanced. For instance, in a street scene,
the majority of points may belong to the road surface, while the number of points belonging
to other classes, such as pedestrians or cars, may be much smaller. To address this challenge,
various methods have been proposed in the literature, including data augmentation [10,11],
class weighting [12,13], and oversampling/undersampling techniques [14,15]. However, it
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remains an open research problem to find an effective and efficient method that can handle
unbalanced classes in the context of point cloud semantic segmentation. In this paper, we
propose a novel method that explicitly addresses the issue of unbalanced classes by apply-
ing knowledge-based rules at various levels of the segmentation pipeline. Our approach
is motivated by the fact that point cloud semantic segmentation can benefit from the use
of prior knowledge or domain-specific rules, especially in cases where the distribution
of classes is highly imbalanced. Previous research, for example, has demonstrated that
the introduction of a-priori knowledge in the form of hand-crafted features, allows for
an improvement in the prediction results [1,16]. Others have proposed the introduction
of a-posteriori rules to correct the label predictions [17]. In this study, for the first time,
knowledge-based rules are introduced within the DL-based segmentation pipeline of 3D
point clouds using a neuro-symbolic (NeSy) approach. NeSy concerns the combination of
artificial neural networks with symbolic methods. In particular, we use KENN (Knowl-
edge Enhanced Neural Networks) [18,19], a method that incorporates logical background
knowledge into neural networks in the form of an additional differentiable layer on top
of the architecture. By leveraging such rules, our method can guide the segmentation
process towards the identification of points that belong to minority classes, even in the
presence of noisy or ambiguous data. To evaluate the effectiveness of our approach, three
public benchmark datasets have been considered: Vaihingen 3D (V3D) [20], Hessigheim
3D (H3D) [3], and Stanford Large-Scale 3D Indoor Spaces (S3DIS) [21]. Additionally, an
internal dataset, named FBK cable/powerlines, has been used for tuning the approach.

In summary, our contributions are:

1. The theoretical framework and code implementation of neuro-symbolic logic for 3D
point cloud semantic segmentation;

2. Extensive study of training data shortcomings and remedies;
3. Empirical study on three benchmarks and one internal dataset to validate the perfor-

mance of knowledge enhancement in a neural network.

The paper is organized as follows. Section 2 presents an overview of the field’s related
work. Section 3 describes in detail the methodology proposed, while the experiments
conducted and the results achieved are shown in Section 4. In Section 5, we present our
critical observations, and finally, in Section 6, the prospective future works.

2. Related Work

For the understanding of this study, in the following sub-sections, we will briefly
summarize the relevant work in the fields of both semantic segmentation (Section 2.1) and
neuro-symbolic (or neural-symbolic) integration (Section 2.2).

2.1. Point-Wise Semantic Segmentation

Point-wise semantic segmentation assigns a class label to every point of a point
cloud. Compared with other point cloud semantic segmentation strategies such as voxel-
based [22,23] or projection-based [24,25] methods, point-wise labeling is extremely chal-
lenging as methods have to directly operate on the unprocessed 3D information [26].
Initially, machine learning-based methods such as Random Forests, Support Vector Ma-
chines, Markov random fields were proposed to process this information. These methods
employ radiometric and geometric features such as covariance features [17] and topolog-
ical features [27] to better semantically segment point clouds. The features proved to be
quite promising, but still, the methods struggled with interpreting scenes without explicit
user knowledge.

In recent years, the state of the art has therefore switched to increasingly deep learning
methods [28]. Early solutions included PointNet [29] and its successor PointNet++ [30],
which tackled the dimensionality problem by using layered partitioning of the input
point sets. Through the use of shared multilayer perceptrons, Pointnet/Pointnet++ learn
per-point characteristics. Although computationally effective, this does not adequately
represent each point’s wider context due to the layering. Subsequent works studied the
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convolution of 3D point sets, defining effective convolution kernels such as PointCNN [31]
and KPConv [32]. With the introduction of RandlLA-Net [33], 3D semantic segmentation
made significant progress in terms of speed and accuracy on large-scale datasets, thanks
to the use of random sampling to greatly reduce point density while retaining prominent
features with a designed local feature aggregator.

An alternative way of processing the irregular 3D data is to represent the point cloud
as a graph to model the local geometric information between the points. For instance, in
ECC [34], specific edge labels are proposed that filter weights conditioned on the neighbor-
hood of each vertex. DGCNN [35] incorporates a similar graph structure that is dynamically
updated by changing the set of k-nearest neighbors of a point from layer to layer of the
network. Matrone et al. [1] demonstrate that combining DGCNN and heuristic 3D features
can significantly improve the segmentation results.

Many studies have recently been focused on the use of Transformer architectures [36],
the initially dominant framework in natural language processing [37], for point cloud
semantic segmentation. Input (word) embedding, positional (order) encoding, and self-
attention are the three basic modules of the decoder-encoder system known as Transformer.
The self-attention module, which generates refined attention features for its input feature
based on the global context, is the main part of the system. As described by Zhao et al. [38],
since point clouds are simply sets that are irregularly embedded in a metric space, self-
attention perfectly fits with the point cloud environment. For a comprehensive literature
review about Transformers models in 3D point clouds, the authors refer to the recently
published paper by Lu et al. [39]. For this study, we decided to start from the original
version of Point Transformer (PT) for semantic segmentation proposed by Zhao et al. [38],
as this architecture sets in 2021 the new state of the art on different public benchmarks such
as the S3DIS dataset [26], Model-Net40 [40], and ShapeNetPart [41]. In the experiments that
follow, the PT architecture is integrated with some background knowledge in the form of
hand-crafted features and logic rules. For 3D object detection and semantic segmentation
tasks, the use of hand-created features with neural networks [6,16,42], as well as the
application of ontologies and logical rules [43–45], have already been shown to be effective.
However, to the best of our knowledge, this is the first time that they have been combined
and integrated together within a neural network.

2.2. Neuro-Symbolic Integration

Neuro-symbolic Integration (NeSy) is a sub-field of machine learning that aims to
integrate the learning capabilities of neural networks with the reasoning abilities of sym-
bolic frameworks [46]. NeSy approaches can be classified based on the role of symbolic
knowledge: in some methods, such as δILP [47,48], the knowledge is learned from the data;
in other approaches, such as DeepProbLog [49], the knowledge is used to infer new facts
starting from initial facts produced by the neural network; finally, some methods interpret
the knowledge as a set of constraints on the output of the neural network. This last type of
integration is the one we consider in our work, since we are interested in exploiting prior
knowledge to improve the performance of neural networks.

Many frameworks have been introduced to incorporate logical knowledge into neural
networks, following mainly two strategies to incorporate the knowledge within neural
networks. Based on the adopted strategy, we can classify the various approaches into two
categories: loss-based and model-based methods. The former encompasses Logic Tensor
Networks [50,51], Semantic-Based Regularization [52], and Semantic Loss [53] approaches.
These frameworks incorporate knowledge into neural networks through a regularization
term added to the loss function. Such a regularization enforces the domain knowledge to
be satisfied. The knowledge is therefore used as an additional supervision that penalizes
solutions that do not satisfy the given constraints. One of the limitations of this approach is
that the knowledge is used only during training to guide learning. Upon inference, the loss
is discarded along with the regularization term. Therefore, knowledge is not taken into
consideration when performing inference. Moreover, it has been shown that loss-based
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methods are particularly useful in weakly supervised learning scenarios but struggle on
fully supervised tasks [54]. This limitation motivates our choice of a model-based approach
since point cloud semantic segmentation is a supervised learning task.

Model-based approaches inject knowledge directly into the structure of the neural
network. Consequently, the knowledge is enforced both at training and inference time.
Early attempts to inject knowledge into the structure of the NN consist of methods such as
Knowledge-Based Artificial Neural Networks (KBANN) [55] and C-IL2P [56], which codify
the logical knowledge into the weights of the neural network. However, these methods are
restricted to propositional logic, with no possibility of incorporating binary predicates into
the given knowledge. This is a strong limitation, particularly in relational contexts, since
the relations cannot be efficiently represented as propositions. For instance, in propositional
logic, we need to define a proposition Neara,b for each pair of points (a, b) to represent that
a and b are close together. On the other hand, in First Order Logic (FOL), Near(x, y) is a
predicate, with x and y representing placeholders for each point in the dataset, resulting in
a much more compact representation of the knowledge.

A more recent approach is Relational Neural Machines (RNM) [57], which perform
an optimization process to combine the predictions of the neural network with the given
knowledge. Among the advantages of this method is the ability to learn rules’ weights
from the data. However, solving an optimization problem in the forward step of a neural
network requires a huge computational effort, reducing the scalability of the approach.
Iterative Local Refinement (ILR) [58] is another method that, similarly to RNM, optimizes
knowledge satisfaction starting from the predictions of the neural network. It defines a
Back-Propagation algorithm that converges very quickly to a local optimum solution. Still,
the work is mainly theoretic, and no stable implementation of the method is available.

The framework of our choice is Knowledge Enhanced Neural Networks (KENN) [18],
which also performs an optimization procedure to increase the satisfaction of the knowl-
edge given the initial predictions of the neural network and, similar to RNM, is capable
of learning the weights of the different rules. The main difference with the previously
mentioned methods is that the optimization is performed under the assumption of inde-
pendence between the different rules of the knowledge. This assumption allows for very
efficient optimization, making KENN highly scalable and suitable for the Cloud Point
Semantic Segmentation task. While the independence assumption is often violated, it has
been shown that stacking multiple KENN layers on top of the NN allows for propagating
the constraints inside the underlined graph, fixing most of the mistakes produced by the
assumption violations [19]. In Section 3.2.1, we will further analyze this aspect by proposing
an example in the context of point cloud semantic segmentation.

3. Methodology

In order to improve point cloud semantic segmentation outcomes, knowledge-based
information is added at two different levels within a supervised learning pipeline:

• A-priori: in the form of selected radiometric and geometric features associated with
the training data (Section 3.1).

• A-posteriori: through the use of KENN (Knowledge Enhanced Neural Networks)
(Section 3.2) and the construction of different types of logic rules (Section 3.2.1 unary
rules and Section 3.2.2 binary rules).

3.1. A-Priori Features

As previously mentioned, the introduction of some significant features associated
with the label classes can facilitate the learning process and improve the results achievable
with the same network alone. Concretely, we distinguish between covariance features,
topological or contextual features, and sensor-based features for point-based classification
(Table 1).
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Table 1. Overview of potential covariance, topology and sensor-based a-priori knowledge.

Covariance

Topology

Sensor
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In the context of point cloud semantic segmentation, Weinmann et al. [59] have
extensively demonstrated the effectiveness of the covariance features in describing the
distribution of the points within a certain neighborhood (Figure 1). For these covariance
features, three sets of radii are considered. Since the base Point Transformer network
(just as all other deep learning networks) is excellent at learning features from a selective
neighborhood, e.g., k = 12 or k = 16, the radii should be significantly larger to create
shortcuts in the learning process of more multi-scale features, which are significantly
slower to train. Additionally, the response of the varying covariance features can be
visually analyzed, allowing a user to specifically target underrepresented classes. For
instance, the powerline class in the ISPRS Vaihingen dataset is notoriously hard to train due
to its very small 0.07% data presence. However, this class has a high response to linearity
at increased radii due to the nature of powerlines. Note that not every class should be
targeted with features. In fact, well-balanced classes typically have appropriate training
data and thus should not be enriched.

Figure 1. Promising covariance features as reported in Weinmann et al. [59].

Analogous to the covariance features, topological features can also be formulated that
describe the relation between an observation and a reference. For instance, the height below
and height above features depicted in Table 1 are a function result of the absolute distance
in Z-direction between the point pi ∈ P in the target point cloud and the reference point set
qj ∈ Q that meets a certain criterion in the search space Q ∈ P (Equation (1)).

fh-below(p) = argmin
qj

‖zpi − zqj‖ with qj ∈ Q (1)

Similarly, parallellity and coplanarity features can be defined by evaluating respec-

tively the dotproduct between the normals
−−→
n(pi) ·

−−→
n(qj) and between the normal of pi and

the connecting vector to qj
−→piqj. These topological features again significantly increase

the detection rate for instance in urban environment to find sections of coplanar walls
that are otherwise prone to misclassificaiton. These features are also extracted during
preprocessing using well described methods such as in our previous work towards point
cloud enrichment [60].

Finally, sensor-specific information can also provide vital clues to the semantic seg-
mentation procedure and is often made part of input layer tensors, i.e., reflectivity, RGB,
number of returns, and so on. Overall, the covariance, topology, and sensor-based features
are stored as additional pointfields in the input layer tensor of the network and made
part of the end-to-end learning. Note that feature sets can vary between different datasets
and classes, allowing for a flexible framework of a-priori knowledge that a user wants to
supplement the network with.

3.2. Knowledge Enhanced Neural Networks (KENN)

KENN (Knowledge Enhanced Neural Networks) [18] is a framework that uses a neural
network (NN) for classification purposes and improves the consistency of its predictions
with a given knowledgeK. KENN consists of a set of layers that are stacked on the back-end
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of a neural network. It directly consumes the NN results of the output layer and corrects
the classification y proposed by the neural network in order to increase the compliance
with the constraints in K (Figure 2).

Figure 2. KENN overview: the neural network (NN) takes the features x as inputs and pro-
duces an initial output y. The KENN layer refines the initial predictions in order to increase
knowledge satisfaction.

K is described as a set of logical rules that represent constraints on the n classes to be
predicted. Two types of rules are defined to help correct the results: (1) unary rules (see
Section 3.2.1) that enforce a constraint locally on a single prediction, i.e., a wall observation
should be horizontal, and (2) binary rules (see Section 3.2.2) that enforce a constraint on a
pair of observations, i.e., wall and door points should be within close proximity of each
other. As such, unary predicates can be seen as labels for nodes in the graph (where each
node corresponds to an element of the domain). In contrast, binary predicates represent the
labels on the edges between the nodes. KENN interprets the knowledge under a fuzzy logic
semantic, where truth values are represented as values in the range [0, 1]. Intuitively, a truth
value equal to zero means false, while one corresponds to true, and intermediate levels of
truth are accepted as well. KENN also associates a weight with each rule, representing the
strength of the corresponding constraint. Since the additional KENN layer is differentiable,
the entire model is differentiable end-to-end, allowing for learning both the neural network
and rule weights at the same time. As a consequence, the back-propagation algorithm
can be applied without requiring any other changes. This property of KENN allows for
learning from data the relative importance of each rule in K while still learning to map
features to classes. The result is a new prediction y′, which is used as the output of the
entire model.

3.2.1. Unary Clauses

The knowledge is defined in terms of a set of rules. A rule is defined in clausal form,
where multiple literals (i.e., positive or negated atoms) are connected together with a
disjunction. Specifically for unary clauses, the predicated act upon a single node in the
layers of the KENN. For instance, the rule

∀u.¬Linear(u) ∨ ¬Vertical(u) ∨ Pole(u) (2)

states that every point that is linear and vertical must be a pole (Equation (2)). Concretely,
∀u. is an aggregation term that states that a certain rule will be applied to every variable
u considered in a mini-batch. In this context, variables represent placeholders for points
in the dataset. Linear, Vertical and Pole are predicate definitions. Intuitively, a predicate
can be seen as a function that maps objects of the domain (points) to truth values in the
range [0, 1], with 0 meaning that the predicate is completely false and 1 meaning completely
true. Note that the truth value of a predicate can be given or predicted by NN. In the
example, Linear and Vertical are directly computed from the covariance features Linearity
and Verticality given a certain threshold tl and tv (Equation (3)), while Pole is computed by
the NN itself (Figure 3).

Linear(u) =
λ1 − λ2

λ1
≥ tl

Vertical(u) =
−−−→
nz(pi) ≤ tv

(3)
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Figure 3. Covariance features used to facilitate a unary clause for the identification of poles:
(a) Linearity, (b) Verticality.

¬ is a Negation factor. In classical logic, the negation is defined by substituting true
with false and vice-versa (e.g., if Linear(u) is true for a point u, then ¬Linear(u) is false).
Instead, in fuzzy logic, the truth value of the negation is obtained as 1 minus the positive
value (e.g., if Linear(u) is true with a value of 0.3, then the truth value of ¬Linear(u) is 0.7).

∨ & represents a disjunction, i.e., it codifies the rule that at least one of the atom should
be true. In other words, it is not acceptable to have a solution where all the values are false.
For example, in order for the previous rule to be satisfied, it is not allowed for a point to be
linear, vertical, and not pole at the same time. Again, since we are dealing with continuous
truth values, we need a generalization of classical disjunction: KENN uses Godel semantics,
where the disjunction is interpreted as the max operator. As an example, suppose that the
truth values of Linear(u), Vertical(u), and Pole(u) are 0.3, 0.4, and 0.9, respectively. Then
the truth value associated with the entire rule is: max((1− 0.3), (1− 0.4), 0.9) = 0.9. The
KENN layer changes the predictions made by the neural network to increase such truth
values while keeping the initial predictions as close as possible to the initial ones. Similarly,
it is possible to state, for example, that cars are short, where “short” is directly related to
the distance-from-ground feature. This rule will then force the network to look for cars
only in a certain zone of the point cloud (i.e., under a certain height).

Note that the unary rules can both operate on covariance and sensor features directly
or on topological features. If no topological features are encoded in the preprocessing, the
topological relations can be derived from within the batch of points. However, the selection
of the reference within a batch is less nuanced since the batch selection is mainly chosen
based on the performance capacity of the hardware the network is trained/inference on.

3.2.2. Binary Clauses

The knowledge in the relational case is defined as an analogue to the unary one. The
difference is that we can now define rules for pairs of points. This new type of rule with
two variables is called a binary clause. With binary clauses, we define constraints on the
classification of two points instead of unary clauses that can only target a single variable.
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For instance, we can state that points classified as poles cannot be over points classified as
buildings by specifying the following rule (Equation (4)).

∀u, v. ¬Building(u) ∨ ¬Over(u, v) ∨ ¬Pole(v) (4)

where ∀u, v is the universal quantification of two neighboring variables. Over(u, v) again is
a predicate that compares the topology of both coordinates and assigns a high truth value
to pairs of points (u, v) if and only if the point v is spatially over point u (Equation (5)).
Analogue to the unary rules, ¬ is inverted as all variables of a rule are positioned on the
same side of the function that is given to the KENN layer.

Over(u, v) = ‖xy(u)− xy(v)‖ ≤ td ∧ xy(u) ≥ xy(v) (5)

Note that in the case of binary clauses, KENN requires a list of the pairs of points to be
given. For instance, in our case, we select only pairs of points where the distance is within
a given threshold. By selecting a small subset of points, we can improve scalability without
losing performance. Indeed, the classification of a point u usually does not depend on the
classification of points very far from it in the scene.

Near(u, v) also is a binary constraint that can fix recurrent classification problems
(Figure 4). For instance, sparse “pole” points were detected among the vegetation because
of their similarity with trunks and, viceversa, pole heads misclassified as “vegetation”: this
type of problem can be solved with a rule that specifies that points belonging to the class
“poles” should be far from the class “vegetation” (Equation (6)).

∀u, v.¬Near(u, v) ∨ ¬Pole(u) ∨ ¬Vegetation(v) (6)

where the predicate Near is calculated a-priori from the Eucledian distance of the two
points. When the distance between u and v is over a certain threshold, Near(u, v) is True
whereas when the distance is below the threshold, it is considered False.

Figure 4. Semantic segmentation results for the FBK powerlines dataset. Results achieved using (a) a
Point Transformer NN and a set of geometric features (b) and results after the introduction of Over
and Near logic rules via KENN.

Similarly, when the distance-from-ground extraction is particularly critical (i.e., deep
slopes, bridges, large rooftops), the algorithm tends to detect “ground” points on top of
roofs or, viceversa, “roof” points in steep ground areas: the error is solved with two binary
rules that state, respectively, that “ground points are close to ground points” and “roof
points are close to roof points” (Equation (7)).{

∀u, v.¬Near(u, v) ∨ ¬Ground(u) ∨ Ground(v)
∀u, v.¬Near(u, v) ∨ ¬Roo f (u) ∨ Roo f (v)

(7)



Remote Sens. 2023, 15, 2590 10 of 26

The latter rules can be built in general for all classes in order to make the classification
output more uniform. Again, what makes the difference here is the entity of “Near”, which
can also be adapted from class to class, e.g., using a small radius for small objects such as
chimneys and a big value for classes such as trees and ground (Figure 5).

Figure 5. Semantic segmentation results for the FBK powerline dataset before (a) and after (b) the
introduction of the Near and Close binary rules.

3.2.3. Stacking Layers

As each KENN layer only enforces the constraints locally, stacking multiple layers
allows for the propagation of constraints inside the graph defined by the knowledge [19].
The first layer then takes as input the classification y of the NN as before and returns y′.
The second layer receives as input y′ and returns y′′, and so on. The final output of the
entire model is then given by the output of the last KENN layer. It is worth mentioning that
there are no restrictions on the content of the knowledge in the different layers, meaning
that it is possible to apply different rules at each step. In this implementation, we use three
KENN layers. We inject the unary clauses only in the first KENN layer to insert additional
features for the new class labels. The binary clauses are injected in all three so that the new
class predictions can influence their neighboring predictions.

Each KENN layer improves compliance with such a rule locally, iteratively improving
the performance of the model. To better understand the idea, let u, v, and w be three points
such that u and v are neighbors, v and w are also neighbors, but u and w are not. Suppose
that in the initial predictions of the NN, u is classified by the network as a roof, while v and
w are classified as power lines. In this scenario, the constraint Near(u, v) (Equation (8)) is
not satisfied for the pair (u, v) since they are neighbors, and one is a roof while the other
is a power line. On the contrary, the constraint is satisfied for the two pairs (v, w) (both
powerlines) and (u, w) (they are not neighbors).

∀u, v.¬Near(u, v) ∨ ¬Roo f (u) ∨ ¬Powerline(v) (8)

As a consequence, applying a KENN layer would fix only the predictions for the
pair (u, v). KENN can fix the inconsistency with the knowledge in two ways: either by
changing the prediction for u, going from roof to power line, or by changing the prediction
of v, modifying its class from power line to roof. In general, such a choice depends on the
initial predictions of the neural network, and the right direction is automatically learned by
KENN. Let’s assume the KENN layer has made the second choice (from powerline to roof):
at this point, u and v are classified both as roofs, while w is still predicted to be a power line.
Consequently, the constraint is now satisfied for the pair (u, v), while it is not respected
anymore for the pair (v, w). As a consequence, the next KENN layer fixes the predictions
on this new pair of points, propagating the constraint. This can be seen in Figure 6, where
KENN gradually cleans the roof from the powerlines points.
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Figure 6. Predictions of the NN model with zero (initial predictions of a NN), one and two KENN
layers. Red points: roof; blue points: powerlines. The KENN layers help in refining the prediction.

4. Experiments and Results

To evaluate the effectiveness of the proposed approach, three benchmark datasets are
considered: the ISPRS Vaihingen 3D [20] (Section 4.1), Hessigheim 3D [3] (Section 4.2), and
the Stanford 2D-3D-Semantics Dataset (S3DIS) [26] (Section 4.3). The first two datasets
depict urban scenarios and are derived from ALS LiDAR surveys. S3DIS depicts an indoor
environment. Each dataset presents very different geometric resolutions, a different number
of classes, and diverse features (Table 2). Three different learning configurations are tested
for each benchmark:

1. The original version of the Point Transformer (PT) [38];
2. The Point Transformer integrated with a selection of a-priori knowledge (FEAT);
3. The Point Transformer integrated with both a-priori and a-posteriori knowledge

(FEAT + KENN).

For a fair comparison, each configuration is run for the same number of epochs (300),
with an early-stop criterion that relies on the mean F1 score calculated over the validation
set. The network, in particular, stops when the mF1 does not increase in 20 successive strips.
To be in line with the results already published for the benchmarks [3,20,26], the individual
F1 or IuO score per class, the mean F1 score (mF1) or mIuO, and the Overall Accuracy (OA)
are used as evaluation criteria.

Table 2. Main characteristics of the three datasets used for the experiments.

Dataset Data Type Data Format Training Points Classes Density

ISPRS ALS LiDAR x, y, z, IR, R, G, 780.9 K pts 9 4–8 pts/m2

3D Vaihingen reflectance,
return count

Hessigheim 3D ALS LiDAR x, y, z, R, G, B, 59.4 M pts 11 800 pts/m2

intensity,
return count

S3DIS Urban LiDAR x, y, z, R, G,B 287.6 M pts 12 16.5 K pts/m3

4.1. ISPRS Vaihingen

The ISPRS 3D Semantic Labeling Contest Dataset of Vaihingen [20] is one of the most
often used datasets for benchmarking urban-scale geospatial point cloud classification
methods. The available point cloud, collected using a Leica ALS50 LiDAR scanner, contains
intensities, the number of returns, and return numbers. Additionally, IR-R-G orthophotos
(infrared, red, and green channels) are offered and can be used to colourize the point cloud.
The dataset consists of nine classes: “powerline”, “low vegetation” (grass), “impervious sur-
face” (ground), “automobile”, “fence”, “roof”, “facade”, and “shrub”. As shown in Figure 7,
the dataset presents some unbalanced classes, such as “Powerline”, “Car”, and “Fence”.
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Figure 7. Overview of the Vaihingen training dataset.

The following covariance features were employed for the processing of vaihingen:
R, G, B, Intensity Roughness (r = 1.5 m), Number of neighbors (r = 1.5 m), Omnivariance
(r = 1.5 m), Surface variation (r = 1.5 m), Verticality (r = 1.5 m), Surface variation (r = 2 m),
Number of neighbors (r = 2 m), Verticality (r = 2 m), Verticality (r = 2.5 m), and the height
below 1m with respect to the lowest point within a cylinder of 10 m.

In Table 3, the F1 scores per class reached with the three previously introduced ap-
proaches are reported (also graphically summarized in Figure 8), as are the Overall Accuracy
(OA) and mean F1 Score (mF1). As shown, the baseline configuration (PT) achieves quite
low levels of accuracy, in particular for the unbalanced classes. The introduction of features
(FEAT configuration) allows to raise the “car” F1 score from 18% to 60% for the “cable”
class, it goes from a 5% to a still poor 15% F1 score. Overall, the mF1 score increased from
the 44.0% baseline to 61.6% with the feature inclusion.

Figure 8. Performance increase for the Vaihingen dataset with the three different configurations.
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Table 3. Class statistics and F1 scores of the ISPRS Vaihingen dataset [20].

Powerline Low Veg Imp
Surf Car Fence Roof Facade Shrub Tree mF1

Class distribution (%)
0.1 24.0 25.7 0.6 1.6 20.2 3.6 6.3 17.9

F1 Score (%)
PT 5.6 74.2 86.8 18.6 17.3 71.2 18.6 24.1 79.8 44.0

FEAT 15.7 80.3 91.0 60.4 33.2 92.1 53.8 42.9 79.9 61.6
FEAT+KENN 55.7 80.8 91.2 62.1 53.7 93.1 58.6 43.8 83.6 68.6

Through an accurate analysis of the confusion matrix extracted for the FEAT configu-
ration (Figure 9), it is possible to understand that most of the points belonging to the class
“powerline” are actually predicted as “roof”.

Figure 9. Confusion matrix for the Vaihingen dataset, using the Point Transformer NN with features.

Therefore, in order to intervene and correct such a problem, three types of rules, related
to the classes “powerline” and “roof”, have been introduced:

∀u.¬The_highest(u) ∨ ¬Few_Neighbours(u) ∨ Powerline(u)
∀u.Few_Neighbours(u) ∨ Roo f (u)
∀u, v.¬Near(u, v) ∨ ¬Powerline(u) ∨ ¬Roo f (v)

(9)

In the first two rules, we state that points belonging to the class “powerline” are among
the highest points of the dataset and, contrary to the “roof” points, have a reduced number
of neighbors. This type of rule works, in particular, in relation to two of the hand-crafted
features that have been defined for the dataset: height_below and number_of_neighbours.
Height_below considers the difference in the height of each point in a certain neighborhood,
while number_of_neighbours the number of points in a fixed radius. Finally, the third rule
specifies that points belonging to the classes “roof” and “cable” should be far from each
other. The threshold near for this case study has been set to 0.8 m, equal to the double of
the point cloud resolution.
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The “fence” class also had particularly low accuracy outcomes. The confusion matrix
showed that points belonging to this class were, in general, misclassified as “shrub”, “tree”,
and “vegetation”. For this reason, the following two rules have been introduced:{

∀u.¬Short(u) ∨ ¬Noisy(u) ∨ Shrub(u)
∀u.¬Short(u) ∨ ¬Noisy(u) ∨ ¬Fence(u)

(10)

They state that elements that are short and have a high degree of roughness (local
noise) have a high probability of belonging to the class “shrub” (first rule) and not “fence”
(second rule). Looking again at Table 3 and Figure 8, we can see that the introduction of
logic rules was particularly effective for the classes “powerline” and “fence”.

For an overall qualitative evaluation, the manually annotated test dataset (Figure 10)
can be compared with the ones semantically segmented using PT, PT plus hand-crafted
features (FEAT), and PT plus features and logic rules (FEAT + KENN) (Figure 11). Over-
all, the mF1 score increased from the 61.57% baseline to 68.63% with the inclusion of
a-posteriori knowledge.

Figure 10. Vaihingen test set: IR G B representation (a) and ground truth (b).

Figure 11. Prediction results on the Vaihingen test set using: (a) PT, (b) PT plus a selection of features
(FEAT), (c) PT plus a selection of features and logic rules (KENN).
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Finally, in Table 4, the results achieved with our KENN approach are reported in
comparison with other state-of-the-art approaches. It can be seen that there is currently
no network predominant over the others and that the proposed KENN method achieves
results that are generally in line with the state of the art.

Table 4. State-of-the-art results for the Vaihingen benchmark as of April 2023 [61].

F1 Score (%)
Method Pow Low Veg Imperv Surf Car Fence Roof Facade Shrub Tree OA mF1

DGCNN 44.6 71.2 81.8 42 11.8 93.8 64.3 46.4 81.7 78.3 59.7
PointConv 65.5 79.9 88.5 72.1 25 90.5 54.2 45.6 75.8 79.6 66.3
PointNet 57.9 79.6 90.6 66.1 31.5 91.6 54.3 41.6 77 81.2 65.6

RandLA-Net 68.8 82.1 91.3 76.6 43.8 91.1 61.9 45.2 77.4 82.1 70.9
RFFSNet 75.5 80 90.5 78.5 45.5 92.7 57.9 48.3 75.7 82.1 71.6
PointSIFT 55.7 80.7 90.9 77.8 30.5 92.5 56.9 44.4 79.6 82.2 67.7

GANet 65.6 83.3 90.6 77.1 41.6 93.4 61.1 46.9 80.3 82.9 71.1
SCFNet 64.2 81.5 90.8 73.9 35.2 93.6 61.5 43.4 82.6 83.2 69.8

PointCNN 61.5 82.7 91.8 75.8 35.9 92.7 57.8 49.1 78.1 83.3 69.5
KPConv 63.1 82.3 91.4 72.5 25.2 94.4 60.3 44.9 81.2 83.7 68.4

Our 55.7 80.8 91.2 62.1 53.7 93.1 58.6 43.8 83.6 82.7 68.6

4.2. Hessigheim 3D

The Hessigheim 3D dataset proposed by the University of Stuttgart as an evolution
of the Vaihingen dataset serves as a standard in the task of urban-level 3D semantic
segmentation. The Hessigheim dataset [3] is high-density LiDAR data of ca 800 points/m2,
enhanced with RGB colors from onboard cameras (GSD of ca 2–3 cm). The dataset is
divided into 11 categories: “Low Vegetation,” “Impervious Surface,” “Vehicle,” “Urban
Furniture,” “Roof,” “Facade,” “Shrub,” “Tree,” “Soil/Gravel,” “Vertical Surface,” and
“Chimney”. Hessingheim, similar to the Vaihingen dataset, contains several unbalanced
classes that are challenging to spot, i.e., “car” and “chimney” (Figures 12 and 13).

Figure 12. Class distribution for the Hessigheim training dataset.

The following covariance features were employed for the processing of vaihingen: R,
G, B, Reflectance, Verticality (r = 1 m), Linearity (r = 1 m), Number of neighbors (r = 1 m),
Roughness (r = 1 m), and again the height below 1m with respect to the lowest point within
a cylinder of 10 m.

The results achieved with the three different experiment configurations are reported
in Table 5. As shown, there has been a general improvement in the metrics thanks to the
introduction of logic rules, in particular for those under-represented classes of the training
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data. Overall, the mF1 score slightly improved between the baseline (67.1%) and the feature
inclusion (69.3%).

Table 5. Class statistics and F1 scores of the Hessigheim dataset.

Low
Veg

Imp
Surf Car Urb

Feat Roof Facade Shrub Tree Gravel Vert
Surf Chimney mF1

Class distribution (%)
36.0 17.5 0.4 1.9 10.6 2.0 1.8 13.6 14.5 1.6 0.1

F1 Score (%)
PT 90.9 84.5 38.5 43.5 89.6 75.2 58.3 96.2 48.5 64.8 48.9 67.1

FEAT 88.9 86.6 53.9 50.2 95.3 78.5 58.1 94.4 47.8 76.2 32.4 69.3
FEAT + KENN 88.9 87.7 74.9 54.3 96.8 78.9 53.2 93.3 43.7 75.9 58.2 73.3

Figure 13. F1 score per class for the Hessigheim dataset, before and after the introduction of KENN.

If we have a close look at Figure 14, where the results achieved for the validation
dataset are compared with the ground truth, we can see that the FEAT configuration output
has two main categories of issues (Figure 14c). First, different fences belonging to urban
furniture (purple color) were erroneously predicted as vehicles (light blue color). Second,
the majority of the roof’s ridges were identified as chimneys.

The adoption of specific rules for the vehicle and chimney classes led to the solution
of these types of issues in the configuration FEAT + KENN (Figure 14d). As regards the car
class, the following binary predicates were added:{

∀u, v.¬Near(u, v) ∨ ¬Vehicle(u) ∨Vehicle(v) ∨ Impervious_sur f ace(v)
∀u, v.¬Near(u, v) ∨ ¬Vehicle(u) ∨ ¬Urban_ f urniture(v)

(11)

The above rules state that points of the vehicle class are likely to be close to either
other points of the same class or points of impervious surfaces, but not points of the urban
furniture class. Given the high density of the point cloud, the “Near” measure for this
dataset was fixed to 0.15 m.

Additionally, we described the vehicle as “vertical” and “short” with the following
unary statement, reading these values through the previously selected features Verticality
and Distance from ground. {

∀u.¬Vertical(u) ∨ ¬Vehicle(u)
∀u.Short(u) ∨ ¬Vehicle(u)

(12)
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Figure 14. Visual results for the Hessigheim validation dataset.

Two binary rules were established for the class “chimney”: points with a high level of
Verticality are assumed to belong to the “chimney” class, while points with a low level of
Verticality are expected to belong to the “roof” class.{

∀u, v.¬Near(u, v) ∨ ¬Chimney(u) ∨ ¬Vertical(v) ∨ Chimney(v)
∀u, v.¬Near(u, v) ∨ ¬Chimney(u) ∨Vertical(v) ∨ Roo f (v)

(13)

The graphical (Figure 15) and numerical (Figure 16) results achieved with and without
the logic rules are compared below. Overall, the mF1 score increased from the 84.41%
baseline to 85.33% with the inclusion of a-posteriori rules.

Figure 15. Results achieved for the Hessighein test dataset with and without the use of logic rules. In
the close-up views, changes are highlighted in circles for the “chimney” class and in rectangles for
the “vehicle” class.
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Figure 16. Confusion matrix and derived metrics for the Hessigheim dataset: results achieved using
only some selected features (a); results achieved using selected features and logic rules (b).

Finally, Table 6 reports a comparison of our results with the state-of-the-art as presented
in the Hessigheim portal.

Table 6. State-of-the-art results for the Hessigheim benchmark as of April 2023 [62].

Method
Low
Veg

Imp
Surf

Vehicle
Urb
Furn

Roof Facade Shrub Tree Gravel
Vert
Surf

Chimney OA mF1

Zhan 58.74 22.06 0.32 16.65 57.06 30.02 5.07 69.34 0.11 28.59 2.22 26.38 46.10
jiabin 66.21 18.02 34.18 38.03 72.00 68.99 47.70 78.65 9.84 35.93 8.32 43.44 58.29

GaoPN++ 78.11 72.07 31.78 13.65 73.98 47.79 28.34 71.80 9.65 21.67 4.39 41.20 68.50
Sevgen 83.86 77.21 66.95 42.64 95.60 80.09 59.53 96.06 25.68 81.51 73.85 71.18 79.25
Zhan 84.33 77.86 58.11 42.32 93.25 65.41 53.53 95.29 23.66 59.85 64.66 65.30 79.69
Shi 87.62 85.62 52.40 36.71 95.48 69.30 47.39 94.28 25.08 65.94 38.59 63.49 84.20

ifpRF 90.36 88.55 66.89 51.55 96.06 78.47 67.25 95.91 47.91 59.73 80.65 74.85 87.43
Sevgen 90.88 89.40 77.28 55.76 97.05 81.88 62.06 97.10 23.17 80.27 80.28 75.92 87.59

KPConv 88.57 88.93 82.10 63.89 97.13 85.13 75.24 97.38 42.68 80.87 0.00 72.90 87.69
ifpSCN 92.31 88.14 63.51 57.17 96.86 83.19 68.59 96.98 44.81 78.20 73.61 76.67 88.42
WHU 92.90 90.23 78.51 57.89 95.71 80.43 68.46 97.21 62.37 73.08 72.45 79.02 89.75

Our 88.91 87.74 74.89 54.27 96.83 78.85 53.21 93.28 43.73 75.89 58.22 73.26 85.33

4.3. S3DIS

The S3DIS [26] dataset for semantic scene parsing consists of 271 rooms in six areas
from three different buildings (Figure 17). Each point in the scan is assigned a semantic
label from 13 categories (ceiling, floor, table, etc.). The common protocol is to withhold
Area 5 during training and use it during testing, or perform a cross-validation on Area 5.
The evaluation metrics include mean classwise intersection over union (mIoU), mean of
classwise accuracy (mAcc), and overall pointwise accuracy (OA). As of February 2023, the
baseline Point Transformer is 9th in place of the S3DIS benchmark dataset and has been
overtaken in recent months by significantly larger networks. However, this study on the
relevance of knowledge infusion in Neural Networks is still highly relevant, as knowledge
infusion can also be embedded in the newer networks. Moreover, class imbalance and
the number of training samples remain a key issue in the S3DIS benchmark (Table 7). The
ceiling, floor, and wall classes are overly dominant with on average nearly 65% of the
points and thus also achieve the highest detection rate (respectively 94.0%, 98.5%, 86.3%
IoU on the baseline Point Transformer). S3DIS clearly shows that classes with percentual
less training data, such as windows (3% of the data, 63.4% IoU) and doors (3% of the data,
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74.3% IoU), have a significant drop in performance. Poor class delineations, as with the
beams (38% IoU), remain unsolved.

Additionally, there is a significant catch to these fairly good detection rates. The base
PointTansformer and even RandLA-Net [33] network only achieve near 70% mIuO on
the separated rooms of S3DIS, which is the original training data. When the rooms are
combined into one region, which would be the case for a realistic project, the detection rates
plummet. Point Tansformer barely achieves 46% mIuO, and so does RandLA-Net with 35%
mIuO. Nearly all classes suffer from increased complexity from a room-based segmentation
to an area-wide segmentation, except for some classes that already performed poorly with
the conventional training data (Table 7 first row).

Figure 17. Overview of the S3DIS dataset Area 5 colorized and with assigned labels of all thirtheen
classes.

Table 7. Class statistics and IuO scores of the S3DIS dataset [26]: original benchmark results of
Point Transformer and RandLa-net and (top) combined Area 5 results for Point Transformer + Feat +
Kenn (bottom).

Ceiling Floor Wall Column Beam Window Door Table Chair Bookcase Sofa Board Clutter mIuO

Class distribution (%)
19.56 16.54 29.2 1.76 0.03 3.52 3.03 3.75 1.87 10.35 0.3 1.18 8.92

IuO (%)
PT 94.0 98.5 86.3 0.0 38.0 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3 70.4

RandLA-Net 92.7 95.6 79.2 61.7 47.0 63.1 67.7 68.9 74.2 55.3 63.4 63.0 58.7 68.5

PT (combined) 87.3 90.8 49.5 11.7 11.4 55.8 29.9 54.9 43.9 54.7 38.1 34.4 35.6 46.0
FEAT 89.8 91.9 60.1 19.5 28.3 60.4 40.0 57.1 53.1 58.1 33.3 41.5 42.6 52.0

FEAT + KENN 95.5 97.7 64.5 20.8 26.5 69.3 49.3 66.7 67.6 63.0 57.1 50.1 50.3 59.9
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Analogous to the above two datasets, the prior knowledge aims to improve perfor-
mance on subideal training data, i.e., on the combined cross-validation of Area 5. The initial
RandLA-Net and Point Transformer baselines indicated significant underperformance in
all but the ceiling and floor classes. Therefore, we use the a-priori knowledge to generate
distinct signatures for all the other classes. For S3DIS, the following features were intro-
duced based on the inspection of the baseline classification: R, G, B, Planarity (r = 0.2 m),
Verticallity (r = 0.5 m), Surface variation (r = 0.1 m), Sum of Eigenvalues (r = 0.1 m), Omni-
variance (r = 0.05 m), Eigenentropy (r = 0.02 m), and the normalized Z value. The verticality
and planarity help identify the more planar objects in the scene, such as tables, doors, and
bookcases. In contrast, the Eigenentropy, Omnivariance, Surface variation, and Sum of
Eigenvalues at different radii help describe the curvature of table, chair, and sofa elements.

The results achieved with the a-priori knowledge are reported in Table 7 line 3 and
Figure 18. There is a significant improvement in nearly all classes but sofa, with an overall
increase in 6% mIuO. The best improvements are reported for the walls (10.5%), beams
(17.0%), doors (10.0%), and chairs (9.1%), which now show significantly less confusion with
clutter and with overlapping classes in the case of the walls (Figure 19).

Figure 18. Performance increase for the S3DIS dataset with the three different configurations.

Figure 19. Confusion matrix and derived metrics for the S3DIS dataset: (left) Results achieved using
a-priori knowledge and (right) results achieved using also a-posteriori knowledge.
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Despite the improvements, two key categories of confusion are identified (Figure 20).
First, there are a significant number of false negatives within the classes, despite the
observations being surrounded by a large number of points attributed to a single class.
Second, there is significant confusion between wall-based elements such as windows,
doors, bookcases and the walls themselves. This is a known problem and remains a
difficult obstacle for state-of-the-art networks.

Figure 20. Overview of the remaining missclassifications after applying a-priori knowledge: (left)
lack of class consistency and (right) confusion between wall-based classes i.e., windows, doors
and bookcases.

The a-posteriori rules specifically target these two issues using binary rules. First, class
consistency is forced between the classes using nearby class-associativity, e.g.,

∀u, v.¬Near(u, v) ∨ ¬wall(u) ∨ wall(v) (14)

where each class is incentivized to enforce class consistency at nearby points. Specifically for
classes with a descent surface area, i.e., walls, windows, and doors, this is quite promising.
Second, the expected topology can be formulated as ’Near’ rules to lower the confusion
between neighboring classes, e.g.,

∀u, v.¬Near(u, v) ∨ ¬ f loor(u) ∨ so f a(v) ∨ chair(v) ∨ table(v) (15)

where the promixity of certain classes, i.e., furniture elements near the floor and windows,
doors, boards, and columns near walls, is reinforced. Looking again at Table 7 and Figure 18,
it is clear that the a-posteriori knowledge again significantly increased the performance
from an average mIuO of 52.0% to 59.9% compared with the a-priori knowledge. The
highest increase is noted in the sofa (23,8%), chair (14.5%), and table classes (9.5%), which
are directly affected by the knowledge infusion. Similarly, the windows (8.9%), doors
(9.3%), and walls (4.4%) also improved. Overall, separate training sessions indicated that
the associativity knowledge offered a better statistical improvement as many stray points
are now assigned to the correct class. In contrast, the topological knowledge remedied
more isolated but important miss-classifications (Figure 21).

4.4. Performance Evaluation

In this section, the performance of the three configurations for each test case is jointly
discussed. For the experiments, a GPU Nvidia RTX 3080, 32 GB of RAM, and a 11th
Gen Intel(R) Core(TM) CPU i7-11700KF @ 3.60 GHz were used. It is observed that the
computational time increases with the infusion of knowledge (Table 8). In the first dataset,
the highest time increase is generated by adding the a-priori knowledge to the network,
while this is less the case for the later two experiments. This can be partially explained by
the number of features that are introduced to each network, i.e., 13 for Vaihingen, 9 for
Hessigheim, and 10 for S3DIS. However, a prominent factor is the number of classes. These
seem to inversely affect the proportional computational effort needed to train the expanded
input layer in comparison to the training of the network itself, which is identical to the base
network. A higher number of classes significantly complicates the training of the internal
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network, and thus networks with more classes (9 for Vaihingen, 11 for Hessigheim, and 13
for S3DIS) will be computationally less affected by an increased number of inputs.

The addition of the KENN layers significantly increases the computational effort of
the training. The computational effort is a direct result of the number of rules, the number
of KENN layers (3 for all networks), and the number of classes. The training times on
average increased for Vaihingen by 30% (20 rules, 9 classes), Hessigheim by 36% (12 rules,
11 classes), and S3DIS by 39% (17 rules, 13 classes). This indicates that the number of
classes is again the dominant factor in the increase in the computational effort of the
proposed method.

Figure 21. Overview of the effect of the a-posteriori rules on the S3DIS dataset: less stray classification
points (top) and better class consistency near wall elements (bottom).

Table 8. Comparison of the average computational time per epoch per testcase.

Vaihingen Hessigheim S3DIS

sec/epoch sec/epoch sec/epoch
PT 0.7 8.4 82.1

FEAT 2.6 12.8 97.6
FEAT + KENN 3.3 17.5 136.0

5. Discussion

In this section, the pros and cons of knowledge infusion are discussed. The first major
aspect is the specificity of the method. Both the a-priori and a-posteriori knowledge are
dataset-specific and need to be adjusted for every project. While this seems against the
generalization trend of deep learning approaches, it is in fact no different from all the pre-
processing steps that have to be performed in current networks nowadays. Training data
gathering, curation, and balancing all require dataset-specific and often manual approaches.
Even network architecture performance significantly varies given slightly different datasets,
as demonstrated in the S3DIS experiments. As such, KENN is a feature that expands a
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network’s applicability beyond that of a benchmark. Additionally, the production of rules
and features takes little human effort, especially when compared with the production of
additional training data.

A second aspect is the generalization potential of KENN. In theory, both the a-priori
and a-posteriori knowledge could be standardized and used in all datasets. However,
generalizing the features and rules would counteract the specificity with which training
data issues must be resolved. Each project has its own issues, so unique rules are an ideal
solution. Furthermore, employing too many rules (even general ones) would entangle the
inference and make it untraceable what the actual contributions of the rules are. Instead,
KENN takes the best of both worlds by implementing general class associativity and then
allowing users to employ 5 to 10 rules to remedy training data shortcomings.

A third aspect is the portability of the method to other networks. In theory, any
network that uses keras layers as in-and output can be enriched with KENN. However,
the internal architecture of the network must be compatible with the expansion of the
input layers. At the backend of the network, there are fewer issues since KENN directly
takes the network’s outputs as input. However, the knowledge is currently tied to spatial
semantic segmentation and would require rework if used for anything other than 3D
semantic segmentation.

6. Conclusions

This article proposes a new approach for 3D point cloud semantic segmentation that
incorporates knowledge-based rules into a neural network. Overall, our contribution
provides a promising solution for addressing some challenges, in particular for unbalanced
classes in point cloud semantic segmentation by leveraging the power of logic-based rules
to facilitate the identification and labeling of minority classes. Concretely, we expand
the inputs of the network using a-priori features, which are also used in conventional
machine learning. At the backend of the network, we introduce additional final layers
to incorporate background knowledge into the neural network’s learning pipeline. The
method is implemented on an existing, performant Point Transformer network, given the
excellent performances demonstrated in the literature.

The method is tested on both aerial and urban benchmark datasets, i.e., ISPRS Vaihin-
gen, Hessigheim 3D, and S3DIS. The experiments show that the proposed KENN method
can improve the performance of the Point Transformer model. The proposed method
performs similarly to other well-established algorithms, and it allows for good metrics
in particular for under-represented classes. Additionally, KENN succeeds in reducing
systematic false positives that are difficult to detect in the training statistics. The rules can
be customized based on the scenarios and intuitively created by the user. Furthermore,
KENN can potentially be adapted for any 3D semantic segmentation network.

In future work, we intend to integrate KENN with additional neural networks and
test the proposed approach in other scenarios (e.g., industry, heritage, etc.). Overall,
the presented approach offers additional applicability for existing networks and has the
potential to remedy data shortcomings in semantic segmentation training datasets.
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