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Abstract: Profiting from the powerful feature extraction and representation capabilities of deep
learning (DL), aerial image semantic segmentation based on deep neural networks (DNNs) has
achieved remarkable success in recent years. Nevertheless, the security and robustness of DNNs
deserve attention when dealing with safety-critical earth observation tasks. As a typical attack pattern
in adversarial machine learning (AML), backdoor attacks intend to embed hidden triggers in DNNs
by poisoning training data. The attacked DNNs behave normally on benign samples, but when the
hidden trigger is activated, its prediction is modified to a specified target label. In this article, we
systematically assess the threat of backdoor attacks to aerial image semantic segmentation tasks. To
defend against backdoor attacks and maintain better semantic segmentation accuracy, we construct a
novel robust generative adversarial network (RFGAN). Motivated by the sensitivity of human visual
systems to global and edge information in images, RFGAN designs the robust global feature extractor
(RobGF) and the robust edge feature extractor (RobEF) that force DNNs to learn global and edge
features. Then, RFGAN uses robust global and edge features as guidance to obtain benign samples
by the constructed generator, and the discriminator to obtain semantic segmentation results. Our
method is the first attempt to address the backdoor threat to aerial image semantic segmentation
by constructing the robust DNNs model architecture. Extensive experiments on real-world scenes
aerial image benchmark datasets demonstrate that the constructed RFGAN can effectively defend
against backdoor attacks and achieve better semantic segmentation results compared with the existing
state-of-the-art methods.

Keywords: aerial images; semantic segmentation; deep neural networks (DNNs); adversarial
machine learning (AML); backdoor attack; robust feature extraction

1. Introduction

With the development of satellite and airborne aerial sensors in recent years, the amount
of earth observation data has shown explosive growth [1]. The advantages of deep neural
networks (DNNs) in feature extraction and representation have made it widely used in
remote sensing (RS) data mining [2,3]. As one of the basic tasks of RS applications, aerial
image semantic segmentation plays an essential role in urban planning [4], disaster as-
sessment [5], and military surveillance [6]. Although numerous efforts have been made
in existing studies to construct DNNs models with optimal performance for aerial image
semantic segmentation tasks in different scenarios [7]. Nevertheless, the superior perfor-
mance of these methods comes with the drawbacks of introducing new vulnerabilities and
security risks, which must be addressed considering that most of the earth observation
missions in the RS and aerial fields are safety-critical [8].
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Currently, studies on safety-related issues in DNNs focus on adversarial examples
(AEs) [9], misleading DNNs models to produce false prediction results by carefully de-
signed adversarial noise. For the RS community, the topic of artificial intelligence (AI)
security has also received extensive attention. Czaja et al. [10] reveal the threat AEs posed
to DNNs-based satellite image classifiers, demonstrating that the optimal-performance
classifier can be misled by adding human-imperceptible adversarial noise. Chen et al. [11]
validated the transferability of AEs in RS image recognition and provided possible ad-
versarial defense strategies. Ai et al. [12] demonstrated the real existence of AEs in RS
images and illustrated that the phenomenon is caused by the inconsistent feature space
distribution. Bai et al. proposed [13] the first targeted attack method for RS image classifier,
and used the feature space difference information to improve the attack success rate. In
addition to the image classification task, the related adversarial examples for object de-
tection and semantic segmentation of RS images have also made progress. Lu et al. [14]
constructed the scale-adaptive adversarial patch attack for aircraft object detection in RS
images, which can adaptively add adversarial patch to achieve the object stealth effect.
Zhang et al. [15] designed the physically achievable AEs generation framework to deceive
the RS object detector. Xu et al. [16] first analyzed the threat posed by AEs to the RS image
semantic segmentation and constructed an universal adversarial perturbation generation
strategy. Wang et al. [17] systematically evaluated the negative impact of AE attacks on
existing semantic segmentation networks and designed a robust aerial image semantic
segmentation framework. In summary, all of the above-mentioned studies focus on the AE
attacks in the RS field, while other security issues, such as backdoor attacks [18], member
inference [19], model stealing [20], and other AI security threats still deserve our attention.

Different from the AE attacks that assume that adversaries can only perform attacks
in the model inference phase [9], recent studies have further explored the possibility of
conducting attacks in the model training process [21]. Such attacks are called backdoor
attacks [22] or Trojan attacks [23]. The backdoor attack aims to inject backdoor triggers
with specific labels into the training process of the attacked model, so that the target model
obtains normal prediction results when facing benign samples in the inference phase. In
contrast, its prediction results may be maliciously modified when confronting poisoned
samples with backdoor triggers. The emergence of backdoor attacks significantly boosts
the security risk level of DNNs models [24]. For the RS community, backdoor attacks
for scene classification tasks have received some attention. Brewer et al. [25] introduced
backdoor attacks in satellite image scene classification for the first time. The experimental
results show that the classifier performance can be significantly damaged by constructing
simple backdoor triggers. Dräger et al. [26] constructed a backdoor attack method based
on wavelet transform theory and verified the transferability of backdoor attack for RS
image classification. However, the threat of backdoor attacks on aerial image semantic
segmentation has yet to receive extensive attention. In Figure 1, we illustrate the impact of
backdoor attack on aerial image semantic segmentation. It can be seen from Figure 1 that
we can significantly destroy the semantic segmentation model with better interpretation
performance by using the simple backdoor trigger.
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Figure 1. Illustration of the backdoor attacks on the aerial image semantic segmentation. While the
difference between the benign and poisoned samples may be imperceptible for human observers, such
poisoned samples contain stealthy triggers (WABA [26]) which can make state-of-the-art semantic
segmentation network (DeepLabV3 [27]) produce false predictions.

Existing studies have shown that the use of robust features [28–31] (e.g., global fea-
tures, semantic features, shape features, etc.) can effectively enhance the robustness of
DNNs models. In this article, to address the threat posed by backdoor attacks to aerial
image semantic segmentation, inspired by robust feature learning strategies, we attempt
to construct carefully designed robust feature extractors to defend against backdoor at-
tacks. In particular, we propose a robust feature-guided generative adversarial network
(RFGAN). Based on the robust attributes of global and edge features, RFGAN first uses
the carefully designed robust global feature extractor (RobGF) and robust edge feature
extractor (RobEF) to obtain robust feature information. Then, guided by the obtained robust
features, the generator model generates benign samples without backdoor triggers, and the
discriminator model obtains accurate aerial image semantic segmentation results. Overall,
the constructed RFGAN resists backdoor attacks in aerial image semantic segmentation
from the perspective of DNNs model structure design. The contributions of this study are
summarized as follows.

• To the best of our knowledge, we are the first to introduce the concept of backdoor
attack into aerial image semantic segmentation. Our research comprehensively reveals
the significance of the resistibility and robustness of DNNs models when addressing
the safety-critical airborne earth observation tasks.

• We comprehensively analyze and summarize the characteristics of backdoor attacks
in aerial images, and propose a robust feature guided generative adversarial network
(RFGAN) against backdoor attacks. The constructed RFGAN can filter backdoor
triggers by extracting different robust feature information.

• Based on the robust attributes of global and edge features, we construct robust global
feature extractor (RobGF) and robust edge feature extractor (RobEF), respectively. In
addition, the generative adversarial network (GAN) framework is used to generate
benign samples and obtain semantic segmentation results.

• To verify the effectiveness and feasibility of the proposed defense framework, the exten-
sive experiments are conducted on real-world aerial image datasets. The experimental
results show the proposed method can against backdoor attacks while maintaining
high semantic segmentation precision.

The rest of this article is organized as follows. In Section 2, the related works are
reviewed. Section 3 describes the proposed RFGAN framework. Section 4 presents the
experimental results and analysis. The discussion and conclusion are summarized in
Sections 5 and 6.
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2. Related Works

In this section, we briefly review the existing backdoor attack and defense methods,
and present the basic concepts and definitions.

2.1. Backdoor Attack

As a new security threat against DNNs model, backdoor attacks commonly appear
during the model training process. The purpose of backdoor attacks it to mislead the target
model to produce false prediction results under specific trigger conditions. Gu et al. [32]
proposed the first backdoor attack method BadNet, which uses benign samples and poi-
soned samples to jointly train the DNNs model, and the attacker maliciously assigns the
labels of the poisoned samples to the specified category. To improve the attack concealment,
Chen et al. [22] designed a blended injection strategy to achieve the escape effect by mixing
backdoor triggers with benign samples, which effectively reduces the probability of the
trigger being detected. To enhance the attack intensity, Shafahi et al. [33] constructed a
clean-label attack that preserves the label of the poisoned sample so that the maliciously
tampered sample is consistent with the feature information of benign sample, but produces
the label reversal effect when the attack is triggered. To extend the backdoor attack to the
semantic segmentation task, Li et al. [34] constructed the first hidden backdoor attack for
the semantic segmentation model, and realized the targeted attack behavior by modifying
the specific pixel category. Chan et al. [35] systematically analyzed the security of backdoor
attacks on the object detection model, and constructed a backdoor attack strategy to achieve
object stealth and misclassification. In addition, backdoor attacks have also received atten-
tion for other DNNs-based tasks, such as natural language processing (NLP) [36], malware
detection [37], and speaker recognition [38].

2.2. Backdoor Defense

With the continuous emergence of different backdoor attack methods, the correspond-
ing backdoor defense strategies have also developed rapidly. The existing backdoor defense
methods can be classified as backdoor detection and data preprocessing. For the detection-
based backdoor defense, Tran et al. [39] identified the backdoor trigger by comparing
the spectral difference between poisoned and benign samples. Chan et al. [40] used the
gradient information of the trigger pattern as the initial clustering center, and used the
clustering algorithm to identify benign and poisoned samples. Peri et al. [41] constructed
deep clustering model to detect backdoor attacks, which can detect backdoor triggers with
hidden attributes. Another detection method is to identify the poisoning model, such
as Liu et al. [42], who realized backdoor detection by counting the activation difference
information of neurons between benign and poisoned samples. Wang et al. [43] proposed
a trigger detection framework based on discrete feature analysis, which determines the
backdoor attack by analyzing the feature distribution between trigger and original image.
For the defense method based on data preprocessing, Liu et al. [44] first used autoencoders
as preprocessors to filter poisoned samples. Doan et al. [45] used the GAN framework to
restore poisoned samples with backdoor triggers. Based on the sensitivity of static triggers
to contour and position factors, Li et al. [46] used spatial transformation preprocessing to
suppress the activation of backdoor triggers. In summary, the development of backdoor
attacks has forced continued advances in corresponding backdoor defense techniques.

2.3. Preliminary

Semantic Segmentation: LetDclean = {xi, yi}
N
i=1 denotes the benign sample dataset, where

xi ∈ X = {0, 1, ..., 255}C×W×H denotes the single image, yi ∈ Y = {0, 1, ..., K}W×H is the
pixel-level annotation information corresponding to xi, and K denotes the number of object
categories contained in the benign sample dataset. Taking the CNNs-based semantic seg-
mentation method with end-to-end supervised learning manner as an example, it intended
to learn a semantic segmentation model f with optimal parameter θ, i.e., fθ : X → Y ,
by minθ ∑N

i=1 L( fθ(xi), yi) where L(·) denotes the loss function.
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Backdoor Attacks: The existing backdoor includes two main processes: (1) generate the
dataset Dtrigger with backdoor trigger; (2) inject Dtrigger during model training. The first
stage of the backdoor attack is the core stage, and the construction of Human imperceptible
backdoor trigger has been extensively studied. In addition, the target labels of existing
attack methods are sample-independent, i.e., all poisoned samples are given the same
label as the target. Specifically, let Dtrigger denotes the poisoned sample dataset with the
backdoor trigger, and Dclean denotes the benign sample dataset, both of which are subsets

of dataset D. Dtrigger = Dmodi f ied ∪Dclean, where γ =
|Dmodi f ied|
|D| denotes the poisoning rate,

Dmodi f ied = {(x′, yt) | x′ = G(x), (x, y) ∈ D\Dclean}, yt is the target label, and G : X → X
is an attacker-specified poisoned image generator. For specific attack methods, as men-
tioned in Ref. [22], G(x) = (1 − λ) ⊗ x + λ ⊗ t, where λ ∈ [0, 1]C×H×W indicates the
visibility-related hyperparameter, and t ∈ X is a pre-defined trigger pattern.
Threat model: Considering the practical application scenarios of aerial image semantic seg-
mentation, we assume that attackers can arbitrarily modify the training dataset, but cannot
access or destroy the training process and architecture parameters of the semantic segmen-
tation model, and have no information about the inference prediction phase. The scenario
assumed we conducted is to follow Ref. [18], i.e., this is a common setting for backdoor
attackers, which makes the attack can happen in many real-world scenarios.
Attacker Goals: The goal of the existing backdoor attack methods can be summarized as
generating hidden backdoor triggers and maximizing the attack effect, i.e., effectiveness
and stealthiness. Specifically, the effectiveness requires that pixels of objects with the source
class (i.e., the attacker-specified class for misclassifying) will be predicted as the target
class when the trigger appears. The stealthiness requires that (1) the trigger is unobtrusive,
(2) the attacked model behaves normally on benign samples, and (3) the performance on
pixels with non-source classes in attacked samples will not be significantly reduced.

3. Methodology

The overall framework of RFGAN is shown in Figure 2, which consists of robust global
feature extractor (RobGF), robust edge feature extractor (RobEF), benign sample generator,
and discriminator. Specifically, RFGAN first uses the convolution operation to extract
feature of sample xi with backdoor trigger to obtain the initial feature information A0;
secondly, RobGF and RobEF are used to extract robust global feature Arg and robust edge
feature Are; thirdly, guided by robust global and edge features, the benign sample generator
G(x) is used to generate the benign sample xc without backdoor trigger; finally, the benign
samples are input into the discriminator model D(x) to obtain the aerial image semantic
segmentation results. The core components of RFGAN are RobGF and RobEF, where RobGF
uses the idea of pixel global modeling to establish correlation between different pixels in
aerial images from spatial and channel dimensions to output global features with robust
attributes. RobEF uses the Transformer framework to serialize the initial features, extract
the robust edge feature information contained in each token sequence and perform feature
fusion. In summary, RFGAN takes the acquisition of robust features contained in aerial
images as the basic idea, and constructs the robust DNNs model to against the backdoor
attack behavior faced by aerial image semantic segmentation.

3.1. Robust Global Feature Extractor

Since obtaining global context information requires establishing the correlation be-
tween a given pixel and all pixels, the prediction of this pixel will be affected by other
related pixels [47]. In this case, if the backdoor attack assigns a mistaken label to the pixel,
the error loss at that pixel will be passed back to all other relevant pixels in the form of
backward propagation. Therefore, the total loss at this pixel will be shared by all other
related pixels, so attacks on global features may require a higher level of perturbation.
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Figure 2. Overall framework of RFGAN against backdoor attacks. RFGAN directly outputs the
robust global feature Arg and robust edge feature Are obtained by RobGF and RobEF to the generator;
while generator G(x) uses the robust feature map to reconstruct a new benign sample x(i) for
semantic segmentation.

To obtain the global context feature information with robust attributes in aerial im-
ages, we construct a robust global feature extractor (RobGF), and the structure is shown
in Figure 3. RobGF consists of the channel-spatial attention mechanism (CSAM) and the
efficient non-local attention mechanism (ENLAM), which suppresses adversarial noise
interference by fully obtaining discriminative global feature information using dual atten-
tion mechanisms in both spatial and channel dimensions. In the specific global feature
extraction process, the feature map A0 obtained in the preprocessing stage is used as input,
the feature maps As and An are obtained CSAM and ENLAM, and the robust global feature
Arg is obtained by feature fusion operation. Mathematically,

Arg = K1×1(cat(FSC(A0),FNL(A0))) (1)

where FSC(·) denotes the CSAM module, FNL(·) denotes the ENLAM module, cat(·)
indicates the feature fusion function, and K1×1(·) denotes 1× 1 convolution function. Since
CSAM models global information in channel and spatial dimensions, feature A0 requires
to be transmitted in parallel on channel and spatial dimensions, and 1× 1 convolution is
used to fuse global channel and spatial features. Mathematically,

FG = K1×1(cat(Fc(A0),Fs(A0))) (2)

where FG denotes the global feature after fusion, Fc(·) denotes second-order channel atten-
tion mechanism [48], and Fs(·) indicates the spatial attention mechanism [49]. Inspired by
Ref. [50], CSAM first normalizes the covariance of feature A0 and transforms its dimension
to C× H ×W. The covariance matrix corresponding to A0 is

Σ = A0 ×
(

1
H ×W

×
(

E− 1
H ×W

×Mm,n=1

)
× AT

0

)
(3)

where E and M denote the unit matrix and the matrix with all elements of one, respectively,
and T indicates the matrix transpose operation. The eigenvalue decomposition is performed
on the semi-definite covariance matrix Σ, then the covariance normalization of feature A0
can be represented as a power operation of eigenvalues, that is,

Â0 = Σα = P ·Λα · PT (4)

where P is positive definite matrix, Λ = diag(λ1, ..., λC) denotes diagonal matrix, and λ indi-
cates positive real number. The global covariance pooling is performed on Â0 = [x1, x2, ...xC]
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to generate channel feature descriptor q = [q1, q2, ..., qC]. Taking the cth channel as an
example, the calculation is as

qc = FGCP(xc) =
1
C ∑C

i xC(i) (5)

where FGCP(·) denotes the global covariance pooling operation, and qc denotes the cth
channel descriptor. To obtain the correlation between channels, it is required to process the
channel descriptor dimension to obtain the attention weight map, and the calculation is as

w = ρ(WUδ(W Dq)) (6)

where WU and W D denote the channel dimension weight matrix, and δ(·) and ρ(·) denote
ReLU and Sigmoid activation functions. The channel attention weight w is used to adjust
the feature A0 to obtain the global feature information of the channel dimension, that is,

ĝc = wc ⊗ gc (7)

where wc and gc denote the scale factor and feature map of the cth channel, and ⊗ denotes
the element-wise product. To obtain the global feature information of the spatial dimension,
we first perform parallel global average pooling (GAP) and global max pooling (GMP) on
feature A0 ∈ RH×W×C to obtain spatial correlation. The pooling results are fused to obtain
the feature map F ∈ RH×W×2. Then, the convolution and Sigmoid function are used to
obtain spatial attention feature F̂ ∈ RH×W×1, and the spatial attention feature is used to
calibrate the spatial dimension of feature A0. The above can be defined as

F = cat(FGMP(A0),FGAP(A0)) (8)

ĝs = K1×1(F)⊗ A0 (9)

To further obtain the global correlation of different features, inspired by Ref. [51], we
construct the ENLAM module. As shown in Figure 3, for given inputs x and y, the calcula-
tion process of ENLAM is as follows.

yi = xi + αWy
1

C(x) ∑j f
(

xi, xj
)

g
(

xj
)

(10)

where i denotes the position index of the feature map, j denotes the index of all possible
positions, Wy denotes the weight matrix, and C(x) indicates the normalization factor; g(·)
denotes embedding function, f (·) denotes pair operation function, and α is the adaptive
attention weight map for training learning. The Embedded Gaussian function [52] is used
as f (·) to calculate the correlation between the ith position and other possible positions.

3.2. Robust Edge Feature Extractor

For the backdoor attack, it is significantly challenging for an attacker to make a specific
edge pixel appear/disappear by reversing the magnitude of image gradient with only
limited adversarial budget per pixel [28]. Therefore, the edge feature information has better
robust attributes. Since the Transformer [53] has more flexible ability to model unstructured
data, to solve the problem of robust edge feature extraction in aerial images, we construct a
robust edge feature extractor (RobEF) composed of six Transformer blocks.
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Figure 3. The detail structure of robust global feature extractor (RobGF).

As shown in Figure 4, RobEF first serializes the input features, and sequentially inputs
the sequence data into the encoder–decoder structure consisting of different Transformer
blocks to obtain the hierarchical edge features. The Tokens-to-Token (T2T) and Reverse-
Tokens-to-Token (RT2T) [54] in the Transformer block are used to control the sequence
length to obtain more multi-scale edge features in the encoder–decoder process. The skip
connection operation in the encoder–decoder structure can further enrich the edge feature
representation. In the final stage of edge feature extraction using RobEF, the sequence
features output by different Transformer blocks are rearranged to obtain the predicted
hierarchical edge feature information. Formally, given the input feature A0 ∈ RH×W×C, it
is first serialized as As

0 ∈ RWH×C, and the edge feature is calculated as

F1 = T1(As
0); Are = ρ(T6) (11)

F i = T i(F i−1), i = {2, 3} (12)

F i = T i[F i−1, F7−i], i = {4, 5, 6} (13)

where Are ∈ RH×W×C denotes the edge feature extraction result of sequence reconstruction,
ρ denotes the Sigmoid function, T i indicates the ith Transformer block, and [·] is the feature
superposition function. In addition, we use the hierarchical learning strategy to guide
the deep Transformer block (i = {3, 4, 5, 6}) to extract salient edge feature information.
The boundary extraction of different levels is calculated as

Bi = σ(Li(F i)) (14)

where Bi ∈ RHi×Wi×1 is the boundary feature obtained by the corresponding ith Trans-
former block; Li denotes the linear mapping function, which maps the embedded channel
dimension to a single channel; F i denotes the feature information extracted from the cor-
responding Transformer block. As shown in Figure 4, for different levels of Transformer
blocks, it is composed of multi-head attention mechanism and self-attention mechanism.
The multi-head attention is a typical style of self-attention, which aims to better obtain the
correlation between features. The self-attention mechanism is calculated as

Q = FW Q; K = FWK; V = FWV (15)

FSA(F) = So f tmax
(

QKT
√

dk

)
V (16)
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where Q, K, and V denote the calculation results of using different mapping functions for
input sequence F ∈ Rl×d by self-attention FSA(·), respectively; W Q, WK, and WV denote
the learnable weight matrices, and dk is the number of feature channels K. To realize the
parallel computing of multiple attention mechanisms, the multi-head attention uses the
superposition operation to fuse the features obtained by different attention units, that is,

FMSA(F) =
[
FSA1(F),FSA2(F), ...,FSAm(F)

]
(17)

where FMSA denotes the multi-head attention mechanism, and m is the number of self-
attention mechanism. In addition, the Transformer block uses the layer normalization
function and the multi-layer perception (MLP) [55] to obtain the fused feature information.
The calculation process is as follows.

F̃ i = FMSA(FLN(F i−1)) + F i−1 (18)

F i = FMLP
(
FLN

(
F̃ i
))

+ F̃ i (19)

where FLN denotes the layer normalization function, and F i ∈ Rli×di indicates the hierar-
chical feature corresponding to the ith Transformer block. To reduce the loss of edge feature
information, we introduce T2T and RT2T operations in RobEF. Specifically, given the input
sequence of T2T as F ∈ Rl×d, the feature sequence is first reconstructed as I ∈ Rh×w×d, then
set the k× k sliding window with stride s to splice the elements in each sliding window of
the feature sequence I. Moreover, the sliding window operation is traversed on the feature
sequence I to generate a new feature sequence Fr ∈ Rlr×dk2

, and the sequence length lr is
calculated as follows.

lr = hrwr = b
h + 2p− k

k− s
+ 1cbw + 2p− k

k− s
+ 1c (20)

where b·c denotes the down-integer function, and p indicates the filling size beyond the
boundary. For the RT2T operation, it increases the feature sequence length by splitting
and sorting the channel dimensions to provide smooth upsampling calculation for the
encoder–decoder process. Given F

′
r ∈ Rlr×dr is the input feature sequence of RT2T, where

dr is the number of output sequence channels of the Transformer block, and lr is the length
of feature sequence. The number of channels of F

′
r is first increased to drk2 by linear

mapping and reconstructed as feature I
′
r ∈ Rhr×wr×drk2

. Then, the same sliding window
operation as T2T is used to expand each element within feature I

′
r in the channel dimension

to the corresponding k2 positions within the window to obtain feature Io ∈ Rho×wo×dr .
Furthermore, feature Io is reconstructed into feature sequence Fo ∈ Rlo×dr , where lo = howo.
The calculation of ho and wo is as follows.

ho = (hr − 1)(k− s)− 2p + k (21)

wo = (wr − 1)(k− s)− 2p + k (22)

The RT2T uses an accumulation strategy, which effectively avoids the loss of overlap-
ping edge feature information by accumulating the values of feature overlap positions.

3.3. Benign Sample Generator

The purpose of constructing the benign sample generator is to use the obtained
robust global features and robust edge features to generate aerial images without backdoor
triggers. Inspired by CycleGAN [56], we construct the benign sample generator model
with encoder–decoder structure.
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Figure 4. The detail structure of robust edge feature extractor (RobEF).

As shown in Figure 5, the generator model consists of encoder, decoder, and converter.
The encoder uses multiple non-linear mapping units to mine multi-scale feature informa-
tion, the converter consists of gated convolution [57] and residual blocks [58], and the
decoder uses deconvolution to restore the feature map resolution. In addition, the skip
connection operation is introduced into the encoder and decoder structure to enhance
the semantic representation of robust robust edge and global features. The non-linear
mapping unit in the encoder structure includes convolution, batch normalization (BN),
and activation functions. The use of non-linear mapping units to construct encoders can
enhance the feature extraction ability of the model and reduce feature information redun-
dancy. Formally, assume that gF(x) is the non-linear mapping unit, for the input feature x,
the calculation is as

gF j(x) = max
{

0, BNαj ,βj

[
W j ∗ gF j−1(x) + bj

]}
, 0 < j 6 2 (23)

where αj and βj denote batch normalization reconstruction parameters, W j denotes weight
parameter matrix, ∗ denotes convolution operation, and bj indicates bias vector. For the
skip connection operation of the encoder–decoder structure, let G0(x) = dim is the input
information of the generator and Gi(x) is the output of the encoder, the calculation is
defined as

Fskip(x) = gF i,2[gF i,1(Gi−1(x))] (24)

Gi(x) = Fp_ max

(
Fskip(x)

)
, 0 < i 6 3 (25)

where Fskip(·) denotes skip connection operation, and Fp_ max(·) denotes max pooling
function. For the decoder structure, the feature map output from the converter requires
to be reconstruction before the deconvolution operation, then fused with the feature map
transmitted by the skip connection, and the specific calculation is as

Fup(x) = cat
(
Fresize(x),Fskip(x)

)
(26)

Gi(x) = gF i,2{gF i,1[Fdeconv(Gi−1(x))]}, 4 < i 6 7 (27)

G(dim) = g_out(x) = G8(x) =
1

1 + e−[W8∗G7(x)+b8]
(28)

where FUP(·) denotes upsampling function, Fdeconv(·) denotes the deconvolution opera-
tion, and the last layer output of the decoder is shown in Equation (28). To better obtain the
effective pixel position information from the multi-scale features obtained by the encoder,
we introduce gated convolution in the converter, which is defined as follows.

Fgated(y, x) = ∑ ∑ W g · I (29)
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F f eature(y, x) = ∑ ∑ W f · I (30)

Oy,x = δ
(
F f eature(y, x)

)
� ρ
(
Fgated(y, x)

)
(31)

where δ(·) and ρ(·) denote ReLU and Sigmoid activation functions, and W g and W f denote
different linear convolution filters. In the specific pixel effective position selection process,
gated convolution, and Sigmoid function are used for dynamic feature selection, feature
convolution and ReLU activation function are used for dynamic feature extraction.

Figure 5. The detail structure of begine sample generator.

3.4. Discriminator

The constructed discriminator is used for semantic segmentation of aerial images
output by the benign sample generator. Due to the high real-time requirement of aerial
image semantic segmentation, we construct a lightweight and faster semantic segmentation
model LF-UNet as the discriminator framework.

Similar to the UNet [59] structure, LF-UNet considers the complex characteristics of
aerial image scene transformation. It only uses a small amount of downsampling operation
in the encoder stage to retain the important feature information of the ground target
and reduce the computational parameters and model complexity. Since the feature map
after the downsampling operation contains rich semantic feature information, it is input
into the constructed atrous pyramid pooling module (ASPP) [60], and multiple feature
maps containing multi-scale receptive fields are generated by using atrous convolution
with different dilated coefficients. The use of dilated convolution operations can not
only effectively obtain multi-scale feature information but also reduce the calculation
parameters of traditional convolution operations. In each upsampling stage of the decoder,
we reuse the low-level semantic information by fusing the feature maps of the encoder,
and embed a lightweight efficient channel attention mechanism (ECA) in each upsampling
layer to enhance the extraction of valuable feature information and suppress redundant
feature interference. To capture the context information in the aerial image and reduce the
computational complexity, we use the ASPP module for each downsampling stage in the
encoder. The ASPP module consists of 3× 3 convolution, 1× 1 convolution, and global
average pooling. Formally, the input image is downsampled to obtain the feature map
x(i) containing rich semantic information, where i denotes the pixels in the feature map.
The specific calculation process of ASPP is as follows.

yi(i) = ∑K
k=1 x(i + ri × k)ω(k), i = 1, 2, 3 (32)

y4(i) = ∑K
k=1 x(i + k)ω(k) (33)
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where r denotes the dilated coefficient, and y4 is the feature map obtained by 1× 1 convolu-
tion. Since the use of large dilated coefficient will lose local feature information, and smaller
dilated coefficient will limit the receptive field range, we set the dilated coefficient as
r1 = 12, r2 = 24, and r3 = 36. To establish the global correlation of different pixels,
the global average pooling is performed on feature x(i), and the results are input into
1× 1 convolution to reduce the number of feature channels, and the upsampling operation
is used to restore the feature map to the same size as feature x(i) to obtain feature y5. Finally,
ASPP uses cat(·) function to fuse different features, and the calculation is as follows.

FASPP = cat
(⋃5

k=1
yk(i)

)
(34)

To improve the accuracy of semantic segmentation and reduce the model computa-
tional complexity, we embed the ECA module in the decoder. As shown in Figure 6, ECA
first performs the global average pooling on the input feature map, i.e., the pixel average
value of each feature channel is calculated to obtain the global features on the channel
dimension. Then, the feature map g(u) is calculated using one-dimensional convolution
with the size of 1× k to obtain the correlation between different channels to obtain the
appropriate weight distribution of different channels, and the Sigmoid function is used to
normalize the weights. The specific calculation is as follows.

g(u) = Fp_avg(u) (35)

ω = ρ
(
F k

d (g(u))
)

(36)

where Fd(·) denotes one-dimensional convolution, and k indicates convolution kernel size.
The obtained weight ω is multiplied with each channel of feature u(i) to output the final
feature map, i.e., Z = ω ⊗ u, where ω denotes the channel weight obtained by learning,
and Z is the attention weight feature map.

Figure 6. The detail structure of discriminator.

3.5. Loss Function

To improve the quality of the generated aerial image, we introduce the gradient
similarity loss function Lgs into the objective function of pix2pix [61], and measure the
similarity between the generated image and the original image from the brightness, contrast,
and gradient structure. We use the Sobel operator [62], including vertical and horizontal
edge operators, to calculate the gradient of the original image and the generated image.
The specific gradient amplitude calculation is defined as follows,

Gx(i, j) =
∂x(i, j)

∂i
+

∂x(i, j)
∂j

(37)
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where ∂x(i, j)/∂i and ∂x(i, j)/∂i are the gradient components obtained by using the hori-
zontal and vertical edge operators, respectively; i and j denotes the pixels in the horizontal
and vertical directions of the image. The gradient similarity is defined as

V(x, g) = [l(x, g)]α[c(x, g)]β[e(x, g)]γ (38)

l(x, g) =
2ux + ug + c1

u2
x + u2

g + c1
(39)

c(x, g) =
2σxσg + c2

σ2
x + σ2

g + c2
(40)

e(x, g) =
2 ∑j ∑i Gx(i, j)Gg(i, j) + c3

∑j ∑i[Gx(i, j)]2 + ∑j ∑i
[
Gg(i, j)

]2
+ c3

(41)

where l(x, g) denotes the brightness function, c(x, g) denotes the contrast function, and
e(x, g) indicates the gradient structure function; ux and ug denote the average pixel value;
σx and σg represent the standard deviation of the pixel value; c1, c2, and c3 denote constants
used to avoid zero denominator; α, β, and γ indicate constants used to adjust the importance
of each component. According to Equations (38)–(41), the gradient similarity loss function
is defined as follows,

LGS(H) = 1− 1
N ∑H

H=1 V(H) (42)

where N denotes the number of pixels, and H denotes the intermediate pixel value of the
pixel block. For the discriminator used to achieve the semantic segmentation task, we use
the cross-entropy loss function to optimize it, which is defined as follows,

LCE = −∑C
c=1 yc log(pc) (43)

LRFGAN = LcGAN(G, D) + λ1LL1(G) + λ2LGS(G) + LCE (44)

where C denotes the number of target categories, yc denotes the indicator variable (0 or 1),
and pc indicates the probability that the predicted result belongs to the cth category.
The overall loss function of RFGAN is shown in Equation (44), where LcGAN denotes
the loss function of CGAN [63], G and D are used to calculate the loss of encoder and
decoder structures in the proposed generator framework, respectively. The LL1 denotes
the L1 metric loss, and λ1 and λ2 indicate weight coefficients, where we set λ1 = 0.4 and
λ2 = 0.6.

4. Experiments and Analysis

In this section, we use four backdoor attack methods to attack six aerial or RS im-
age semantic segmentation networks trained on UAVid [64] and Semantic Drone [65]
datasets. Specifically, in Section 4.1, we introduce the benchmark datasets. Section 4.2
provides detailed parameter settings for different backdoor attacks. Section 4.3 presents
the experimental details. In Sections 4.4 and 4.5, we give the quantitative comparison and
visual results on the defense effectiveness for backdoor attacks. Finally, the contribution of
different robust features to improve the defense effect is analyzed in Section 4.6.

4.1. Dataset Information

To validate the effectiveness and feasibility of the proposed method, we conduct
experiments on the aerial image benchmark datasets UAVid (https://uavid.nl/ (accessed
on 15 July 2020)) and Semantic Drone (http://dronedataset.icg.tugraz.at (accessed on
31 May 2020)) collected from real scenes.
UAVid: This dataset is constructed for aerial image semantic segmentation in complex
urban scenes, which contains both static and dynamic objects. The UAVid uses the low-
altitude aircraft with flight altitude of around 50 m to collect data and records the aerial

https://uavid.nl/
http://dronedataset.icg.tugraz.at
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image in 4K resolution video mode, and the obtained image resolution is 4096 × 2160 or
3840× 2160. To ensure scenario realism, UAVid contains multiple object categories common
to urban streets, such as building, road, tree, low-vegetation, static-car, moving-car, human,
and background. The pixel proportion statistics of different object categories and some
sample images are shown in Figure 7. For specific experimental applications, we use
252 images from the UAVid dataset as the training set, 84 images as validation set, and the
remaining 84 images as testing set. In addition, limited by the computational resources
of hardware devices, we scale the image to 1024 × 512 pixels in the training process,
and maintain the original image size in the inference phase.

(a) Pixel proportion statistical of different ground objects

(b) Sample images and corresponding ground truth

Figure 7. Detailed analysis of the UAVid [64] and Semantic Drone [65] datasets.

Semantic Drone: The purpose of constructing this dataset is to improve the autonomous
flying capability of drones in urban and suburban scenarios. Semantic Drone performs
data collection at distances of around 5 to 30 m from the ground, and uses high-resolution
camera in bird’s-eye view mode to capture images with the resolution of 6000 × 4000.
The dataset contains 18 object categories, including tree, rocks, dog, fence, grass, water,
bicycle, fence-pole, vegetation, dirt, pool, door, gravel, wall, obstacle, car, window, and
paved-area. It can be seen from Figure 7 that the data scene contained in Semantic Drone
is more complex and has higher authenticity. The dataset provides 400 high-resolution
aerial images, of which we use 240 images for training, 80 images for validation, and the
remaining 80 images for testing. Similar to the preprocessing of UAVid dataset, to retain
image details, we scale the original image resolution to 2048 × 1024 in the training phase,
and still use the original resolution in the inference process.
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4.2. Implementation Details and Evaluation Metrics

Application Details: We use Python 3.7 and Pytorch 1.10 as the programming framework
to implement the proposed RFGAN model. The main hardware devices used in the experi-
ment are i9-12900T CPU, NVIDIA GTX Geforce 3090 GPU with 24 GB memory, and ubuntu
18.04 operating system. In the model training phase, stochastic gradient descent (SGD)
with the momentum as 0.9 and weight decay as 0.0001 is used as the optimizer, the training
epoches are set as 1000, the batch size is set as 16, and random inversion and size cropping
are used for data augmentation. The initial learning rate is set as 0.005 and the poly learning
strategy is employed to automatically adjust the learning rate. In the testing process, we
consider the raw outputs of each model as the evaluation results.
Evaluation Metrics: Based on the evaluation metrics pixel accuracy (PA) and intersection-
over-union (IoU) commonly in semantic segmentation tasks, we adopt five metrics that
facilitate quantitative comparison in backdoor attack scenarios, including benign mean
intersection-over-union (mIoU-B), benign pixel accuracy (PA-B), attacked mean intersection-
over-union (mIoU-A), attacked pixel accuracy (PA-A), and attack success rate (ASR).
For the calculation of PA and IoU, we define PA = (tp + tn)/(tp + tn + f t + f n) and
IoU = |Pi ∩ Gi|/|Pi ∪ Gi|, where tp, f p, f n, and tn indicate true positives, false positives,
false negatives, and true negatives, respectively; Pi and Gi denote the set of prediction pixels
and ground truth for the ith class. The mIoU-B and PA-B evaluate the model performance
on the benign testing set samples, while the mIoU-A and PA-A assess performance on the
poisoned testing set samples. The ASR is defined as the percentage of misclassified pixels
on the poisoned images.

4.3. Backdoor Attack Settings

To validate the defense abilities of the model against backdoor attacks, we use four
backdoor attack strategies, including BadNets [32], hidden backdoor attack (HBA) [34],
WaNet [66], and wavelet transform-based attack (WABA) [26] to conduct backdoor attacks
for aerial image semantic segmentation tasks. According to the attack settings of Bad-
Nets [32], we define two main attack scenarios, all-to-one attack and one-to-one attack,
to validate the defense capabilities of the proposed framework. For the all-to-one attack,
the pixels of all target categories in the dataset will be labeled as specified target categories;
for the one-to-one attack, only one target category is labeled as the specified category.
For comparative analysis, we execute BadNets and HBA attacks on the UAVid dataset,
and WaNet and WABA attacks on the Semantic Drone dataset. Specifically, for BadNets [32]
attack, we set the target label “car” in the UAVid dataset as the attacker-specified target
class, use the 8 × 8 pixel patch as the trigger, and set the poisoning rate γ = 20%; for a
HBA [34] attack, set the target label “human” as the specified target class, and set the poi-
soning rate γ = 30%; for WaNet [66] attack, the label “grass” is set as the attacker-specified
target class, and the poisoning rate γ of all-to-one and one-to-one attacks is set as 25%
and 20%, respectively; for WABA [26] attack, the 32 × 32 pixel patch is used as the trigger,
the target label “rocks” is set as the specified target category, and set the poisoning rate
γ = 20%. Note that all attack methods are implemented using the source code provided by
the author.

4.4. Defense Performance Analysis on UAVid Dataset

Table 1 presents the attack quantization results of different aerial image semantic
segmentation networks by BadNets [32] and HBA [34] on the UAVid dataset. In addition
to the proposed RFGAN, we use five state-of-the-art CNNs-based semantic segmentation
models, LANet [67], AFNet [68], MANet [69], SSAtNet [70], and HFGNet [71], to evaluate
the defense performance of different models against backdoor attacks. From Figure 8a, it
can be seen that on benign samples without backdoor attacks, all semantic segmentation
models, including the proposed RFGAN, obtain ideal semantic segmentation accuracy,
while the semantic segmentation accuracy of these models significantly decreases when
performing backdoor attacks. Table 1 provides specific quantitative comparison results,
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where “benign” represents the model trained on benign samples without backdoor attacks.
Figure 9 shows the semantic segmentation visualization results of different models when
encountering backdoor attacks. It can be analyzed from Figure 9 that when the backdoor
attack is triggered, all methods except the proposed RFGAN have different degrees of pixel
misclassification phenomenon. Next, we give some detailed analysis of the performance of
different semantic segmentation networks under backdoor attacks.
(1) LANet [67]: The network uses patch attention mechanism and attention embedding
module to enhance the feature representation of CNNs model for context and semantic
information. From Table 1, it can be seen that LANet trained on benign samples can
achieve relatively better accuracy, but its mIoU-A and PA-A only reach 22.71% and 31.57%
when it suffers all-to-one attacks of BadNets, while under the one-to-one attack mode, its
mIoU-A and PA-A are only 20.16% and 28.41%. More intuitively, as shown in Figure 9,
when the BadNets attack is triggered, LANet misclassifies the object category “tree” as
“low-vegetation”. The experimental results show that the context or semantic information
commonly used in semantic segmentation cannot resist the threat of backdoor attacks.
(2) AFNet [68]: The network constructs adaptive fusion strategy to achieve fine-grained
fusion of discriminative features. Although AFNet extracts some robust features that can
defend against backdoor attacks, it does not construct the specific feature extractor; there-
fore, it is heavily affected by backdoor attacks. As shown in Table 1, the mIoU-B of AFNet
on benign samples reaches around 68%, while its mIoU-A is only 9.86% in all-to-one mode
under HBA attack, and its mIoU-A is only 8.63% in one-to-one attack mode. In addition,
the ASR value in Table 1 shows that both backdoor attacks can effectively perform attacks
on AFNet. The visualization results in Figure 9 further show that AFNet cannot accurately
complete the semantic segmentation task under the backdoor attack.
(3) MANet [69]: The network uses the encoder–decoder structure commonly used in
semantic segmentation, and introduces efficient attention mechanism to achieve global
information extraction and fusion. However, the results of Table 1 show that the network is
still affected by backdoor attacks. Specifically, for the BadNets attack, MANet only obtained
the mIoU-A of 21.53% and the PA-A of 28.96% in the all-to-one mode, while under the
one-to-one attack mode, the mIoU-A and PA-A are only 18.97% and 26.14%. The results in
Figure 9 show that MANet misclassifies the object category “moving-car” as “road”, which
further explains the impact of backdoor attacks on its performance.
(4) SSAtNet [70]: The network uses multi-scale feature enhancement module to restore
fine-grained feature information. Since SSAtNet uses edge information in robust features,
so it has defensive capabilities against backdoor attacks. However, as can be seen from
Table 1, when performing HBA attacks on SSAtNet, its mIoU-A and PA-A are only 11.45%
and 17.38% under all-to-one attack mode, while mIoU-A and PA-A are 8.62% and 11.38%
under one-to-one attack mode. The visualization results in Figure 9 also illustrate that
SSAtNet has been severely affected by backdoor attacks. Therefore, simply using edge
features without fully mining other robust features cannot resist backdoor attacks.
(5) HFGNet [71]: To model the relationship between different feature information, the net-
work constructs multiple feature extraction and fusion modules to achieve accurate seman-
tic segmentation by modeling the relationship between features. However, its performance
is seriously affected when it encounters BadNets and HBA attacks. As shown in Table 1,
for the BadNets attack, HFGNet achieved the mIoU-A of 14.73% under all-to-one attack
and mIoU-A of 12.36% under one-to-one attack, which are significantly worse than the
performance on benign samples. The results further illustrate that establishing correlations
between features rather than pixels does not produce defense effect.
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Table 1. Comparison of the defense performance of different CNNs-based semantic segmentation
networks against backdoor attacks on the UAVid dataset.

Model Attack
All-to-One One-to-One

mIoU-B PA-B mIoU-A PA-A ASR mIoU-B PA-B mIoU-A PA-A ASR

LANet [67]
Benign 62.84 81.65 57.62 73.58 0 62.84 81.65 56.27 69.54 0

BadNets 32.25 64.73 22.71 31.57 52.78 29.15 58.26 20.16 28.41 63.74
HBA 26.73 58.24 12.57 18.62 48.86 22.73 31.57 9.75 16.32 71.58

AFNet [68]
Benign 68.94 86.51 60.46 78.35 0 68.94 86.51 61.75 82.36 0

BadNets 34.86 65.94 25.65 33.74 62.87 31.48 38.75 21.38 29.75 83.24
HBA 24.35 53.74 9.86 15.42 72.75 28.61 35.14 8.63 14.85 78.96

MANet [69]
Benign 72.62 87.15 63.58 79.67 0 72.62 87.15 65.73 84.45 0

BadNets 30.68 61.72 21.53 28.96 68.51 28.94 58.82 18.97 26.14 81.73
HBA 21.24 28.37 15.68 21.63 80.05 20.65 30.46 13.28 18.02 78.94

SSAtNet [70]
Benign 75.45 90.87 66.75 82.46 0 75.45 90.87 69.24 86.42 0

BadNets 41.25 71.96 19.64 25.73 82.16 39.52 66.74 17.32 22.95 84.39
HBA 23.42 31.57 11.45 17.38 78.75 20.85 28.66 8.62 11.38 79.56

HFGNet [71]
Benign 76.82 91.75 69.32 83.17 0 76.82 91.75 72.38 86.93 0

BadNets 44.85 73.67 23.76 34.05 78.92 41.58 70.96 19.75 28.57 87.97
HBA 25.92 35.61 14.73 22.98 88.26 22.13 32.45 12.36 19.52 81.65

RFGAN (ours)
Benign 79.89 95.81 77.57 92.34 0 79.89 95.81 75.64 88.12 0

BadNets 78.34 94.68 76.25 89.57 5.86 77.64 92.18 77.06 91.62 7.84
HBA 77.85 92.54 75.92 93.17 4.52 75.73 89.54 76.37 90.53 6.95
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(a) Quantitative results of BadNets and HBA attacks
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(b) Quantitative results of WaNet and WABA attacks

Figure 8. Quantitative comparison results of benign samples and different backdoor attacks on
UAVid and Semantic Drone datasets.

For the proposed RFGAN, we can see from Table 1 and Figure 9 that it can effectively
resist backdoor attacks and achieve better semantic segmentation accuracy. For example,
for HBA attacks with strong attack capabilities, RFGAN achieves mIoU-A and PA-A of
75.92% and 93.17% under all-to-one attack mode, while its mIoU-A and PA-A also reach
76.37% and 90.53% under one-to-one attack mode. The ASR in Table 1 also shows that the
success rate of BadNets and HBA attacks on RFGAN is low, which cannot cause significant
damage to the model performance. The results of Figure 9 further show that RFGAN can
correctly predict the object category of different pixels. In addition, it can be observed from
the Table 1 that our method increases mIoU-A and PA-A relative to the benign testing set
when encountering HBA and BadNet attacks. One possible explanation for the increase in
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mIoU-A and PA-A is that the backdoor attacks may have altered the feature distribution
and increases the diversity of the original dataset (similar to data augmentation), so that our
proposed RobGF and RobEF can obtain more discriminative features that are conducive to
improving the semantic segmentation accuracy.

Figure 9. Semantic segmentation visualization results of different models encountering BadNets [32]
and HBA [34] backdoor attacks.

4.5. Defense Performance Analysis on Semantic Drone Dataset

Recently, as a benefit from the global modeling capabilities of the Transformer [52]
model, it has been widely used in aerial image semantic segmentation. To further system-
atically validate the impact of backdoor attacks on the existing state-of-the-art semantic
segmentation network, we verify five Transformer-based aerial image semantic segmen-
tation models on the Semantic Drone dataset. Compared with the UAVid dataset, the Se-
mantic Drone dataset contains more ground object categories and scenarios, which can
fully evaluate the threat of a backdoor attack on semantic segmentation models. The com-
pared Transformer-based models include WiCoNet [72], CGSwin [73], TransFCN [74],
GLSANet [75], and CTMFNet [76]. As shown in Figure 8b, except for the proposed RF-
GAN, all Transformer-based methods are affected by backdoor attacks, resulting in the
significant decrease in semantic segmentation accuracy. The results in Table 2 and Figure 10
further illustrate that the Transformer cannot effectively defend against backdoor attacks.
Next, we analyze the performance of Transformer-based methods when backdoor attacks
are encountered.
(1) WiCoNet [72]: Based on the advantages of the Transformer model, the network con-
structs a Context-Transformer to obtain global features. The results in Table 2 show that
WiCoNet achieves better accuracy on benign samples without backdoor attacks. However,
when executing WaNet attack, the mIoU-A of WiCoNet in all-to-one attack mode is only
21.26%, while the mIoU-A in one-to-one attack mode is 18.57%, far less than the perfor-
mance on benign samples. The results in Figure 10 show that when the backdoor attack is
triggered, WiCoNet incorrectly predicts the category “tree” to “grass”. The experimental
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show that the Transformer model cannot effectively defend against backdoor attacks.
(2) CGSwin [73]: To solve the limited receptive field range of CNNs, the network uses a
Transformer model to enhance global feature representation. Although CGSwin can obtain
global feature that has defensive effect against backdoor attacks, the results of Table 2 show
that backdoor attacks still have serious impact on model performance. As shown in Table 2,
both WaNet and WABA attacks have impact on CGSwin, for example, when the WaNet
attack is executed, its mIoU-A and PA-A are only 23.97% and 28.54%. From Figure 10, we
can see that the backdoor attack causes CGSwin to produce serious pixel misclassification.
Therefore, simply extracting global features cannot against backdoor attacks.
(3) TransFCN [74]: The network introduces a multi-scale Transformer to mine the feature
correlation on spatial dimensions. As shown in Table 2, when the WaNet attack is executed,
the mIoU-A and PA-A of TransFCN in all-to-one attack mode are 25.17% and 31.82%, while
the mIoU-A and PA-A in one-to-one mode are only 23.72% and 28.97%. In addition, we can
see from Table 2 that the attack methods WaNet and WABA have high ASR for TransFCN.
The results of Figure 10 show that TransFCN incorrectly predicts the object category “water”
as “grass”. The experimental show that the establishment of feature correlation rather than
pixel correlation cannot produce defensive effect on backdoor attack.
(4) TransFCN [75]: The network constructs the local-global attention mechanism to en-
hance the representation for multi-scale features. As shown in Table 2, the mIoU-A and
PA-A of GLSANet on benign samples reaches 66.24% and 86.35%, while its mIoU-A and
PA-A only reach 24.35% and 29.76% when the WaNet attack is executed, and the mIoU-A
and PA-A reach 14.26% and 21.75% when encountering WABA attacks. The results of
Figure 10 show that that GLSANet fails to achieve the ideal segmentation results and can-
not classify pixels into the correct categories. The experiments show that simple extraction
and fusion of local or global features cannot defend against backdoor attacks.
(5) CTMFNet [76]: The network uses semantic information as guide to enhance the global
representation of feature information. As shown in Table 2, the mIoU-A and PA-A of
CTMFNet in WaNet attack are 30.68% and 42.97%, while the mIoU-A and PA-A in WABA
attack are only 15.97% and 22.09%. In addition, the one-to-one attack mode has greater im-
pact on CTMFNet, take the MABA for example, the mIoU-A and PA-A are only 13.25% and
19.83%, which are significantly inferior to the performance on benign samples. The results in
Figure 10 show that the backdoor attack has serious impact on CTMFNet. The experimental
results show that the use of semantic information cannot defend against backdoor attacks.

Table 2. Comparison of the defense performance of different Transformer-based semantic segmenta-
tion networks against backdoor attacks on the Semantic Drone dataset.

Model Attack
All-to-One One-to-One

mIoU-B PA-B mIoU-A PA-A ASR mIoU-B PA-B mIoU-A PA-A ASR

WiCoNet [72]
Benign 59.34 78.21 47.62 63.58 0 59.34 78.21 49.35 66.28 0
WaNet 28.41 52.35 21.26 26.73 80.14 25.17 49.32 18.57 22.48 83.75
WABA 15.37 21.46 6.24 11.58 75.38 12.63 18.75 5.79 10.64 81.26

CGSwin [73]
Benign 63.21 84.15 56.42 72.93 0 63.21 84.15 58.17 74.26 0
WaNet 30.72 55.79 23.97 28.54 78.22 27.68 52.25 21.52 26.38 78.62
WABA 18.65 25.76 8.95 16.76 69.17 17.27 22.34 6.45 12.37 73.41

TransFCN [74]
Benign 65.74 85.19 58.43 74.22 0 65.74 85.19 59.45 75.82 0
WaNet 32.34 59.64 25.17 31.82 71.34 29.38 55.29 23.72 28.97 83.96
WABA 21.78 31.25 12.18 19.83 68.54 18.52 28.74 10.25 16.58 75.37

GLSANet [75]
Benign 66.24 86.35 60.28 77.52 0 66.24 86.35 61.76 81.47 0
WaNet 35.82 65.93 24.35 29.76 59.87 32.79 61.34 21.47 26.93 62.48
WABA 25.39 38.67 14.26 21.75 62.75 22.06 34.75 12.78 18.64 68.93
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Table 2. Cont.

Model Attack
All-to-One One-to-One

mIoU-B PA-B mIoU-A PA-A ASR mIoU-B PA-B mIoU-A PA-A ASR

CTMFNet [76]
Benign 68.16 89.24 62.47 83.45 0 68.16 89.24 63.95 84.26 0
WaNet 38.79 71.28 30.68 42.97 62.95 35.15 64.94 27.56 39.81 59.38
WABA 26.82 41.24 15.97 22.09 69.72 22.34 36.82 13.25 19.83 68.54

RFGAN (ours)
Benign 77.31 92.86 76.24 90.54 0 77.31 92.86 77.89 93.64 0
WaNet 75.63 88.56 74.32 87.95 3.27 74.13 86.92 72.98 84.36 2.85
WABA 74.25 87.48 73.65 87.21 2.86 73.28 86.52 71.82 82.95 3.71

Figure 10. Semantic segmentation visualization results of different models encountering WaNet [66]
and WABA [26] backdoor attacks.

It can be seen from Table 2 and Figure 10 that the proposed RFGAN can effectively
defend against backdoor attacks and achieve better semantic segmentation accuracy. For ex-
ample, in the all-to-one mode of a WABA attack, the mIoU-A and PA-A still reach 74.32%
and 87.95%, significantly better than the Transformer-based methods. The ASR obtained
by different attacks on RFGAN in Table 2 further illustrate that the proposed method can
effectively resist the impact of backdoor attacks. In addition, the visualization results of
Figure 10 show that RFGAN can correctly predict all pixels and has better segmentation
effect on tiny objects. In summary, the experimental results on UAVid and Semantic Drone
datasets show that the proposed defense framework based on robust features can effectively
resist backdoor attacks and achieve better semantic segmentation accuracy, which will play
an essential role in security-critical earth observation tasks.

4.6. Ablation Studies

The proposed RFGAN includes robust feature extractors RobGF and RobEF. To val-
idate the function of different robust features in defense against backdoor attacks, we
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conducted ablation studies. We adopt BadNets [32] as the backdoor attack method, and set
the poisoning rate γ = 30%. In the ablation studies, we maintain the generator and discrim-
inator architecture invariant, and gradually add RobGF and RobEF to verify the defensive
performance of the robust feature extractor. The detailed results of different robust feature
extractors are shown in Table 3, where GD represents the generator and discriminator
structure. It can be seen from Table 3 that both RobGF and RobEF can significantly improve
the resistance of GD to backdoor attacks. In addition, compared with RobGF, RobEF is more
beneficial to against backdoor attacks. Take the results in the UAVid dataset for example,
in all-to-one attack mode, RobGF makes the PA-B of the model reach 62.73%, while RobEF
can increase the PA-B to 75.42%. It can be seen from the feature visualization results in
Figure 11 that the use of RobGF and RobEF can significantly suppress the influence of
poisoned samples on the model feature extraction process. For UAVid and Semantic Drone
datasets, the combination of RobGF and RobEF can achieve the best results.

Table 3. Performance contribution of robust global feature extractor and robust edge feature extractor
(report in PA). Best results are highlighted in bold.

Method
All-to-One One-to-One

GD RobGF RobEF RobGF + RobEF GD RobGF RobEF RobGF + RobEF

GD ! ! ! ! ! ! ! !

RobGF ! ! ! !

RobEF ! ! ! !

UAVid 33.82 62.73 75.42 88.75 28.97 59.34 72.58 86.75
Semantic Drone 31.56 55.65 70.38 84.61 26.14 57.06 69.53 83.42

(a) GD (b) RobGF (c) RobEF (d) RobGF+RobEF

Figure 11. Feature map visualization of different components in RFGAN under backdoor attack.

Another important issue verified by ablation studies is the impact of different levels of
poisoning rates on model performance. To this end, we use BadNets to perform different
levels of backdoor attacks on RFGAN, where the poisoning rate γ in the experiment is set as
{5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%}. The semantic segmentation accuracy
obtained by setting different poisoning rates is shown in Figure 12. It can be observed that,
as the poisoning rate increases, the PA values of all compared methods tend to decrease,
indicating that setting a higher poisoning rate can cause more serious influence on the
semantic segmentation network. In addition, compared with the state-of-the-art methods
such as HFGNet [71] and CGSwin [73], the proposed RFGAN shows the strongest resistance
to backdoor attacks on datasets UAVid and Semantic Drone under backdoor attacks with
different poisoning rates. For example, when the poisoning rate γ is set as 90%, the PA
value of existing methods is only 20% around, while the PA of RFGAN can still reach more
than 70%, further demonstrating the effectiveness of the proposed defence framework.
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(a) Evaluate backdoor attacks on UAVid dataset (b) Evaluate backdoor attacks on Semantic Drone dataset

Figure 12. The PA value obtained by different methods under the backdoor attack with different
poisoning rates γ.

5. Discussion

The experimental results of Sections 4.4 and 4.5 demonstrate the effectiveness of
the proposed RFGAN defense framework. Compared with the state-of-the-art semantic
segmentation methods, RFGAN can resist multiple backdoor attacks. The reason is the
constructed robust feature extractor RobGF and RobEF can obtain robust global features and
robust edge features that have defensive effects on backdoor attacks. For the CNNs-based
and Transformer-based methods compared, the features obtained by these methods are not
robust, although some models use global or edge features. The reason is that these methods
do not design specific robust feature extractors for backdoor attacks. Moreover, these
existing methods use some feature fusion strategies, which weakens the representation of
robust features. In Sections 3.1 and 3.2, we illustrate the reason why global features and
edge features are robust to backdoor attacks. From the ablation study results of Section 4.6,
we can observe that the introduction of robust global features and robust edge features can
significantly improve the semantic segmentation accuracy of the model under a backdoor
attack. After extracting robust features, RFGAN uses robust features as a guide, uses the
generator architecture to generate benign samples without backdoor triggers, and uses
the generated benign samples as an input of the discriminator to achieve aerial image
semantic segmentation. Specifically, in Sections 3.3 and 3.4, we describe the constructed
generator and discriminator. Although its structure is relatively simple, it can effectively
generate benign samples and achieve competitive semantic segmentation results by using
the specially designed attention mechanism.

To more comprehensively evaluate the impact of backdoor attacks on the perfor-
mance of existing aerial image semantic segmentation networks, we further executed
more backdoor attacks for experimentation, including BadNets [32], HBA [34], WaNet [66],
and WABA [26]. For all backdoor attacks, we set the poisoning rate as 30% and perform
all-to-one attack mode. The experimental results are shown in Table 4, where we can ob-
serve that the other three attack methods have stronger attack capabilities compared to the
BadNets attack. Take the results in the UAVid dataset for example, the PA value of LANet is
31.47%, while the PA value under HBA, WaNet, and WABA attacks is significantly reduced
to 19.37%, 28.97%, and 16.25%, respectively. Similar phenomena can be observed in other
compared methods. In contrast, the proposed RFGAN can still obtain the PA more than
80% in UAVid and Semantic Drone datasets when encountering different backdoor attacks,
which is significantly better than the state-of-the-art methods. In addition, from Table 4, we
can seen that the PA value obtained by the RFGAN for benign samples is still reach 85%
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around. These results show that the proposed defense framework can achieve competitive
results on both benign and poisoned samples.

Table 4. Performance comparison of different semantic segmentation networks under backdoor
attacks (report in PA). Best results are highlighted in bold.

Method LANet AFNet MANet SSAtNet HFGNet WiCoNet CGSwin TransFCN GLSANet CTMFNet RFGAN

UAVid Dataset

Benign 80.05 85.72 86.41 88.59 89.75 88.13 90.26 89.24 91.08 90.59 94.67
BadNets 31.47 33.52 28.43 25.76 34.21 35.79 32.15 36.82 34.98 33.14 85.74

HBA 19.37 16.28 22.52 17.16 21.83 22.64 21.05 24.12 25.63 23.96 92.28
WaNet 28.97 23.14 24.43 25.74 23.69 24.86 23.57 25.98 24.37 26.24 87.93
WABA 16.25 18.71 20.38 21.53 20.41 22.56 20.03 19.85 23.64 22.87 88.96

Semantic Drone Dataset

Benign 76.58 77.31 77.85 78.63 79.42 78.45 82.53 84.38 86.04 87.56 91.25
BadNets 26.75 28.63 25.71 22.36 24.98 28.97 29.65 31.28 30.46 27.75 84.21

HBA 17.32 14.57 18.95 19.06 21.42 20.64 22.73 23.75 22.96 21.37 89.73
WaNet 21.58 23.94 25.63 20.41 23.04 25.35 20.48 28.37 27.43 29.73 88.54
WABA 19.35 17.58 21.37 18.94 17.32 12.64 16.85 20.56 19.65 21.46 87.72

6. Conclusions

In this article, we study the backdoor attack problem in aerial image semantic segmen-
tation and propose an efficient defense framework based on robust feature information.
In order to validate and address the threat of backdoor attacks on aerial image seman-
tic segmentation, we first systematically evaluate the impact of four popular backdoor
attack methods on existing CNN-based and Transformer-based semantic segmentation
networks, and construct a robust feature-guided generative adversarial network (RFGAN)
to resist backdoor attacks. The constructed RFGAN consists of robust global feature extrac-
tor (RobGF), robust edge feature extractor (RobEF), generator, and discriminator. Briefly
speaking, RFGAN uses robust feature extractors RobGF and RobEF to obtain robust global
features and robust edge features, and uses the obtained robust features as a guide to
use the generator to reconstruct the aerial image with backdoor trigger, and then uses the
discriminator to achieve accurate semantic segmentation. In addition, we demonstrate
that robust features can effectively resist backdoor attacks from both theoretical analysis
and experimental verification. Extensive experiments on real-world aerial image datasets
demonstrate that the proposed defense framework can effectively resist backdoor attacks
and obtain accurate semantic segmentation results compared with the state-of-the-art aerial
image semantic segmentation methods. The ablation studies further illustrate the function
of robust global features and robust edge features in resisting backdoor attacks. This article
is the first systematic evaluation of aerial image semantic segmentation under backdoor
attacks and provides a possible solution to defend against backdoor attacks. In future
work, we would attempt to construct more efficient robust feature extractors to address the
backdoor threat in the aerial image semantic segmentation.
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