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Abstract: Automated inspection systems utilizing computer vision technology are effective in man-
aging traffic control devices (TCDs); however, they face challenges due to the limited availability of
training datasets and the difficulty in generating new datasets. To address this, our study establishes
a benchmark for cost-effective model training methods that achieve the desired accuracy using data
from related domains and YOLOv5, a one-stage object detector known for its high accuracy and
speed. In this study, three model cases were developed using distinct training approaches: (1) training
with COCO-based pre-trained weights, (2) training with pre-trained weights from the source domain,
and (3) training with a synthesized dataset mixed with source and target domains. Upon comparing
these model cases, this study found that directly applying source domain data to the target domain is
unfeasible, and a small amount of target domain data is necessary for optimal performance. A model
trained with fine-tuning-based domain adaptation using pre-trained weights from the source domain
and minimal target data, proved to be the most resource-efficient approach. These results contribute
valuable guidance for practitioners aiming to develop TCD models with limited data, enabling them
to build optimal models while conserving resources.

Keywords: domain adaptation; low-cost object detection; traffic control devices (TCDs); training
dataset benchmark; YOLOv5

1. Introduction

Computer vision technology has been employed in managing the built environment,
such as inspecting and assessing the condition of civil infrastructure. In particular, previous
research cases using deep learning-based computer vision technology to detect objects
have proven to be highly accurate in the safety management of workers [1,2], construc-
tion equipment [3], and construction schedule management [4], so the frequency of use
is expected to increase in the future [5]. Although computer vision studies have made
tremendous progress in construction management, many researchers still need help in
constructing an ideal model for more accurate detection. The difficulty in building an
ideal model is due to the problem of obtaining a highly qualified annotated dataset. The
ideal model in this field is accurately localizing and recognizing objects in images or video
frames [6]. This means that the model should be able to accurately distinguish target objects
among a large variety of object categories and identify object instances from the same
category, subject to intra-class variations [7]. To successfully build this ideal model, the
model should learn the vast range of intra-class variations and a large number of object
categories from the training process [7,8]. However, as described above, constructing this
enormous dataset for training requires a more labor-intensive and time-consuming process,
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especially in the road or construction management areas, with comprehensive coverage
and high temporal variability.

There are two main representative approaches to solving the problem of building
datasets from scratch and data shortage. The first approach uses similar object models or
datasets already constructed in other regions or industries. For example, the Laboratory for
Intelligent and Safe Automobiles (LISA) traffic signs dataset, a set of videos and annotated
frames containing 47 types of U.S. traffic signs, is widely used in different research fields,
such as driver assistance and autonomous vehicles [9], traffic flow management, and road
infrastructure [10]. In addition to this, there are also publicly available datasets, such as
the Microsoft Common Objects in Context (COCO) datasets. However, such a dataset has
limitations in covering all road or construction sites, with their unique characteristics. In
some cases, researchers create small-scale, individual datasets to achieve specific purposes
and use them for research. Nonetheless, it is not easy for the datasets used in research to be
shared publicly.

The second approach employs a data augmentation technique. Data augmentation
is a strategy to increase the training dataset by providing variations in the size and shape
of the images while maintaining labels [11]. In construction management, this method is
often applied to increase the variety of datasets [12–14] and balance the number of samples
in different classes [15,16]. However, there is no reference to benchmark how much data
should be added, and increasing the data does not necessarily lead to improved model
performance [17,18]. In general, the stability and performance of a model are improved
with a reduction in variance in the data. According to mathematical statistics, the law of
large numbers and the central limit theorem suggest that if the sample size is sufficiently
large, the data will tend towards a standard normal distribution that reflects the population.
Consequently, if the variance of the existing data is substantial and can be reduced through
data augmentation, increasing the number of data samples will result in better model
performance. However, if the variance of the data is increased by incorporating entirely
different data, the performance of the model will deteriorate. In conclusion, it is not always
the case that a larger data sample leads to improved model performance.

Above all, it is worth noting that such approaches are not practical when applied
to different domains. The performance of the object detection model is often affected by
discrepancies in domain distribution. This tendency occurs when the model, trained on a
labeled dataset, is applied to a dataset not seen in other models [19]. This is particularly
relevant in the context of traffic control device (TCD) detection, as TCD systems are often
tailored to specific regional traffic regulations. Despite this, current TCD object detection
datasets and models are primarily developed using data from advanced AI countries, such
as the United States, China, and Europe, rather than being tailored to specific countries or
regions. Countries in the early stages of AI development, such as South Korea, Canada,
and India, are also striving to develop their own training datasets for the development of
object detection models. However, due to a lack of sufficient resources and infrastructure,
they face challenges in building datasets that are appropriate for local contexts. To address
this issue, the objective of this research is to propose a benchmark for efficiently utilizing
traffic control device (TCD) data from multiple countries, with the goal of reducing the
resources required for data collection, annotation, and training in the early stages of
TCD object detection model development. In order to achieve the research objective, this
study was conducted in four steps, which were (1) acquiring four datasets of different
domains, (2) developing TCD detection models in the target domains, (3) evaluating the
models for the use of pre-trained models and data from different geographical regions,
and (4) reporting the benchmark of overall model performance. The provided benchmark
shows that the mAP performance of the source model is degraded by 8% to 18% when
it is applied directly to the new target domain. There is uncertainty about adopting a
pre-trained model in other domains without enhancing the data developed from the target
domain. Therefore, stakeholders are encouraged to develop their own target domain data
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in conjunction with domain adaptation in other regions, even if it is a small number of
target domain dataset. The key contributions of this study can be summarized as follows:

1. It provides guidance on the amount of data required for efficient model training to
achieve a specific level of accuracy for researchers facing a similar situation to this
study (i.e., building a new object detection model, but importing and utilizing data
from a model built in another country). This guidance can help prevent unnecessary
wastage of resources (time and money) by providing researchers with the appropri-
ate amount of data needed for effective model training, promoting active research
activities in the field.

2. This study derived multiple condition-specific reference values for the TTCD domain,
taking into account different design specifications of the barrel across different nations,
use of different pre-trained weights, and different numbers of training datasets. These
values can guide researchers in obtaining the appropriate amount of data required for
effective model training, further enhancing the accuracy and effectiveness of object
detection models in the TTCD domain.

2. Related Studies

Traffic control devices (TCDs) are defined as all signs, signals, markings, and other
devices placed along roads to promote road safety and efficiency by providing for the
orderly movement of all road users. Especially in road construction zones, TCDs need to
be managed in a timely manner, as they warn drivers of dangerous situations in advance,
thus preventing potential accidents around road construction. In the field of TCD object
detection, most research has been conducted on studies related to autonomous driving and
driver assistance systems, and they have focused on permanent TCDs such as traffic lights
and traffic signs. On the other hand, at road construction sites, TCDs are mainly used as
temporary devices (TTCDs) due to the characteristics of the construction site. Although
maintenance is required for safety and traffic control efficiency, less research has focused on
temporary devices used in road construction compared to permanent devices. As a result,
few benchmark datasets for TTCD detection exist.

Research on computer vision for TCDs has been conducted for a decade. Stal-
lkamp et al. [20] organized the benchmark competition for traffic sign detection and
provided the results as the benchmark. The purpose of this competition was to pro-
vide the widespread benchmark called “The German Traffic Sign Recognition Benchmark”,
known as GTSRB. Timofte et al. [21] provided a multi-view scheme of a traffic sign dataset
called the KUL Belgium Traffic Sign (KUL) benchmark to improve the efficiency of traffic
sign detection and recognition. Larsson et al. [22] proposed to use locally segmented con-
tours combined with an implicit star-shaped object model as a prototype for different sign
classes to construct robust object models. They also provided publicly available benchmark
datasets, the Swedish Traffic Sign (STS) datasets, to demonstrate their proposal. Likewise,
Mogelmose et al. [23] also introduced an effectively available traffic sign dataset in the
U.S., the LISA dataset, through a comprehensive review of other traffic sign benchmarks.
In particular, they pointed out the problem of developing a traffic sign detection model
using benchmarks constructed in other countries. According to their review, the designs
of TCD systems are standardized through laws. However, they differ across the world, so
the authors addressed these differences by using datasets from other countries, but they
were proven to be inefficient in developing a robust model. Zhu et al. [24] also introduced
a Chinese traffic sign dataset called Tsinghua-Tencent 100 K, which is more tailored to the
detection of Chinese traffic signs according to the abovementioned problems.

In addition to these publicly available datasets, researchers often have developed and
used a small number of their own depending on their research purpose. For example,
autonomous driving researchers [9,25,26] developed an object detection model using YOLO
algorithms with their own datasets to detect different traffic cones. Dhall et al. [25] presented
a method to detect traffic cones and estimate their real-time positions in the 3D world using
YOLOv2 algorithms. Albaráñez Martínez et al. [9] proposed a lightweight neural network
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to detect traffic cones on a racing car. In addition, Katsamenis et al. [26] introduced a new
framework for cone detection by using the YOLOv5 algorithm and a manually created
traffic cone image dataset from multiple sources. In addition to TCD detection research
related to autonomous driving, research has also been conducted in maintenance, but it is
scarce. Kang et al. [27] and Kim et al. [28] proposed an automated state analysis framework
for pavement marking using the YOLOv3 algorithm. Seo et al. [29] and Song et al. [30]
developed an object detection model for temporary traffic control devices using a YOLOv3
algorithm to manage the TTC devices in real time.

Although some studies have demonstrated that object detection techniques can help
to manage TCDs effectively, TCD research remains under-explored regarding temporary
devices. In order to fill this research gap, this study focuses on developing models in new
target domains with as little data as possible. As other researchers have pointed out, using
custom datasets is the best way to build robust models [11,21,24], but creating datasets from
scratch can be challenging. In this respect, domain adaptation can be a solution. Domain
adaptation techniques (DA) are a type of transfer learning that uses labeled data from
other relevant domains to perform similar tasks in the target domain. By leveraging prior
knowledge [31–34], domain adaptation enables models to be trained with much less labeled
data [12,31,35–37]. In general, this approach assumes that the source and target domains
share the same task, i.e., Ts = Tt, and any differences between the datasets are caused only
by domain divergence, i.e., Ds 6= Dt, in the data distribution or feature space. [12]

Domain adaptation has various approaches depending on the specific settings and
problems involved. In the early years of domain adaptation research, the focus was on shal-
low domain adaptation techniques, which include instance-based [38,39] and feature-based
methods [40,41]. These techniques were developed to reduce the domain discrepancy
between the source and target datasets by either reweighting source samples or learn-
ing a shared space that matches the distributions of the two datasets. Deep domain
adaptation leverages deep neural networks to learn complex and abstract features via
back-propagation, enabling more effective knowledge transfer between source and target
domains. Common deep domain adaptation techniques include fine-tuning deep neural
networks, GAN-based adversarial approaches [42], and data-reconstruction [43], which
uses deep encoder–decoder architectures to ensure learned features between domains are
invariant or shared. The principle of minimizing domain discrepancy is shared among
these techniques and aligns with the aim of domain adaptation.

Domain adaptation techniques are widely employed to address data scarcity issues
across various fields. Rostami et al. [44] proposed a semi-supervised domain adaptation
framework for classifying Synthetic Aperture Radar (SAR) images with limited labeled
data by transferring knowledge from the related Electro-Optical (EO) domain through a
shared invariant cross-domain embedding space learned by coupled deep neural networks.
Wang et al. [45] developed a Joint Coral-based Graph Neural Network (JCGNN) for un-
supervised domain adaptation in multitemporal, hyperspectral remote sensing images,
effectively using spectral relational information and domain-level and class-level distribu-
tion adaptation with GNN and class-wise CORAL methods. Lasloum et al. [46] presented
a multi-source semi-supervised domain adaptation method (SSDAN) for remote sensing
scene classification using EfficientNet-B3 CNN and a novel minimax entropy loss function,
achieving remarkable performance with few labeled target samples. Zheng et al. [47]
introduced a novel framework called Domain Adaptation via Task-Specific Classifier (DAT-
SNET) to tackle the data shortage problem in high spatial resolution (HSR) imagery scene
classification by aligning feature distributions between source and target domains, ulti-
mately enhancing cross-scene classification performance. Although the domain adaptation
field actively addresses data scarcity issues, most research focuses on algorithm improve-
ment, with little emphasis on determining the minimum amount of target domain data
needed for optimal results when using data from other related domains. Consequently, this
study aims to identify the minimum data requirements in the target domain and explore
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cost-effective strategies using deep domain adaptation-based fine-tuning of deep neural
networks, leveraging data from different domains for optimal results.

3. Methodology

This section explains how this study was conducted to achieve the objectives of the
research. This study consisted of four processes: dataset acquisition, model development,
model evaluation, and benchmark. The dataset acquisition process included selecting,
collecting, annotating, and preprocessing data from different domains to create a benchmark
dataset for each domain. The model development process involved developing three model
types under different training methods. The model evaluation process aimed at comparing
and analyzing the developed model cases. The last process was to report the key findings of
the analysis results as a benchmark. The overall workflow of this study is shown in Figure 1.
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Figure 1. The flowchart of this study.

During the dataset acquisition, four targets of barrel datasets from the United States,
Korea, and Canada were constructed. In this process, each dataset underwent collection,
data annotation, and data preprocessing. In order to control the data systematically, each
dataset was collected in a similar way and annotated with the same number of instances
from the collected images. The constructed datasets were then split into training, validation,
and testing for developing and evaluating the model. These datasets were denoted as
Target S, Target A, Target B, and Target C for this study.

Target S dataset contains the U.S. barrel type that complies with the Manual on
Uniform Traffic Control Devices (MUTCD) by FHWA [48]. According to the MUTCD, the
standard barrel size should be at least 36 inches in height and 18 inches in width. Each
barrel should have a minimum of two orange and two white retroreflective stripes, with the
top stripe being orange. The MUTCD does not specify the means of ballasting for barrels,
but most of the barrels in this dataset were ballasted with rubber tire rings. Target A barrel
complies with the Ministry of Land, Infrastructure, and Transport (MOLIT) Guidelines for
Traffic Management at Road Construction Sites in Korea. In particular, this type is used in
highway or freeway construction zones [49]. This type has a high degree of visual similarity
to Target S in terms of size and color. The standard size of this type is at least 800 mm in
height and 450 mm in width. The color of the barrel should be orange, with two white
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retroreflective stripes, as in the case of Target S. The Target B barrel is another type used in
Korea while complying with the MOLIT Guidelines. This type is typically used on routes
with traffic lights or any short-term construction sites [49]. The general standards are the
same as for Target A, but a noticeable difference is the shape. Unlike Target A, Target B is a
separable assembly type with one wider white retroreflective stripe.

The Target C barrel complies with the MUTCD for Canada, published by the Trans-
portation Association of Canada (TAC) [50]. Although most of the Canadian jurisdictions
comply with the MUTCD, there are considerable differences in the design and regula-
tions of TCDs between the provinces of Canada. For example, the barrel used in British
Columbia, Canada’s westernmost province, is almost identical to that used in the U.S.
However, according to the Ontario Traffic Manual (OTM), the barrels should be used on
freeways and other high-speed and high-volume roads [50]. In addition, the Ontario barrel
has a height of 1000 mm and a minimum diameter of 360 mm for the bottom reflective band,
making it taller and narrower than the British Columbia barrel. The most notable difference
is the retroreflective stripes. The Ontario barrel must be horizontal and circumferential,
with four alternating black and retroreflective orange stripes. Since the Ontario barrel has a
remarkable difference in design from the barrel that complies with the MUTCD, it has low
visual similarity to Target S.

During model development, three types of models were developed using the YOLOv5
algorithm [51]. Many researchers in object detection favor YOLOv5 because of its fast
inference time and high accuracy [26,34,52,53]. The framework of YOLOv5 consists of three
networks: backbone, neck, and output (shown in Figure 2a). Backbone networks are used
to extract features from the input image by aggregating and forming image features at
different granularities. The neck network is a series of layers used to mix and combine
image features before passing them to the prediction stage. As the neck network, YOLOv5
uses both the Feature Pyramid Network (FPN) and the Path Aggregation Network (PAnet).
The pyramid structure of FPN conveys powerful semantic features from the top feature
map to the bottom feature map. Meanwhile, the pyramid structure of PANet conveys
powerful localization features from the bottom feature map to the top feature map. The
output network consists of three detection layers with feature maps of different scales of
80 × 80, 40 × 40, and 20 × 20 for detecting objects in the input image.

Moreover, the sub-layers were combined in the layers of networks such as C3 and SPSS
(shown in Figure 2b–d). The C3 layer is a cross-stage partial (CSP) bottleneck with three
CONV(CBL) layers. The CONV(CBL) layer is a combination of a standard convolutional
CONV, batch normalization (B.N.), and the swish activation function of the Sigmoid linear unit
(SiLU). The C3 layer is designed to improve the speed and weight by simplifying the original
CSP bottleneck while maintaining the performance [51]. Spatial pyramid polling fast (SPPF) is
a faster version of SPP. The SPP layer improves the receptive field by returning feature maps
of arbitrary size to a fixed-size feature vector [54]. YOLOv5 also comprises different scales of
models, such as YOLOV5n, YOLOV5s, YOLOv5m, YOLOv5l, and YOLOv5x, with alterations
in depth and width in each model. Among these models, YOLOv5l (Large) was chosen for
this study because it meets the workstation specifications while having a sufficiently deep
and wide network to further improve the performance [55,56].

In addition to its network architecture, YOLOv5 employs three loss functions (1)
during training to enhance performance. These loss functions include localization loss,
objectiveness loss, and the classification loss, represented as:

Loss = Lloc(CIoU) + Lobj + Lcls (1)
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The localization loss aims to optimize the detection of the center point (x and y)
as well as its width (w) and the height (h). Unlike YOLOv3 model, YOLOv5 improves
localization loss by replacing mean squared error (MSE) with Complete Intersection over
Union (CIoU) [57]. This approach effectively optimizes regression loss by simultaneously
taking into account the overlapping area, the distance between center points, and the aspect
ratio of the bounding box. The detailed localization loss function is as follows:

Lloc(CIoU) = 1− IoU +
ρ2(b, bgt)

c2 + αυ (2)

α =
υ

(1− IoU) + υ
(3)

υ =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(4)
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Lobj = −
S2

∑
i=0

B
∑

j=0
1obj

ij

[
Ĉllog(Ci) +

(
1− Ĉl

)
log(1− Ci)

]
−λnoobj

S2

∑
i=0

B
∑

j=0
1noobj

ij

[
Ĉllog(Ci) +

(
1− Ĉl

)
log(1− Ci)

] (5)

Lcls = −
S2

∑
i=0

1obj
ij ∑

cεclasses
[ p̂l(c)log( pi(c)) + (1− p̂l(c))log(1− pi(c))] (6)

where ρ2 represents the Euclidean distance between the center points of the predicted
box b and the ground truth bgt. The variable c is the diagonal distance of the smallest
bounding box that completely encloses both predicted and ground truth boxes. α is a
positive compromise parameter that gives priority to overlap over non-overlap, and υ

measures the consistency of the aspect ratio between the two bounding boxes.
The objectiveness loss (5), also known as confidence loss, is used to determine the

presence of a target object in the allocated grid cell. Classification loss, on the other hand,
is used for accurate object class detection. Both objectiveness loss and the classification
loss utilize binary cross entropy, in line with the YOLOv3. The formula for these two-loss
function are as follows:

The S2 grid cells represent S × S grids, with each cell generating B candidate boxes.
These candidate boxes obtain corresponding bounding boxes through the network, result-
ing in a total of S × S × B bounding boxes. The terms 1obj

ij and 1noobj
ij indicate the presence

or absence, respectively, of a target in the jth detection box of the ith grid. λnoobj denotes the
loss weight of the positioning error, Ci and pi(c) correspond to training values, and Ĉi and
p̂i(c) represent the prediction values.

Three model types are all developed based on the deep fine-tuning-based domain
adaptation techniques but are distinguished explicitly by their training methods. The first
type is a general type that uses open-sourced pre-trained weights. The YOLOv5 models
provide the pre-trained weights using the COCO dataset, which consists of 2,500,000 labeled
instances of 91 common object classes [58]. Therefore, this study uses open-sourced pre-
trained weights to build the first model type. In the process, this study also divided each
training set into seven sub-training sets with different amounts of instances to investigate
the relationship between labeled data and model performance. The instances in each
sub-training set were 50, 100, 200, 300, 500, 750, and 1000, respectively. The second type of
model was not notably different from the first type. This type used the pre-trained weights
of the source domain model instead of the pre-trained weights of YOLOv5. The last type
of model also used the pre-trained weights of the source domain model when training.
However, this type used a synthetic training set. A synthetic training set is a mixture of data
from the source domain and data from the target domain. The four domains of datasets
were randomly subsampled to create synthetic training sets with different ratios. The three
synthetic training sets contained 1000 instances each, and the mixing ratios of target and
source data were 1:9, 3:7, and 5:5, respectively. In total, fifteen models were developed:
seven belonged to Type I, seven belonged to Type II, and three belonged to Type III.

Then, two analysis cases were conducted for model evaluation in the performance
and cost evaluation process. The first analysis compared the performance of the Type I and
Type II models. The second analysis case compared the performance of the Type II and III
models. When comparing Type II and Type III, the Type II model was selected by matching
the number of target instances with the Type III model. For example, when comparing a
Type III model trained with a synthetic dataset of a 1 (100 instances) to 9 (900 instances)
ratios, the selected Type II model should be trained with 100 training instances. The overall
model performance was evaluated using four key metrics: precision, recall, F1 score, and
mean average precision (mAP) [59–61]. These performance parameters are calculated
based on the value of true positive (T.P.), false positive (F.P.), and false negative (F.N.). Each
metric’s mathematical expressions are displayed in Equations (7)–(10). Precision represents
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the fraction of truly classified objects to the total number of objects classified by the model
as a given class. Recall indicates the ratio of the truly detected objects to the number of
objects correctly predicted by the model [59,60].

Precision =
True Positive

True Positive + False Positive
(7)

Recall =
True Positive

True Positive + False Negative
(8)

High percentages of both precision and recall indicate better model performance.
The reason for this is that when the number of positive objects increases, the accuracy
in correctly classifying each object decreases. Due to the importance of precision and
recall, the two metrics should be balanced to optimize the model’s performance. In order
to measure the balance between precision and recall, the F1 score is used. The F1 score
represents the harmonic mean of precision and recall [61]; thus, a higher F1 score indicates
better performance.

F1 Score =
2 × Precision × Recall

Precision + Recall
(9)

Then, all models were evaluated with mAP, calculated by averaging the average
precision (A.P.) for all classes involved in the trained models. Higher mAP values reflect a
well-performing model [59–61].

mAP =
1
n∑k=n

k=1 APk (10)

The computational cost of each model was also evaluated and compared by using the
training time, which is intended to provide a more efficient method when benchmarking
model development. In particular, the overall performance difference (11) between the
models is evaluated by percentage variance [62], which can describe the degree of improve-
ment and degradation in the new model’s performance compared to the previous model.

Percentage variance =
New model type−Old model type

Old model type
× 100 (11)

After analyzing these models, the key findings of this study were extracted and
summarized. Summarized vital findings would offer a benchmark for practitioners who
would like to utilize the source data when developing an object detection model in a new
domain. Overall, all model types fit well in the target domain, despite the small amount of
training data. In terms of computational efficiency, the Type II model outperformed the
other types of models, reducing the training time by more than two times in comparison
to the other types. In the case of Model III, it worked well in both the target and source
domains, although it consumed slightly more than the Type II model.

4. Benchmark
4.1. Dataset Acquisition

Four construction barrel targets from the United States, Korea, and Canada were
selected for this study. The selected barrels are identical in terms of their purpose of use,
as they are temporary control devices used on work roads. However, they comply with
different standards in terms of shape, size, and layout under their traffic regulations. Such
factors imply that a domain shift occurs due to the country’s different regulations, even
if the TCD objects, mainly barrels in this study, are in the same category. Therefore, this
study considers a barrel as a class and a domain as a region. In addition, other object
detection researchers have already created a U.S. benchmark dataset [29]. Therefore, this
study uses the existing U.S. benchmark dataset as the source domain and other datasets as
target domains.
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Each dataset was collected in a similar manner, although they were collected in
different geographical locations. This study used a commercial camera as the data collection
device. The cameras were mounted on the dashboard and recorded the road construction
zone at 4 k Ultra High Definition (UHD) 60 fps. Data were collected regardless of weather
or time of day; therefore, the collected data varied in terms of weather conditions, lighting
intensity, and shadows.

The collected data were then annotated with labeling rules to build the ground truth
for this study. For instance, 15 consecutive frame-by-frame images were extracted from the
collected data to provide variation in object angles and lighting while ensuring a reasonable
balance between the amount of labeling data and the cost of labeling. Only barrels at a
distance of 10–15 m from the data collection vehicle were labeled to ensure clear visibility
and readability. These labeling rules were established with input from industry experts.

The constructed datasets for each domain were as follows: the Target S dataset con-
sisted of 1000 images, the Target A dataset consisted of 657 images, Target B consisted
of 657 images, and Target C consisted of 1000 images. In addition, each image in these
datasets was annotated with one or more instances. Four examples of a constructed dataset
are displayed in Figure 3.
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Figure 3. Example of barrel dataset: (a) Target S (U.S barrel), (b) Target A (Korean barrel for highway),
(c) Target B (Korean barrel for short-term construction), and (d) Target C (Canadian barrel).

During data preprocessing, 1500 instances were randomly extracted from each target
benchmark dataset for analysis and comparison in data preprocessing. The extracted
instances were chosen to be as varied as possible, to reduce the potential bias of the data.
After this, the extracted instances were split into training, testing, and validation sets with
a ratio of 0.70, 0.15, and 0.15, respectively.

4.2. Model Development

Three types of models were developed to evaluate the use of the source data in the
target domain. As described in Chapter 3, domain adaptation was applied to each model
type to mitigate the generalization error due to insufficient data. Type I models used
open-sourced pre-trained weights from YOLOv5-L models trained on the COCO dataset,
with the training set divided into seven subsets with varying instance amounts. Type II
models used pre-trained weights from the source domain model instead of YOLOv5-L,
while Type III models used source domain weights and synthetic training sets composed
of randomly subsampled data from the source and target domains with different mixing
ratios. For Types I and II, the training sets were further divided into seven subsets with
varying instance amounts, while Type III used three synthetic datasets with a fixed total of
1000 instances each and different mixing ratios of target and source data. Table 1 provides
an overview of the model types.
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Table 1. Summary of model types.

Types Model I Model II Model III

Training Dataset Only Target Only Target Mix (Source + Target)

# Number of Training Sets
(# Number of Instance)

7 (50, 100, 200, 300,
500, 750, and 1000)

7
(50, 100, 200, 300, 500, 750,

and 1000)

3 mixing ratios
(1:9, 3:7, and 5:5)

Pre-Trained
Model

YOLOv5L
using COCO Source Model Source Model

Target

A
(Korean Barrel for Highway) 7 7 3

B
(Korean barrel for short-term construction) 7 7 3

C
(Canada Barrel) 7 7 3

Total constructed model 28 28 12

Each model type was trained, validated, and tested in the 11.11 Pytorch framework,
an open-source machine learning tool based on Python programming and the Torch library.
The computational specifications of the workstation were Xeon W-2245 @3.9 GHz, Ubuntu
20.02, NVIDIA GeForce RTX 3090, and 128 GB of total memory. Each network of the models
was trained with deep tuning, one of the TL approaches that allows the modification of
the weights of all layers of pre-trained networks when training the network for a new
dataset [63]. The YOLOv5 model was improved by tuning two important learning param-
eters: learning rate and momentum. Since the YOLOv5 model utilizes an optimization
algorithm that minimizes the loss of the regression problem while providing accurate
estimates, these two hyperparameters are critical to achieving both high accuracy and
fast processing speed [64]. In this study, each network was trained with a learning rate of
0.01 and a momentum of 0.937 using the stochastic gradient descent (SGD) optimization
algorithm, as these values have been found to have the highest performance [65]. All
training was run with 300 epochs with a batch size of 32 at an image input size of 640 × 640.

4.3. Performance and Cost Evaluation

Before developing the three types of models, this study tested existing source models
on each of the target datasets to evaluate their performance in different national domains.
Table 2 displays the overall testing results for each target testing set without training. The
source models exhibited high performance metrics on the source datasets with a mAP of
0.985 and an F1 score of 0.958. However, their performance was poor on all performance
metrics when applied directly to the target datasets without any training. This study
focuses on detecting construction barrels for driver and construction safety, where correctly
identifying the presence of a barrel is more important than correctly identifying its absence.
However, when the source model was directly applied to the target dataset, its performance
degraded the most, even though high recall is the most important aspect of the barrel
detection model, confirming the difficulty of using the source model directly. Additionally,
the lowest performance metric values were observed when the source model was applied
to Target C, indicating that the model is inferior when the visual similarity between the
source and target domains is low. These results demonstrate that domain differences
can significantly impact model performance, particularly when detecting objects such as
construction barrels. As a result, this study emphasizes the importance of considering
domain differences when developing object detection models and highlights the necessity
of implementing domain adaptation techniques.
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Table 2. Comparison of the testing results for each target dataset without training.

Testing Set Precision Recall F1 Score mAP_0.5 1

Source S 0.923 0.953 0.938 0.958

Target A 0.905 0.765 0.829 0.846
Target B 0.848 0.792 0.819 0.865
Target C 0.885 0.618 0.728 0.765

1 Mean average precision at 0.5 Intersection over Union (IoU) threshold.

4.3.1. Analysis Case 1—Use of the Pre-Trained Models

The performance of each model in target domains was compared for two models, Type
I and Type II. In both types, the mAP values of all target models improved with the increase
in labeled data in the training set. Among them, the Target A dataset outperformed the
other target datasets in both Types I and II. Figure 4 illustrates the relationship between the
model’s performance and the amount of labeled data per target domain. In most aspects,
the model’s performance improved significantly until the number of training instances
reached 200. After 500 instances, the model’s performance tended to converge to a specific
level of accuracy and even surpassed the original source model’s performance (represented
by the black dashed line in Figure 4).
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Type I, and (d) F1 scores of Model Type II.

In terms of computational cost, there was a clear difference between the two types. In
most cases, the computational costs were better in Type II (as shown in Table 3). Especially
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when the data were at 1000, this cost difference was considerable because the results showed
that the computational cost was reduced by over 50% when applying the Type II model.

Table 3. Percentage variance of the computational cost of Model Types I and II.

Percentage Variance (%) 2

Labeled Instances Target A Target B Target C

50 −8.7% −17.1% −5.6%
100 −27.7% −97.5% +0.1%
200 −2.7% −0.8% −42.1%
300 +1.4% −0.2% +1.7%
500 −0.2% +0.6% −1.7%

1000 −57.9% −156.6% −98.7%
2 The old model is Type I, and the new model is Type II.

4.3.2. Analysis Case 2—Required Target Data

In the context of both Model Type II and Model Type III, this study also evaluated the
minimum amount of target data needed for effective domain adaptation by incorporating
smaller datasets of varying sizes (10, 20, 30, 50, and 75). Furthermore, to ensure reliability,
each dataset was trained three times using different randomly selected training data, while
keeping the size of the training dataset constant. The dotted lines in Figures 5 and 6
represent the individual training datasets, while the solid lines represent the average of the
three training datasets.
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Focusing on Model Type II (see the Figure 5), although there were subtle differences
between the target domains, similar trends were observed across all experiments. Specifi-
cally, for all three target domains, the mAP values increased up to 100 instances, after which
they either increased slightly or remained constant. Different trends were observed up to
300 instances in each trial, but after 300 instances, the mAP values either increased slightly
or remained constant with similar trends. Additionally, the mAP values were consistently
higher than the original source model for all domains and trials above 500 instances. F1
was lower than the source model in most cases but increased slightly with higher target
instance ratios.

For Model Type III (See the Figure 6), the mAP generally increased up to a mixture
of 75 target domain instances and 925 source domain instances. When the mixed ratio of
target instances exceeded 100 (1:9 ratio), the models for each target either converged at a
certain level or experienced a slight increase. At a mixed ratio of approximately 3:7, the
model’s mAP values were higher than or equal to the performance of the source model for
all targets, and at a ratio of 5:5, the mAP values surpassed the source model for all targets.
Although F1 values were typically lower than those of the source model, they showed a
slight increase as the target instance increased.

As expected, the Type II model required significantly less training time than the Type
III model (as shown in Table 4). Both model types utilized the same amount of target data;
however, the actual volume of training data differed due to the Type III model having a
fixed number of instances (1000). Specifically, when the data ratio between the source and
target domains was highly imbalanced, the difference in training time between the two
model types was considerable. Conversely, when the ratio was more evenly distributed
(5:5), the disparity in training time between the two model types appeared to decrease
compared to scenarios with more uneven ratios.

Table 4. Percentage variance of the computational cost of Model Types II and III.

Percentage Variance (%) 3

Labeled Instances Target A Target B Target C

(1:9) 100:900 495% 1560% 849%
(3:7) 300:700 230% 241% 314%
(5:5) 500:500 17% 138% 253%

3 The old model is Type II, and the new model is Type III.
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5. Discussion

Through experiments, this study determined how to effectively utilize the existing
data from the source domain when developing an object detection model in a new target
domain where no data are available. According to the untrained test results, the model
performance was degraded when the model from the source domain was applied directly
to the new target domain. This result is consistent with the phenomenon described in other
domain adaptation studies [18] that occurs when the source and target domains are not the
same. From these results, this study proved that even though the task of detecting TCD
objects—specifically barrel objects in this study—is the same, the barrels have different
domains based on each country. Moreover, our results showed that the performance of
the source model decreased by around 18% in the Target C domain, which had the lowest
visual similarity to the source domain. This implies that the Target C domain had a greater
discrepancy than the source domain. Based on this result, it can be expected that when the
visual similarity between domains is low, the discrepancy between them is greater.

Moreover, this study also visually observed how the source model was degraded in
performance by detecting testing sets. The source model detected fewer positive objects
(T.P.), while the model trained with some target data detected more positive objects. In
addition, the original source model also detected more negative objects (T.N.) as positive
objects. Therefore, using the source model directly in the new target domain is risky
because the original model does not work well in the new domain and performs poorly
compared to working in the source domain. Examples of the detection results are displayed
in Figure 7.
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This study also showed that the performance of all types of models improved signifi-
cantly, even when trained with a small amount of target data. Among the different models
tested, Model II exhibited the best adaptation performance with the lowest computational
cost. This finding demonstrated that using training weights from similar target models
from other domains helps to build a robust model and significantly reduces the training
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time. This result is consistent with previous studies showing that reusing knowledge of
object features already learned from other models helps to identify the best weights quickly
by sharing similar features [66].

However, it was observed that Model II’s performance degraded significantly when
applied to the source domain, as displayed in Table 5. This occurrence is known as
“catastrophic forgetting”. In the context of domain adaptation, catastrophic forgetting refers
to the phenomenon that well-fine-tuned models in the target domain often degrade in
performance when re-applied to the source domain [67]. Thus, these results showed that
Model II was only suitable for the target domain. Model III, on the other hand, took longer
to train due to the larger amount of training data required but performed well in both
source and target domains. The mAP of the model decreased by a maximum of 2%, which
was considered negligible. Thus, Model III appears to be interchangeable between source
and target domains with less catastrophic forgetting.

Table 5. Comparisons of Model Types II and III using the source domain’s test set.

Model Type Number of
Trained Data

mAP_0.5 % mAP Variance
Target A Target B Target C Target A Target B Target C

Type II
100 0.930 0.950 0.911 −3% −1% −5%
300 0.841 0.900 0.872 −14% −6% −10%
500 0.723 0.861 0.861 −33% −11% −11%

Type III
(1:9) 100 0.954 0.963 0.961 0% 1% 0%
(3:7) 300 0.958 0.952 0.941 0% −1% −2%
(5:5) 500 0.953 0.948 0.951 −1% −1% −1%

This study also identified the minimum target data required for each domain by
varying the amount of training data for each model type. Overall, the performance of the
models improved when increasing the number of labeled data in the training set. This trend
has been found in other studies in this field [68,69]. However, most similar studies were
conducted at the image level rather than at the instance level. In addition, most of them
covered only one domain. In the case of small datasets, even if each model has the same
number of training images, the difference in the number of instances can significantly affect
the model’s performance. Moreover, the required training data might differ by domain,
although the target classes are in the same categories. Therefore, this study addressed this
issue by training different amounts of target data for each domain.

According to the results of this study (see Figures 4–6), most models’ performance
sharply increased until it reached 200 instances. Moreover, when comparing the mAP
performance of the models with the number of instances over multiple trials, the values
of each trial were different until 300 instances, after which the performance of the models
gradually converged or remained constant. Additionally, for all model cases, when the
number of training instances was greater than 500, the mAP values were higher than the
mAP values of the original source model.

To summarize, the most cost-effective way to build a model in the new domain was to
use Model Type II with a number of training instances of about 300 to 500 (around 3–5% of
the source data). However, the domain adaptation method of fine-tuning-based transfer
learning used in this study showed a phenomenon of catastrophic forgetting, where the
model performs well in the new domain, but the performance decreases somewhat when it
is reapplied to the source domain. On the other hand, when Model Type III is used to build
a model in a new domain, it is not as efficient as Model Type II in terms of training time
and performance, but catastrophic forgetting rarely occurs.

6. Conclusions

Object detection using computer vision technology has the potential to significantly
reduce the practitioner’s workload through timely and frequent inspections in the field
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of TCD management. It is worth noting that the majority of training datasets for such
models are found in highly advanced AI countries, while countries with less developed AI
capabilities, such as South Korea, collaborate with these nations to address data scarcity [70].
In light of this, the current study offers insights into the optimal amount of data necessary
for cost-effective model training in order to reach a specific accuracy level when developing
a new object detection model using imported data from models created in other countries.

During the model development process, this study utilized a domain adaptation
technique that leverages pre-trained models from related domains to generate three model
cases with different pre-trained weights and training sets. After comparing and analyzing
the three model cases, it was determined that the source domain model cannot be directly
applied to a new target domain, necessitating even a small amount of domain-specific data
for optimal model performance. The most cost-effective approach to building the model
was found to be the fine-tuning-based transfer learning technique (Model Type II), which
uses around 300–500 training data (about 3–5% of the source model data) to train the model
with pre-trained weights in the target domain. However, the newly trained model in the
target domain exhibited a performance degradation known as catastrophic forgetting when
tested on the source domain. When training with mixed source and target data (Model
Type III), the model could prevent the catastrophic forgetting issue, but Model Type II
remained the most cost-effective option. These findings indicate that additional research,
such as continuous learning, incremental training, and lifelong learning, is necessary
to prevent catastrophic forgetting while training models in multiple domains without
source data.

While this study can serve as a useful benchmark for related fields, it still has several
limitations. First, the benchmark did not take into account different categories of TCD
objects, second, it was designed for practitioners working with limited data and therefore
did not take into account different dataset sizes, and finally, it did not take into account
the use of multiple source domains. As an initial investigation in this area, we have
plans to improve the developed model by applying statistical methodologies such as
bootstrapping to improve sample quantification and produce more statistically robust
results. This approach will allow future research to reduce reliance on heuristics and
increase the number of experiments, ultimately leading to more meaningful results. The
developed model will also be compared quantitatively and qualitatively to TCD models
using recently published algorithms.
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