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Abstract: The estimation of anthocyanin (Anth) content is very important for observing the physio-
logical state of plants under environmental stress. The objective of this study was to estimate the Anth
of maize leaves at different growth stages based on remote sensing methods. In this study, the hyper-
spectral reflectance and the corresponding Anth of maize leaves were measured at the critical growth
stages of nodulation, tasseling, lactation, and finishing of maize. First-order differential spectra (FD)
were derived from the original spectra (OS). First, the spectral parameters highly correlated with
Anth were selected. A total of two sensitive bands (Rλ), five classical vegetation indices (VIS), and
six optimized vegetation indices (VIC) were selected from the original and first-order spectra. Then,
univariate regression models for Anth estimation (Anth-UR models) and multivariate regression
models for estimating anthocyanins (Anth-MR models) were constructed based on these parameters
at different growth stages of maize. It was shown that the first-order spectral conversion could effec-
tively improve the correlation between Rλ, VIC, and Anth, and VIC are usually more sensitive to Anth
than VIS. In addition, the overall performance of Anth-MR models was better than that of Anth-UR
models. Among them, Anth-MR models with the combination of three types of spectral parameters
(FD(Rλ) + OS_VIC + FD_VIC/VIS) as inputs had the best overall performance. Moreover, different
growth stages had an impact on the Anth estimation models, with tasseling and lactation stages
showing better results. The best-performing Anth-MR models for these two growth stages were as
follows. For the tasseling stage, the best model was the FD(Rλ) + OS_VIC + VIS-based SVM model,
with an R2 of 0.868, RMSE of 0.007, and RPD of 2.19. For the lactation stage, the best-performing
model was the FD(Rλ) + OS_VIC + FD_VIC-based RF model, with an R2 of 0.797, RMSE of 0.007, and
RPD of 2.24. These results will provide a scientific basis for better monitoring of Anth using remote
sensing hyperspectral techniques.

Keywords: hyperspectral; maize leaves; Anth; classic vegetation index; optimized vegetation index;
first-order differential spectra; machine learning algorithm

1. Introduction

Anthocyanins are water-soluble flavonoid pigments that are synthesized in the cyto-
plasm and stored in the vacuoles of the epidermis or mesophyll cells [1–3]. Anthocyanins
can provide plants with an adaptive advantage. Numerous studies demonstrate the cru-
cial role anthocyanins play in plant resistance to environmental stresses, including UV
radiation, bright light, low temperature, drought, nitrogen and phosphorus deficiency,
and pathogens [4–7]. Undoubtedly, the study of absolute or relative amounts of Anth can
be used to assess the adaptability of plants to environmental stresses and their growth
status. Traditional methods for quantifying Anth have mainly used wet chemical methods,
including extraction of Anth from plant tissues using organic solvents such as methanol and
ethanol [8,9] and spectrophotometric methods [10]. These methods were expensive, time-
consuming, and labor-intensive, and they also destroyed plant tissues, making real-time
monitoring of Anth impossible.
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In recent years, hyperspectral techniques have been increasingly used to estimate
the physiological and biochemical parameters of crops, such as chlorophyll content [11],
leaf area index [12], yield [13], water content [13], biomass [14], with promising results.
Hyperspectral technology enables rapid, non-destructive, and real-time monitoring of crop
growth, which is crucial for managing large agricultural fields [15]. A comparative analysis
of the absorption spectra of Anth-free and Anth-containing leaves by Gitelson et al. deter-
mined the green band absorption of Anth in leaves near 550 nm [16]. The spectral absorption
properties of Anth in specific wavelength bands are manifested in the reflectance spectra
of leaves [17]. This allows for a non-destructive estimation of Anth using remote sensing
methods. L.J. Janik et al. used visible-near-infrared spectroscopy to predict Anth concentra-
tion in red-grape homogenates [18]. Armando Manuel Fernandes et al. used hyperspectral
imaging to determine Anth concentration in grape skins [19]. Manuel Larrain et al. used
near-infrared spectroscopy to measure three parameters of grape ripeness: sugar (Brix), PH,
and Anth concentration [20]. K.R. Manjunath et al. estimated anthocyanin and carotenoids
in different species of flowers using hyperspectral data [21], and Liu et al. predicted Anth
of prunus cerasifera with hyperspectral data [22].

Vegetation indices (VI) aim to compress a large amount of spectral reflection infor-
mation into a small number of indicators, enabling the estimation of Anth [23]. Over the
past few decades, several VIS have been developed using spectral curve features, such
as the red-green index (R/G) [24], anthocyanin content index (ACI) [25], modified antho-
cyanin content index (MACI) [26], anthocyanin reflection index (ARI) [16], and modified
anthocyanin reflection index (MARI) [27]. These VIS are closely related to Anth and have
been shown to have good accuracy for estimating Anth of the leaves of certain plant
species [28,29]. However, leaf structure and pigment composition vary between different
plant species. As a result, these VIS may need to be reparameterized when applied to
estimate Anth in different plants.

These classical vegetation indices (VIS) are constructed based on broad bands. How-
ever, with the development of hyperspectral technology, narrow-band hyperspectral data
can be used to construct optimal vegetation indices (VIC) [13,14]. This involves performing
a two-by-two combination of all bands in the hyperspectral data to find the combination
with the best correlation to the study target. Several studies have compared VIS based on
broad bands with VIC based on narrow bands. For example, Tanaka et al. compared VIC
(NDVI, RVI, and DVI)with the traditional broadband vegetation indices (NDVI, EVI, and
OSAVI) and found that the model based on the optimal DVI to estimate the LAI of winter
wheat had better accuracy [30]. Luo et al. constructed classification models using Rλ, VIS,
and VIC for distinguishing diseased leaves from healthy leaves of maize and found that
the accuracy of the VIC-based classification models was significantly higher than the other
two types of models [31]. However, it remains uncertain whether VIC has better sensitivity
to Anth than VIS and whether the accuracy of the VIC-based Anth estimation models is
higher than that of VIS-based models.

Furthermore, it should be noted that most current studies use VI to construct Anth
estimation models. However, the impact of spectral noise was ignored in the VI construction
process, resulting in the low accuracy of the models. However, it has been shown that first-
order spectra can effectively reduce the effect of spectral noise on the target signal [32–35].
In this study, the optimal vegetation index will be constructed using first-order spectra
to investigate whether the resulting FD_VIC can improve sensitivity to anthocyanins
compared to OS_VIC.

In this paper, we estimated the Anth of maize leaves at individual and whole growth
stages using the hyperspectral reflectance of maize leaves at 380–1000 nm, combined with
machine learning (ML) methods. The objectives of this study were to: (1) analyze the
effects of first-order spectral conversion and different VI on estimating Anth in maize
leaves; (2) explore the potential of different Anth estimation models for four critical growth
stages in maize. The research results will provide new ideas for rapid, nondestructive, and
real-time monitoring of Anth using remote sensing methods.
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2. Materials and Methods
2.1. Study Area Overview

This field trial was conducted in Qinan Village, Xianyang City, Shaanxi Province,
China (34◦38′N,108◦07′E). The study area has a warm temperate, semi-arid, continental
monsoon climate, with an average annual temperature of 10.8 ◦C and an average annual
precipitation of 560–600 mm. The region’s average elevation is 1000 m, and the experiment
was carried out on 22 April 2017, using “Shaanxi Shan 226” maize as the test crop. The
study area was divided into 36 small plots and 4 on-farm plots, with a small plot area of
90 m2 (9 m × 10 m) and an on-farm plot area of 153 m2 (9 m × 17 m).

The soil type in the region is loam, and 3 fertilizers, N, P, and K, were applied. The
experiment used 3 treatments, each with 6 levels, and was replicated twice. Only 1 nutrient
rate in each treatment was altered. The first treatment involved 6 N levels (0, 30, 60, 90,
120, and 150 kg/ha), and the second treatment had 6 P levels (0, 18.75, 37.5, 56.25, 75, and
93.75 kg/ha), and the final treatment included 6 K levels (0, 20, 40, 60, 80, and 100 kg/ha).
For the P and K treatments, the base fertilizer applied was 60 kg/ha N. In the 4 on-farm
plots, 4 levels of N at 0, 60, 120, and 180 kg/ha were used. All fertilizers were applied at
planting time, and local management practices were followed. Figure 1 shows the location
of the study area. Table 1 shows the fertilizer treatment.
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Table 1. Fertilizer Treatment.

N Treatment Plots P Treatment Plots K Treatment Plots On-Farm Plots

N0 N1 N2 N3 N4 N5 P0 P1 P2 P3 P4 P5 K0 K1 K2 K3 K4 K5 N0 N6
N0 N1 N2 N3 N4 N5 P0 P1 P2 P3 P4 P5 K0 K1 K2 K3 K4 K5 N2 N4
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2.2. Data Acquisition

Samples were collected at the maize’s nodulation, tasseling, lactation, and finishing
stages. For sampling, 2 sample points were selected diagonally for each plot (80 sample
points in total), and 3 canopy leaves were picked near the sample points. Figure 2 shows
the phenological status of maize at each growth stage.
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Figure 2. Phenological status of maize at each growth stage. (a) nodulation stage; (b) tasseling stage;
(c) lactation stage; (d) finishing stage.

2.2.1. Hyperspectral Data Acquisition

An SVC HR-1024i (Spectra Vista Corporation, Poughkeepsie, NY, USA) portable
ground-based spectrometer was used to measure the spectral reflectance of maize leaves
indoors. The instrument uses a built-in tungsten lamp as the light source with spectral
resolutions of 3.5, 9.5, and 6.5 nm, corresponding to the spectral ranges of 350–1000,
1000–1850, and 1850–2500 nm, respectively. First, the spectral correction was performed
using a standard whiteboard. Then, 3 parts of each leaf—the tip, middle, and base—were
measured, and 2 spectral curves were obtained for each part. Three leaves were sampled
near each sample point, resulting in a total of 18 spectral curves. The average value of
the spectral curves was calculated as the sample point’s OS. To ensure the data’s scientific
reliability, a whiteboard calibration was performed every 0.5 h during the experiment.
Finally, the spectral resolution was resampled to 1 nm, and Savitzky-Golay smoothing
was applied to obtain a smooth reflection spectrum. The spectral resampling operation
was performed in the SVC HR-1024i software. The spectral smoothing operation was
performed in Unscrambler X 10.4 with a smoothing of 5. Considering the wavelength range
of phytochromes, only the spectral range of 380–1000 nm was selected for the study [31].
Figure 3 shows the SVC device.
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2.2.2. Determination of Relative Anthocyanin Content

Dualex Scientific+ (FORCE-A, Orsay, France) was used to non-destructively measure
the relative anthocyanin content of maize leaves. The instrument can accurately measure
the Anth index and flavonoid index in real time, with a measuring area of 5 mm2. A
detailed description of the instrument can be found in the publication by Goulas [36].
In this experiment, the relative Anth content of different parts of the leaf (tip, middle,
and base) was measured, with 2 Anth indices obtained for each part. Three leaves were
measured per sample site, resulting in a total of 18 Anth indices per site. The average value
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of these indices was then calculated to determine the actual relative Anth content of each
sample site.

2.3. Methods
2.3.1. Spectral Transformation (ST)

In this study, we performed spectral transformations of FD to extract sensitive bands
and VI. Compared to OS, FD can effectively reduce the effect of noise on the target signal,
highlight spectral feature information, and amplify the details of the OS curves [32–35].

2.3.2. Vegetation Indices (VI)

The vegetation index refers to the combined operation of normalization, ratio, and dif-
ferences in the reflectance of related bands [37]. By combining bands, the index can reduce
the influence of sensors and background on the target, enhance the linear response to the
target, and make better use of spectral information while reducing data dimensionality [26].
Liu et al. previously summarized VIS for estimating anthocyanin content and applied
them to maize [38]. In this study, we constructed 5 VIS (R/G [24], ACI [25], MACI [26],
ARI [16], and MARI [27]) based on Liu’s [38]. Hyperspectral data contains a vast amount of
information due to its numerous bands. To account for this, we operated on all possible 2-2
combinations of bands to find the optimal combination for constructing 3 VIC (DVI, RVI,
and NDVI) to estimate Anth. The calculation of various vegetation indices is presented in
Table 2, and the optimal band combinations for the 3 VIC are detailed in the Results section.

Table 2. Classic Vegetation Indices.

VIs Equations References

R/G RλRed/Rλgreen [11]
ACI Rλgreen/RλNIR [12]

MACI RλNIR/Rλgreen [13]
ARI R−1

λgreen/R−1
λrededge [8]

MARI
(

R−1
λgreen/R−1

λrededge

)
RNIR [14]

Note: Waveband range: λRed: 660–680 nm; λgreen: 540–560 nm; λrededge: 700–760 nm; λNIR: 760–800 nm; R
indicates the average reflectance of the band range.

2.3.3. Random Forest (RF) Regression

Bagging predictors is an ML technique that aggregates the results of multiple predic-
tors computed in parallel to obtain a combined prediction [39]. RF is a specific algorithmic
implementation of the Bagging method. It is a tree-structured classifier that consists of
multiple decision trees using randomly selected features to classify samples into different
leaf nodes for classification or regression. The function TreeBagger in Matlab can implement
the random forest algorithm. The TreeBagger function integrates a set of decision trees that
can be used for classification or regression prediction. The “ntree” parameter represents
the number of decision trees, and the “mtree” parameter represents the minimum number
of leaves. “ntree” and “mtree” are the 2 key parameters that control the performance and
complexity of the random forest model. In this study, “ntree” was set to 500 and “mtry”
was set to 1/3 of the sample size [40]. In regression prediction, the final output of the RF is
the average of the results of multiple decision trees [40]. RF models were implemented in
MATLAB R2019b [41].

2.3.4. Support Vector Regression (SVR)

SVR is an ML algorithm developed based on statistical learning theory [42]. Its
core principle is to use kernel functions to map the data into a high-dimensional feature
space and construct the optimal hyperplane in that space [43]. This approach has shown
excellent generalization ability and high prediction accuracy in previous studies [44].
When using the RBF kernel, 2 key parameters must be taken into account: the penalty
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parameter (C) and the kernel parameter (γ). The parameter “C” is a trade-off between the
smoothness of the decision surface and the classification deviation. The “γ” parameter
defines the degree of influence of a single training sample, which means that the smaller
the parameter, the greater the influence. In this paper, the optimal penalty parameter (C)
and the kernel parameter (γ) are obtained using the grid search method. The parameters C
and γ are optimized in the range of [10−2, 10−1, 1, 10, 100] and [10−4, 10−3,10−2, 10−1, 1,
10], respectively. The procedure was implemented in MATLAB R2019b [41].

2.3.5. Backward Propagation Neural Network (BPNN)

BPNN is a commonly used method for the estimation of vegetation physiological and
biochemical parameters [45–48]. The network mainly consists of an input layer, a hidden
layer, and an output layer, with the hidden layer passing important information between
the input and output layers [49]. BPNN mainly involves 2 processes: forward transmission
of information and backward transmission of errors, where the core of the method is to
adjust the weights of neurons by backpropagating the errors [50,51]. In this study, the
input layer neuron parameter “m” and the output layer neuron parameter “n” of BPNN
are determined by the number of independent and dependent variables. The number of
nodes in the hidden layer (hiddennum) can be determined using the empirical Formula (1),
where the parameter “a” is a constant in the range of 1 to 10 integers. In this BPNN model,
“tansig” is chosen as the activation function, “pureline” is selected as the transfer function,
and “trainlm” is chosen as the training function. The BPNN models were implemented
using MATLAB R2019b [41].

hiddennum =
√

m + n + a (1)

2.3.6. Evaluation Metrics for Model Accuracy

The measured data for each growth stage were sorted in ascending order by antho-
cyanin content, stratified, and randomly sampled in a 3:1 ratio before modeling. For each
growth stage, a calibration set of 60 samples and a validation set of 20 samples were ob-
tained. The data from all 4 growth stages were pooled together as a single dataset for the
entire growth stage (Sall). Models were trained on the calibrated dataset and evaluated on
an independent validation dataset.

The performance of the Anth estimation model was evaluated using 3 metrics: determi-
nation coefficient (R2), root-mean-squared error (RMSE), and relative prediction deviation
(RPD). In this paper, the model with the highest R2 and the lowest RMSE was considered
the best 1. On this basis, the values of RPD are referenced: RPD < 1.0 indicates very
poor models and are not considered; 1.0 < RPD < 1.4 indicates poor models, with only
high and low values distinguishable; 1.4 < RPD < 1.8 indicates fair models that can be
used for evaluation and correlation; 1.8 < RPD < 2.0 indicates good models with possible
quantitative prediction; 2.0 < RPD < 2.5 indicates very good quantitative models; RPD > 2.5
indicates excellent model [52]. RPD is calculated using Formula (1).

RPD = SD/RMSE (2)

3. Results
3.1. Statistical Analysis of Anth

The statistics of Anth for each growth stage are shown in Table 3. The data shows
that Anth of the calibration and validation sets has similar statistical characteristics. Anth
varied from 0.045 to 0.152 µg/cm2, and the coefficient of variation ranged from 15.390%
to 25.506%. The average value of Anth showed a pattern of decreasing, then increasing,
and finally decreasing again during the growth stages of maize, through the nodulation,
tasseling, lactation, and finishing stages.
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Table 3. Statistics of Anth measurements at each growth stage of maize(Sall presents the whole
growth stage; the same as below).

Dataset Growth Stage Sample
Numbers Range Mean Standard

Deviation
Coefficient of
Variation/%

Calibration set

nodulation 60 0.064–0.146 0.105 0.016 15.390
tasseling 60 0.053–0.152 0.082 0.017 20.859
lactation 60 0.071–0.146 0.098 0.016 15.985
finishing 60 0.047–0.128 0.076 0.017 21.998

Sall 240 0.045–0.152 0.090 0.020 22.033

Validation set

nodulation 20 0.073–0.144 0.105 0.017 16.230
tasseling 20 0.053–0.114 0.082 0.016 19.380
lactation 20 0.078–0.141 0.098 0.017 16.887
finishing 20 0.045–0.132 0.076 0.020 25.506

Sall 80 0.047–0.146 0.090 0.020 22.033

3.2. Characteristics of Reflectance Spectra

The spectral characteristics of maize leaves were generally consistent trends across
the four growth stages, as shown in Figure 4a. In the visible range, a reflection peak was
observed near the 550 nm band, and a “red edge” was observed in the 680–760 nm band.
In the near-infrared range, each growth stage formed a high reflectance platform in the
780–1000 nm range, with reflectance values above 0.4. These are common features of the
green plant spectrum. These spectral features are primarily influenced by leaf pigments in
the visible range and by leaf cell structure in the near-infrared range.
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lactation 60 0.071–0.146 0.098 0.016 15.985 
finishing 60 0.047–0.128 0.076 0.017 21.998 

Sall 240 0.045–0.152 0.090 0.020 22.033 

Validation set 

nodulation 20 0.073–0.144 0.105 0.017 16.230 
tasseling 20 0.053–0.114 0.082 0.016 19.380 
lactation 20 0.078–0.141 0.098 0.017 16.887 
finishing 20 0.045–0.132 0.076 0.020 25.506 

Sall 80 0.047–0.146 0.090 0.020 22.033 
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The spectral characteristics of maize leaves were generally consistent trends across 

the four growth stages, as shown in Figure 4a. In the visible range, a reflection peak was 
observed near the 550 nm band, and a “red edge” was observed in the 680–760 nm band. 
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780–1000 nm range, with reflectance values above 0.4. These are common features of the 
green plant spectrum. These spectral features are primarily influenced by leaf pigments 
in the visible range and by leaf cell structure in the near-infrared range. 
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Figure 4. (a) Original spectra of maize leaves at each growth stage; (b) First-order differential reflec-
tance of maize leaves at each growth stage. 

Figure 4. (a) Original spectra of maize leaves at each growth stage; (b) First-order differential
reflectance of maize leaves at each growth stage.

The spectral characteristics of FD of maize leaves at the four growth stages are pre-
sented in Figure 4b. FD of the nodulation, tasseling, lactation, and finishing stages showed
maximum values in the green light band range at band positions 520, 519, 519, and 520 nm,
respectively, and in the red light band range at band positions 704, 711, 713, and 709 nm,
respectively. This finding suggests that these band positions in the OS are where the re-
flectance rises and changes the fastest, indicating that FD can amplify the spectral features
of OS.
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3.3. Correlation between Anth and Spectral Reflectance
3.3.1. Correlation between Anth and Spectrum

The correlation between Anth and OS is shown in Figure 5a. At the nodulation
and finishing stages, Anth and OS exhibited a positive correlation in the 380–740 nm and
380–745 nm band ranges, respectively, and a negative correlation in other band ranges.
At the tasseling and lactation stages, Anth and OS were positively correlated in the
380–1000 nm band. The number of bands that showed a correlation coefficient passing
the 0.01 significance level test were, from lowest to highest, the finishing stages, nodula-
tion, lactation, and tasseling stages. The highest correlation coefficients were 0.690, 0.723,
0.722, and 0.427 for the nodulation, tasseling, lactation, and finishing stages, respectively,
corresponding to the band positions of 698, 553, 560, and 712 nm. These band positions
are concentrated in the visible range where OS forms reflection peaks and “red edges”,
indicating the sensitivity of these bands to Anth.
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Figure 5. (a) Correlation between original spectra and anthocyanins of maize leaves at each growth
stage; (b) Correlation between First-order differential reflectance and anthocyanins of maize leaves at
each growth stage.

The correlation of Anth with the FD is shown in Figure 5b. The highest absolute
correlation coefficient values were 0.770, 0.825, 0.790, and 0.615 for the nodulation, tasseling,
lactation, and finishing stages, respectively, corresponding to the band positions of 754, 524,
759, and 755 nm. In all four growth stages, the maximum correlation coefficients between
FD and Anth were higher than those between OS and Anth. This finding suggests that FD
can enhance the sensitivity to Anth.

3.3.2. Correlation between Anth and VIS

According to Table 2, 5 VIS with good correlation to Anth were established. Figure 6
depicts the correlation between Anth and the 5 VIS constructed from the OS of maize leaves
at different growth stages. The correlation coefficients of these five VIS with Anth passed
the significance test at the 0.01 level for all growth stages. At the nodulation, lactation, and
Sall stages, the ACI had the highest correlation with Anth, with correlation coefficients of
0.74, 0.77, and 0.61, respectively. At the tasseling and finishing stages, R/G had the highest
correlation with Anth, with correlation coefficients of −0.77 and −0.46.

In addition, MACI, ARI, and MARI also performed well. At the nodulation, tasseling,
and lactation stages, MACI had correlation coefficients with Anth greater than 0.7, while
ARI had coefficients greater than 0.6. MARI had coefficients greater than 0.7 at the nodula-
tion and lactation stages and greater than 0.69 at the tasseling stage. At the finishing stage,
however, the correlation coefficients between all VIS and Anth were less than 0.5. At the
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Sall stage, all four VIS, except for R/G, had correlation coefficients greater than 0.5. Overall,
all VIS improved the response to Anth compared to OS.
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3.3.3. Correlation between Anth and VIC

DVI, RVI, and NDVI were calculated for each growth stage in the 380–1000 nm band
range based on any two-band combination of the OS and FD of maize leaves. The contour
maps of the correlation coefficients between VIC and Anth constructed based on the OS are
shown in Figure 7. DVI showed the best response to Anth at the nodulation, tasseling, and
Sall stages, with maximum correlation coefficients of 0.770, 0.826, and 0.718, corresponding
to the band positions (R753, R755), (R525, R524), and (R747, R879), respectively. RVI showed
the best response to Anth at the lactation and finish stages, with maximum correlation
coefficients of 0.793 and 0.694, corresponding to the band positions (R827, R834) and (R513,
R700), respectively.

The contour maps of the correlation coefficients between VIC and Anth constructed
based on the FD are shown in Figure 8, in which the white part is caused by the non-
existence of the corresponding FD_RVI and FD_NDVI. RVI showed the best response to
Anth at the nodulation and finish stages, with maximum correlation coefficients of 0.815
and 0.687, corresponding to the band positions (R997, R755) and (R543, R993), respectively.
NDVI showed the best response to Anth at the tasseling, lactation, and Sall stages, with
maximum correlation coefficients of 0.859, 0.854, and 0.730, corresponding to the band
positions (R737, R759), (R756, R759), and (R676, R772), respectively.

3.4. Univariate Regression Model for Anth Estimation (Anth-UR)

Based on the principle of the maximum correlation coefficient, two sensitive bands of
OS and FD, and 11 optimal VI, including R/G, ACI, MACI, ARI, MARI, OS_DVI, OS_RVI,
OS_NDVI, FD_DVI, FD_RVI, and FD_NDVI, were selected. Then, 13 Anth-UR were
constructed for each growth stage. The R2, RMSE, and RPD of the 13 models for each
growth stage are shown in Figure 9.
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Figure 7. Contour maps of the Correlation coefficient between OS_VIC and Anth at each growth
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For the nodulation stage, the best-performing models were the FDS (R754)-based
model and the OS_DVI (R753, R755)-based model, both with an R2 of 0.671 and an RMSE
of 0.010 for the validation set. For the tasseling stage, the FD_NDVI (R737, R759)-based
model had the highest R2 of 0.863 and the lowest RMSE of 0.007. For the lactation stage,
the FD_RVI (R756, R759)-based model had the highest R2 of 0.739, and the FD_NDVI (R756,
R759)-based model had the lowest RMSE of 0.008. For the finish stage, the best-performing
model was based on OS_RVI (R513, R700), with an R2 of 0.665 and an RMSE of 0.012. For
the Sall stage, the best-performing model was based on FD_NDVI (R676, R772), with an R2

of 0.571 and an RMSE of 0.013.
The FD(Rλ)-based models performed better in all growth stages than the OS(Rλ)-

based models, suggesting that spectral conversion improves the response to Anth. For the
models constructed based on VIS, the models based on R/G performed better only in the
tasseling stage. The models based on ACI, MACI, ARI, and MARI performed better than
the OS(Rλ)-based models for all four growth stages, except for the finishing stage. The
models based on ACI and MACI outperformed those based on ARI and MARI overall.
The models based on VIC performed better at all growth stages than the OS(Rλ)-based
models. Moreover, the overall accuracy of FD_VIC-based models was higher than that of
OS-VIC-based models at the nodulation, tasseling, lactation, and finish stages.

The RPD histograms for the five growth stages are shown in Figure 9. The RPD
values were less than 1.8 for all models at the nodulation, finishing, and Sall stages, indicat-
ing that these models were not recommended. For the tasseling stage, the FD(R524)-based,
OS_DVI(R525, R524)-based, and FD_DVI(R525, R435)-based models with 1.8 < RPD < 2.0 can be
used as quantitative models. Meanwhile, the FD_RVI(R745, R754)-based and FD_NDVI(R737,
R759)-based models with RPD > 2.0 can be considered as very stable models for quan-
titative estimation of maize’s Anth at the tasseling stage. For the lactation stage, the
FD_RVI(R756, R759)-based, FD_DVI(R889, R772)-based, and FD_NDVI(R756, R759)-based
models with 1.8 < RPD < 2.0 can be used as quantitative models.

3.5. Multiple Regression Model for Anth Estimation (Anth-MR)
3.5.1. Anth-MR Model Based on FD(Rλ) + VIS\OS_VIC\FD_VIC

Since both the correlation coefficients of FD(Rλ) with Anth and the performance of
the Anth-UR models were better than OS(Rλ), FD(Rλ) combined with VIS, OS_VIC, and
FD_VIC were selected as independent variables to construct Anth-MR models. The model
parameters for each growth stage are shown in Figure 10.

For the nodulation stage, the best-performing RF model was constructed based on
the combination of FD(Rλ) + FD_VIC spectral parameters. The best-performing SVM and
BPNN models were both constructed based on FD(Rλ) + VIS, and the SVM model had the
highest accuracy with R2 of 0.682, RMSE of 0.009, and RPD of 1.81.

For the tasseling and lactation stages, the best-performing RF, SVM, and BPNN models
were constructed based on FD(Rλ) + FD_VIC. The SVM model had the highest accuracy for
the tasseling stage with R2 of 0.853, RMSE of 0.007, and RPD of 2.2. The best-performing
model for the lactation stage was the BPNN model with R2 of 0.773, RMSE of 0.008, and
RPD of 2.2.

For the finish stage, the best-performing RF, SVM, and BPNN models were all con-
structed based on FD(Rλ) + OS_VIC. The RF model had the highest precision with R2 of
0.610, RMSE of 0.013, and RPD of 1.52.

For the Sall stage, the best-performing RF and BPNN models were constructed based
on FD(Rλ) + FD_VIC, and the best-performing SVM model was constructed based on
FD(Rλ) + OS_VIC. The BPNN model had the highest accuracy with R2 of 0.598, RMSE of
0.013, and RPD of 1.54.

The RPD histograms for the five growth stages are presented in Figure 10. For the
nodulation stage, only the FD(Rλ) + VIS-based SVM, 1.8 < RPD < 2.0, could be used as a
quantitative Anth-MR model of the nodulation stage of maize. For the tasseling stage, six
models with 1.8 < RPD < 2.0 are considered suitable quantitative models, including the
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FD(Rλ) + FD_VIC-based RF model, the FD(Rλ) + OS_VIC-based and FD(Rλ) + VIS-based
SVM models, and all models of BPNN. While the FD(Rλ) + FD_VIC-based SVM model with
RPD > 2.0 is regarded as a highly stable quantitative Anth-MR model of the tasseling stage.
For the lactation stage, three models with 1.8 < RPD < 2.0 can be considered as quantitative
models, including the FD(Rλ) + OS_VIC-based RF model, the FD(Rλ) + OS_VIC-based
SVM, and FD(Rλ) + FD_VIC-based SVM. There are three models with RPD > 2.0, including
the FD(Rλ) + FD_VIC-based RF model, the FD(Rλ) + OS_VIC-based BPNN model, and the
FD(Rλ) + FD_VIC-based BPNN model, can be considered as very stable quantitative Anth-
MR model of the lactation stage. For the finishing and Sall stages, all models, RPD < 1.8,
are not recommended as Anth-MR.

3.5.2. Anth-MR Model Based on FD(Rλ) + OS_VIC + FD_VIC\VIS

The performance of the model based on the spectra combination of Rλ + VIS + VIC was
better than that of the VIS-based or VIC-based models in Lili’s study [31]. Therefore, the
spectral parameter combinations of FD(Rλ) + OS_VIC + VIS and FD(Rλ) + OS_VIC + FD_VIC
were used as independent variables to construct the Anth-MR models. These models’
accuracy parameters for each growth stage are shown in Figure 11. For the nodulation
and finishing stages, the only FD(Rλ) + OS_VIC + VIS-based SVM model, 1.8 < RPD < 2.0,
could be used as a model for quantitative estimation of Anth with R2 of 0.681 and 0.711,
RMSE of 0.009 and 0.011, and RPD of 1.81 and 1.82, respectively. For the tasseling stage, all
six models had good accuracy, with R2 > 0.75 and RMSE < 0.008. Except for the two RF
models, the remaining models, with RPD > 2.0, can be considered very stable quantitative
Anth-MR models of the tasseling stage of maize. The best model was the FD(Rλ) + OS_VIC
+ VIS-based SVM model, with an R2 of 0.868, RMSE of 0.007, and RPD of 2.19. For the
lactation stage, all six models demonstrated good accuracy, with an R2 greater than 0.7 and
an RMSE less than 0.009. However, the FD(Rλ) + OS_VIC + VIS-based SVM model is not
recommended for quantitative estimation of Anth. On the other hand, the remaining five
models, with an RPD greater than 2.0, can be considered stable models for quantitative
estimation of Anth. Among these, the best-performing model was the FD(Rλ) + OS_VIC
+ FD_VIC-based RF model, achieving an R2 of 0.797, an RMSE of 0.007, and an RPD of
2.24. For the Sall stage, All models with RPD < 1.8 are not recommended for quantitative
estimation of Anth.
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Figure 11. Model accuracy parameters for each growth stage. (a) represents the nodulation stage;
(b) represents the tasseling stage; (c) represents the lactation stage; (d) represents the finishing stage;
(e) represents the Sall stage; (1) represents the model parameters FD(Rλ) + OS_VIC + FD_VIC model
using Random Forest: RF(1), Support Vector Regression: SVR(1) and Back Propagation Neural
Network: BPNN(1); (2) represents the model parameters FD(Rλ) + OS_VIC + VIS model using
Random Forest: RF(2), Support Vector Regression: SVR(2) and Back Propagation Neural Network:
BPNN(2). BP in the figure represents BPNN.
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4. Discussion
4.1. Effect of FD on Anth Estimation

FD were obtained by the spectral conversion of OS of maize leaves in the 380–1000 nm
band range. OS and FD were correlated with Anth and were used to construct Anth-UR.
At all growth stages of maize, the maximum values of the correlation coefficients between
FD and Anth and the FD(Rλ)_based Anth-UR were improved compared to the OS. For the
nodulation, tasseling, lactation, and finishing stages, the correlation coefficients of the FD
increased by 11.48%, 14.09%, 9.46%, 45.12%, and 27.94%, respectively. Additionally, the R2

increased by 28.6%, 44.8%, 11.3%, 82.1%, and 73.2%, while the RMSE decreased by 16.5%,
21.2%, 6.8%, 12.3%, and 15.8%, and the RPD improved by 19.7%, 26.9%, 7.3%, 14.0%, and
18.7%. Previous studies have shown that using FD can improve the correlation with the
study target and enhance the modeling accuracy. For instance, Li et al. used hyperspectral
canopy techniques to study N concentrations in winter oilseed rape leaves [53], Zhang et al.
used hyperspectral inversion of soil heavy metals [54], and Liu et al. used UAV hyper-
spectral techniques to estimate potato biomass [14]. These studies demonstrated that FD
could effectively highlight the location of the spectrally sensitive bands and enhance the
degree of spectral response to the studied target. This demonstrates that first-order spectral
conversion can effectively highlight the location of spectrally sensitive bands and enhance
the spectral response to the studied target. This is because the FD can remove the influence
of background noise on the target and refine the spectral information.

4.2. Effect of VIS on Anth Estimation

The performance of R/G for Anth estimation varied greatly at different growth stages
of maize. The accuracy of the Anth-UR model (R2 > 0.6) was better for R/G at the tasseling
stage but poor for the rest of the growth stages. ACI, MACI, ARI, and MARI performed
better than R/G in other growth stages, which is in agreement with Gitelson’s study on
anthocyanin estimation in hazel and maple leaves [28]. The principle of R/G index con-
struction is to estimate Anth by the ratio of the red spectral region, where only chlorophyll
is absorbed, to the green spectral region, where both chlorophyll and anthocyanin are ab-
sorbed [24]. In contrast, ACI, MACI, ARI, and MARI account for the effect of blade structure
by incorporating the near-infrared band or the red-edge band into their calculations.

In addition, the accuracy of the Anth-UR models constructed by ACI and MACI was
overall higher than by ARI and MARI in this study. This is not consistent with the results
of Steele and Gitelson [26]. The main reason may be the inconsistency in the selected
range of the calculated wavebands. Specifically, the red-edge band range was selected
as 700–760 nm based on the spectral curve characteristics in this paper, while the range
selected by Gitelson and Steele was 690–710 nm. Additionally, the correlation coefficients
between Anth and VIS constructed based on the red-edge band (700–760 nm) were found
to be higher than those constructed based on the red-edge band (690–710 nm) in this study.
Nevertheless, the accuracy of the Anth-UR model constructed based on ACI or MACI is
still not sufficient for the quantitative estimation of anthocyanins (RPD < 1.8). Therefore,
the VIS-based Anth-MR model is constructed in this paper. The results showed that the
accuracy of the VIS-based SVR model was satisfactory, with RPD values of 1.81 at the
nodulation stage and 1.95 at the tasseling stage, respectively. Additionally, the VIS-based
BPNN model exhibited a moderate RPD of 1.86 at the tasseling stage. The superiority of
SVR models for estimating anthocyanins was demonstrated earlier in a study by Qin et al.
for nondestructive estimation of anthocyanins in grape leaves [55]. Therefore, using the
VIS-based SVR model to estimate anthocyanins at the nodulation and tasseling stages of
maize is a good choice.

Based on the characteristics of multiple and narrow hyperspectral bands, any two-
band combination of OS and FD in the range of 380–1000 nm was performed to find the
optimal band combination for constructing NDVI, RVI, and DVI. In the present study, the
correlation between VI and Anth was analyzed, and the descending order of VI and Anth
correlation relationships at each growth stage was: FD_VIC > OS_VIC > VIS. The results
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indicate that the VI constructed from the FD had the strongest correlation with Anth at
all growth stages, followed by the VI constructed from the OS and the VIS, respectively.
Overall, the order of accuracy of Anth-UR models constructed based on these three types of
VI was: VIC > VIS. The Anth-UR models constructed based on the OS or FD had different
performances at different growth stages. Moreover, the Anth-UR models based on OS_DVI,
FD_DVI, FD_RVI, and FD_NDVI demonstrated satisfactory accuracy for anthocyanin
estimation at the tasseling stage, with RPD values exceeding 1.8. Similarly, at the lactation
stage, the Anth-UR models based on FD_DVI and FD_NDVI also exhibited RPD values
exceeding 1.8, indicating their potential for quantitative estimation of anthocyanins. This
reflects the superiority of NDVI, RVI, and DVI based on the optimal band combination
constructed by any two bands. Tanaka et al. conducted a study where they compared the
optimal NDVI, RVI, and DVI, constructed based on any two bands, with existing vegetation
indices such as NDVI, EVI, and OSAVI. Their findings demonstrated that the UR model
based on the optimal DVI exhibited superior accuracy in estimating the leaf area index of
winter wheat [30]. These results align with the findings presented in this paper.

Additionally, Anth-MR models were constructed for each growth stage of maize using
three different combinations: FD(Rλ) + OS_VIC, FD(Rλ) + FD_VIC, and FD(Rλ) + VIS. Sur-
prisingly, the FD(Rλ) + VIS-based Anth-MR model performed well, with potentially higher
accuracy at the nodulation and tasseling stages compared to the other two models. This may
be because the VIS index uses more spectral bands than the VIC index, and the VIC-based
Anth-MR models may have neglected some information associated with Anth. This needs to
be further investigated in future research. Furthermore, Anth-MR models were constructed
using FD(Rλ) + OS_VIC + VIS and FD(Rλ) + OS_VIC + FD_VIC as model inputs, respectively,
and it was found that the model accuracy of FD(Rλ) + OS_VIC + VIS/FD_VIC was higher
overall than that of FD(Rλ) + OS_VIC/FD_VIC/VIS. In the study by Lili Luo et al., Anth-UR
and Anth-MR models were constructed based on Rλ, VIS, VIC, and Rλ + VIS + VIC. It
was found that the Rλ + VIS + VIC-based Anth-MR model performed better than models
constructed based on the other three spectral parameters [31]. This is consistent with the
results of this paper.

4.3. Effect of Different Growth Stages on Anth Estimation

In this study, anthocyanin estimation models were constructed at critical growth
stages of maize: nodulation, tasseling, lactation, and finishing. The highest precision of
anthocyanin estimation models differed at different growth stages. For nodulation and
tasseling, the highest accuracy was achieved by the FD(Rλ) + OS_VIC + VIS-based SVR
model, with R2 of 0.68 and 0.87, RMSE of 0.007 and 0.007, and RPD of 1.82 and 2.19 for
the validation set, respectively. For lactation, the highest accuracy was obtained for the
FD(Rλ) + OS_VIC + FD_VIC-based RF model with R2 of 0.80, RMSE of 0.007, and RPD of
2.24 for the validation set. For finishing, the highest accuracy was obtained for the FD(Rλ)
+ OS_VIC + VIS-based SVR model with R2 of 0.71, RMSE of 0.011, and RPD of 1.81 for the
validation set. For the Sall stage, the highest accuracy was obtained for the FD(Rλ) + OS_VIC
+ VIS-based BPNN model with R2 of 0.63, RMSE of 0.013, and RPD of 1.54. Obviously,
the highest accuracy of the anthocyanin estimation model was higher at the tasseling and
lactation stages than at the nodulation and finishing stages. Additionally, it was found that
with the same modeling approach and parameter types, the model accuracy was overall
higher for the tasseling and lactation stages than for the nodulation and finishing stages.
This is not a coincidence and is an indication that different growth stages do have an effect
on anthocyanin estimation in maize leaves. Qin et al. found different sensitive bands
associated with Anth at different growth stages, which has implications for anthocyanin
estimation in grape leaves [55]. These findings are consistent with the results of this study.

5. Conclusions

This study was to estimate the Anth of maize leaves at individual and whole growth
stages based on hyperspectral data of maize leaves at 380–1000 nm, combined with ma-
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chine learning (ML) methods. In this paper, we measured the hyperspectral data and the
corresponding relative anthocyanin content data of maize leaves at the critical growth
stages of nodulation, tasseling, lactation, and finishing of maize. FD were derived from
the original spectra OS. First, the spectral parameters highly correlated with Anth were
selected based on the correlation between different spectral reflectance and Anth. A to-
tal of two sensitive bands (OS(Rλ) and FD(Rλ)), five classical vegetation indices (R/G,
ACI, MACI, ARI, and MACI), and six optimized vegetation indices (OS_NDVI, OS_RVI,
OS_DVI, FD_NDVI, FD_RVI, and FD_DVI) were selected from OS and FD. Then, 13 Anth-
UR models were constructed based on each of these parameters at different growth stages
of maize. The effects of these 13 parameters on the accuracy of the Anth-UR models
were analyzed and compared. As the Anth-UR models were not stable, several Anth-
MR models were also constructed. The combination of two types of spectral parameters
(FD(Rλ) + VIS/OS_VIC/FD_VIC) or the combination of three types of spectral parameters
(FD(Rλ) + OS_VIC + FD_VIC/VIS) were used as inputs to the models. The main conclusions
of this study are as follows:

(1) FD can effectively highlight the location of spectrally sensitive bands and enhance
the degree of spectral response to the study target. The first-order spectral conversion
could effectively improve the correlation between Rλ, VIC, and Anth, and VIC are
usually more sensitive to Anth than VIS;

(2) The performance of Anth estimation models constructed based on different vegetation
indices varied. The accuracy of the Anth-UR models based on VIC was higher than
that based on VIS. The overall performance of Anth-MR models was better than that
of Anth-UR models. The highest accuracy of the Anth-MR models was obtained with
the FD(Rλ) + OS_VIC + VIS/FD_VIC models;

(3) There are effects of different growth stages on Anth estimation models. The tasseling
stage and lactation stage were found to be better growth stages for estimating Anth
in maize leaves. For the tasseling stage, the best model was the FD(Rλ) + OS_VIC +
VIS-based SVM model, with an R2 of 0.868, RMSE of 0.007, and RPD of 2.19. For the
lactation stage, the best-performing model was the FD(Rλ) + OS_VIC + FD_VIC-based
RF model, with an R2 of 0.797, RMSE of 0.007, and RPD of 2.24.

Author Contributions: Conceptualization, S.J.; methodology, S.J.; software, S.J.; validation, S.J., X.W.,
Z.Z. and Q.C.; formal analysis, S.J.; investigation, S.J., Z.Z., Q.W. and Y.Z.; resources, Q.C.; data
curation, S.J., Z.Z., Q.W. and Y.Z.; writing—original draft preparation, S.J.; writing—review and
editing, S.J., X.W. and Q.C.; visualization, S.J.; supervision, X.W. and Q.C.; project administration, Q.C.;
funding acquisition, Q.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National High Technology Research and Development
Program of China (863 Program), grant number 2013AA102401-2.

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: We would like to thank all the students in Chang’s team for collecting the data
for us.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J. 2008, 54,

733–749. [CrossRef] [PubMed]
2. Poustka, F.; Irani, N.G.; Feller, A.; Lu, Y.; Pourcel, L.; Frame, K.; Grotewold, E. A trafficking pathway for anthocyanins overlaps

with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar
inclusions. Plant Physiol. 2007, 145, 1323–1335. [CrossRef]

3. Mannino, G.; Gentile, C.; Ertani, A.; Serio, G.; Bertea, C.M. Anthocyanins: Biosynthesis, Distribution, Ecological Role, and Use of
Biostimulants to Increase Their Content in Plant Foods—A Review. Agriculture 2021, 11, 212. [CrossRef]

4. Chalker-Scott, L. Environmental Significance of Anthocyanins in Plant Stress Responses. Photochem. Photobiol. 1999, 70, 1–9.
[CrossRef]

https://doi.org/10.1111/j.1365-313X.2008.03447.x
https://www.ncbi.nlm.nih.gov/pubmed/18476875
https://doi.org/10.1104/pp.107.105064
https://doi.org/10.3390/agriculture11030212
https://doi.org/10.1111/j.1751-1097.1999.tb01944.x


Remote Sens. 2023, 15, 2571 20 of 21

5. Merzlyak, M.N.; Chivkunova, O.B.; Solovchenko, A.E.; Naqvi, K.R. Light absorption by anthocyanins in juvenile, stressed, and
senescing leaves. J. Exp. Bot. 2008, 59, 3903–3911. [CrossRef] [PubMed]

6. Landi, M.; Tattini, M.; Gould, K.S. Multiple functional roles of anthocyanins in plant-environment interactions. Environ. Exp. Bot.
2015, 119, 4–17. [CrossRef]

7. Close, D.C.; Beadle, C.L. The Ecophysiology of Foliar Anthocyanin. Bot. Rev. 2003, 69, 149–161. [CrossRef]
8. Silva, S.; Costa, E.M.; Calhau, C.; Morais, R.M.; Pintado, M.E. Anthocyanin extraction from plant tissues: A review. Crit. Rev. Food

Sci. Nutr. 2017, 57, 3072–3083. [CrossRef]
9. Dunn, J.L.; Turnbull, J.D.; Robinson, S.A. Comparison of solvent regimes for the extraction of photosynthetic pigments from

leaves of higher plants. Funct. Plant Biol. 2004, 31, 195–202. [CrossRef]
10. Lee, J.; Rennaker, C.; Wrolstad, R.E. Correlation of two anthocyanin quantification methods: HPLC and spectrophotometric

methods. Food Chem. 2008, 110, 782–786. [CrossRef]
11. Sudu, B.; Rong, G.; Guga, S.; Li, K.; Zhi, F.; Guo, Y.; Zhang, J.; Bao, Y. Retrieving SPAD Values of Summer Maize Using UAV

Hyperspectral Data Based on Multiple Machine Learning Algorithm. Remote Sens. 2022, 14, 5407. [CrossRef]
12. Qiao, B.; He, X.; Liu, Y.; Zhang, H.; Zhang, L.; Liu, L.; Reineke, A.-J.; Liu, W.; Müller, J. Maize Characteristics Estimation and

Classification by Spectral Data under Two Soil Phosphorus Levels. Remote Sens. 2022, 14, 493. [CrossRef]
13. Elmetwalli, A.H.; Tyler, A.N. Estimation of maize properties and differentiating moisture and nitrogen deficiency stress via

ground—Based remotely sensed data. Agric. Water Manag. 2020, 242, 106413. [CrossRef]
14. Liu, Y.; Feng, H.; Yue, J.; Fan, Y.; Jin, X.; Zhao, Y.; Song, X.; Long, H.; Yang, G. Estimation of Potato Above-Ground Biomass Using

UAV-Based Hyperspectral images and Machine-Learning Regression. Remote Sens. 2022, 14, 5449. [CrossRef]
15. Yao Ding, Z.Z.; Zhao, X.; Hong, D.; Cai, W.; Yang, N.; Wang, B. Multi-scale receptive fields: Graph attention neural network for

hyperspectral image classification. Expert Syst. Appl. 2023, 223, 119858. [CrossRef]
16. Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical Properties and Nondestructive Estimation of Anthocyanin Content in

Plant Leaves. Photochem. Photobiol. 2001, 74, 38–45. [CrossRef]
17. Blackburn, G.A. Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 2007, 58, 855–867. [CrossRef]
18. Janik, L.J.; Cozzolino, D.; Dambergs, R.; Cynkar, W.; Gishen, M. The prediction of total anthocyanin concentration in red-grape

homogenates using visible-near-infrared spectroscopy and artificial neural networks. Anal. Chim. Acta 2007, 594, 107–118.
[CrossRef]

19. Fernandes, A.M.; Oliveira, P.; Moura, J.P.; Oliveira, A.A.; Falco, V.; Correia, M.J.; Melo-Pinto, P. Determination of anthocyanin
concentration in whole grape skins using hyperspectral imaging and adaptive boosting neural networks. J. Food Eng. 2011, 105,
216–226. [CrossRef]

20. Larrain, M.; Guesalaga, A.R.; Agosin, E. A Multipurpose Portable Instrument for Determining Ripeness in Wine Grapes Using
NIR Spectroscopy. IEEE Trans. Instrum. Meas. 2008, 57, 294–302. [CrossRef]

21. Manjunath, K.R.; Ray, S.S.; Vyas, D. Identification of indices for accurate estimation of anthocyanin and carotenoids in different
species of flowers using hyperspectral data. Remote Sens. Lett. 2016, 7, 1004–1013. [CrossRef]

22. Liu, X.; Liu, C.; Shi, Z.; Chang, Q. Comparison of prediction power of three multivariate calibrations for estimation of leaf
anthocyanin content with visible spectroscopy in Prunus cerasifera. PeerJ 2019, 7, e7997. [CrossRef] [PubMed]

23. Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The Interpretation of Spectral Vegetation Indexes. IEEE Trans. Geosci. Remote
Sens. 1995, 33, 481–486. [CrossRef]

24. Gamon, J.A.; Surfus, J.S. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 1999, 143, 105–117.
[CrossRef]

25. van den Berg, A.K.; Perkins, T.D. Nondestructive Estimation of Anthocyanin Content in Autumn Sugar Maple Leaves. Hortscience
2005, 40, 685–686. [CrossRef]

26. Steele, M.R.; Gitelson, A.A.; Rundquist, D.C.; Merzlyak, M.N. Nondestructive Estimation of Anthocyanin Content in Grapevine
Leaves. Am. J. Enol. Vitic. 2009, 60, 87–92. [CrossRef]

27. Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and
anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L11402. [CrossRef]

28. Gitelson, A.A.; Chivkunova, O.B.; Merzlyak, M.N. Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic
leaves. Am. J. Bot. 2009, 96, 1861–1868. [CrossRef]

29. Vina, A.; Gitelson, A.A. Sensitivity to Foliar Anthocyanin Content of Vegetation Indices Using Green Reflectance. IEEE Geosci.
Remote Sens. Lett. 2011, 8, 464–468. [CrossRef]

30. Tanaka, S.; Kawamura, K.; Maki, M.; Muramoto, Y.; Yoshida, K.; Akiyama, T. Spectral Index for Quantifying Leaf Area Index
of Winter Wheat by Field Hyperspectral Measurements: A Case Study in Gifu Prefecture, Central Japan. Remote Sens. 2015, 7,
5329–5346. [CrossRef]

31. Luo, L.; Chang, Q.; Wang, Q.; Huang, Y. Identification and Severity Monitoring of Maize Dwarf Mosaic Virus Infection Based on
Hyperspectral Measurements. Remote Sens. 2021, 13, 4560. [CrossRef]

32. Ramoelo, A.; Skidmore, A.K.; Schlerf, M.; Mathieu, R.; Heitkönig, I.M.A. Water-removed spectra increase the retrieval accuracy
when estimating savanna grass nitrogen and phosphorus concentrations. ISPRS J. Photogramm. Remote Sens. 2011, 66, 408–417.
[CrossRef]

https://doi.org/10.1093/jxb/ern230
https://www.ncbi.nlm.nih.gov/pubmed/18796701
https://doi.org/10.1016/j.envexpbot.2015.05.012
https://doi.org/10.1663/0006-8101(2003)069[0149:TEOFA]2.0.CO;2
https://doi.org/10.1080/10408398.2015.1087963
https://doi.org/10.1071/FP03162
https://doi.org/10.1016/j.foodchem.2008.03.010
https://doi.org/10.3390/rs14215407
https://doi.org/10.3390/rs14030493
https://doi.org/10.1016/j.agwat.2020.106413
https://doi.org/10.3390/rs14215449
https://doi.org/10.1016/j.eswa.2023.119858
https://doi.org/10.1562/0031-8655(2001)074&lt;0038:OPANEO&gt;2.0.CO;2
https://doi.org/10.1093/jxb/erl123
https://doi.org/10.1016/j.aca.2007.05.019
https://doi.org/10.1016/j.jfoodeng.2011.02.018
https://doi.org/10.1109/TIM.2007.910098
https://doi.org/10.1080/2150704X.2016.1210836
https://doi.org/10.7717/peerj.7997
https://www.ncbi.nlm.nih.gov/pubmed/31687285
https://doi.org/10.1109/TGRS.1995.8746029
https://doi.org/10.1046/j.1469-8137.1999.00424.x
https://doi.org/10.21273/HORTSCI.40.3.685
https://doi.org/10.5344/ajev.2009.60.1.87
https://doi.org/10.1029/2006GL026457
https://doi.org/10.3732/ajb.0800395
https://doi.org/10.1109/LGRS.2010.2086430
https://doi.org/10.3390/rs70505329
https://doi.org/10.3390/rs13224560
https://doi.org/10.1016/j.isprsjprs.2011.01.008


Remote Sens. 2023, 15, 2571 21 of 21

33. Yang, H.; Du, J. Classification of desert steppe species based on unmanned aerial vehicle hyperspectral remote sensing and
continuum removal vegetation indices. Optik 2021, 247, 167877. [CrossRef]

34. Shen, Q.; Xia, K.; Zhang, S.; Kong, C.; Hu, Q.; Yang, S. Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of
iron ore area. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 222, 117191. [CrossRef]

35. Chen, S.; Hu, T.; Luo, L.; He, Q.; Zhang, S.; Li, M.; Cui, X.; Li, H. Rapid estimation of leaf nitrogen content in apple-trees based on
canopy hyperspectral reflectance using multivariate methods. Infrared Phys. Technol. 2020, 111, 103542. [CrossRef]

36. Goulas, Y.; Cerovic, Z.G.; Cartelat, A.; Moya, I. Dualex: A new instrument for field measurements of epidermal ultraviolet
absorbance by chlorophyll fluorescence. Appl. Opt. 2004, 43, 4488–4496. [CrossRef]

37. Inoue, Y.; Sakaiya, E.; Zhu, Y.; Takahashi, W. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral
measurements. Remote Sens. Environ. 2012, 126, 210–221. [CrossRef]

38. Liu, X. Nondestructive Inversion of Anthocyanins Content in Maize leaves Using Hyperspectral Remote Sensing. Remote Sens.
Inf. 2018, 33, 1–8. [CrossRef]

39. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
40. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
41. Luo, L.; Chang, Q.; Gao, Y.; Jiang, D.; Li, F. Combining Different Transformations of Ground Hyperspectral Data with Unmanned

Aerial Vehicle (UAV) Images for Anthocyanin Estimation in Tree Peony Leaves. Remote Sens. 2022, 14, 2271. [CrossRef]
42. Sain, S.R. The Nature of Statistical Learning Theory. Technometrics 1996, 38, 409. [CrossRef]
43. Drucker, H.; Burges, C.J.C.; Kaufman, L.; Smola, A.; Vapoik, V. Support Vector Regression Machines. Adv. Neural Inf. Process. Syst.

1996, 9, 155–161.
44. Fan, J.; Zhou, J.; Wang, B.; de Leon, N.; Kaeppler, S.M.; Lima, D.C.; Zhang, Z. Estimation of Maize Yield and Flowering Time

Using Multi-Temporal UAV-Based Hyperspectral Data. Remote Sens. 2022, 14, 3052. [CrossRef]
45. Panda, S.S.; Ames, D.P.; Panigrahi, S. Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural

Network Techniques. Remote Sens. 2010, 2, 673–696. [CrossRef]
46. Yang, J.; Song, S.; Du, L.; Shi, S.; Gong, W.; Sun, J.; Chen, B. Analyzing the Effect of Fluorescence Characteristics on Leaf Nitrogen

Concentration Estimation. Remote Sens. 2018, 10, 1402. [CrossRef]
47. Cao, L.; Pan, J.; Li, R.; Li, J.; Li, Z. Integrating Airborne LiDAR and Optical Data to Estimate Forest Aboveground Biomass in Arid

and Semi-Arid Regions of China. Remote Sens. 2018, 10, 532. [CrossRef]
48. Xu, H.; Wang, J.; Qu, Y.; Hu, L.; Tang, Y.; Zhou, Z.; Xu, X.; Zhou, Y. Estimating Leaf Chlorophyll Content of Moso Bamboo Based

on Unmanned Aerial Vehicle Visible Images. Remote Sens. 2022, 14, 2864. [CrossRef]
49. Yang, P.; Hu, J.; Hu, B.; Luo, D.; Peng, J. Estimating Soil Organic Matter Content in Desert Areas Using In Situ Hyperspectral Data

and Feature Variable Selection Algorithms in Southern Xinjiang, China. Remote Sens. 2022, 14, 5221. [CrossRef]
50. Chen, Z.; Jia, K.; Xiao, C.; Wei, D.; Zhao, X.; Lan, J.; Wei, X.; Yao, Y.; Wang, B.; Sun, Y.; et al. Leaf Area Index Estimation Algorithm

for GF-5 Hyperspectral Data Based on Different Feature Selection and Machine Learning Methods. Remote Sens. 2020, 12, 2110.
[CrossRef]

51. Xu, S.; Li, S.; Tao, Z.; Song, K.; Wen, Z.; Li, Y.; Chen, F. Remote Sensing of Chlorophyll-a in Xinkai Lake Using Machine Learning
and GF-6 WFV Images. Remote Sens. 2022, 14, 5136. [CrossRef]

52. Viscarra Rossel, R.A.; McGlynn, R.N.; McBratney, A.B. Determining the composition of mineral-organic mixes using UV–vis–NIR
diffuse reflectance spectroscopy. Geoderma 2006, 137, 70–82. [CrossRef]

53. Li, L.; Jákli, B.; Lu, P.; Ren, T.; Ming, J.; Liu, S.; Wang, S.; Lu, J. Assessing leaf nitrogen concentration of winter oilseed rape
with canopy hyperspectral technique considering a non-uniform vertical nitrogen distribution. Ind. Crops Prod. 2018, 116, 1–14.
[CrossRef]

54. Zhang, S.; Shen, Q.; Nie, C.; Huang, Y.; Wang, J.; Hu, Q.; Ding, X.; Zhou, Y.; Chen, Y. Hyperspectral inversion of heavy metal
content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods. Spectrochim.
Acta A Mol. Biomol. Spectrosc. 2019, 211, 393–400. [CrossRef]

55. Qin, J.; Rundquist, D.; Gitelson, A.; Tan, Z.; Steele, M. A Non-linear Model of Nondestructive Estimation of Anthocyanin Content
in Grapevine Leaves with Visible/Red-Infrared Hyperspectra. In Proceedings of the International Conference on Computer and
Computing Technologies in Agriculture, Nanchang, China, 22–25 October 2010; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 47–62.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ijleo.2021.167877
https://doi.org/10.1016/j.saa.2019.117191
https://doi.org/10.1016/j.infrared.2020.103542
https://doi.org/10.1364/AO.43.004488
https://doi.org/10.1016/j.rse.2012.08.026
https://doi.org/10.3969/j.issn.1000-3177.2018.06.001
https://doi.org/10.1007/BF00058655
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3390/rs14092271
https://doi.org/10.1080/00401706.1996.10484565
https://doi.org/10.3390/rs14133052
https://doi.org/10.3390/rs2030673
https://doi.org/10.3390/rs10091402
https://doi.org/10.3390/rs10040532
https://doi.org/10.3390/rs14122864
https://doi.org/10.3390/rs14205221
https://doi.org/10.3390/rs12132110
https://doi.org/10.3390/rs14205136
https://doi.org/10.1016/j.geoderma.2006.07.004
https://doi.org/10.1016/j.indcrop.2018.02.051
https://doi.org/10.1016/j.saa.2018.12.032

	Introduction 
	Materials and Methods 
	Study Area Overview 
	Data Acquisition 
	Hyperspectral Data Acquisition 
	Determination of Relative Anthocyanin Content 

	Methods 
	Spectral Transformation (ST) 
	Vegetation Indices (VI) 
	Random Forest (RF) Regression 
	Support Vector Regression (SVR) 
	Backward Propagation Neural Network (BPNN) 
	Evaluation Metrics for Model Accuracy 


	Results 
	Statistical Analysis of Anth 
	Characteristics of Reflectance Spectra 
	Correlation between Anth and Spectral Reflectance 
	Correlation between Anth and Spectrum 
	Correlation between Anth and VIS 
	Correlation between Anth and VIC 

	Univariate Regression Model for Anth Estimation (Anth-UR) 
	Multiple Regression Model for Anth Estimation (Anth-MR) 
	Anth-MR Model Based on FD(R) + VISOS_VICFD_VIC 
	Anth-MR Model Based on FD(R) + OS_VIC + FD_VICVIS 


	Discussion 
	Effect of FD on Anth Estimation 
	Effect of VIS on Anth Estimation 
	Effect of Different Growth Stages on Anth Estimation 

	Conclusions 
	References

