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Abstract: Satellite-derived bathymetry (SDB) is the process of estimating water depth in shallow
coastal and inland waters using satellite imagery. Recent advances in technology and data processing
have led to improvements in the accuracy and availability of SDB. The increased availability of free
optical satellite sensors, such as Landsat missions and Sentinel 2 satellites, has increased the quantity
and frequency of SDB research and mapping efforts. In addition, machine learning (ML)- and deep
learning (DL)-based algorithms, which can learn to identify features that are indicative of water depth,
such as color or texture variations, have started to be used for extracting bathymetry information from
satellite imagery. This study aims to produce an initial optical image-based SBD map of Horseshoe
Island’s shallow coasts and to perform a comprehensive and comparative evaluation with Landsat 8
and Sentinel 2 satellite images. Our research considers the performance of empirical SDB models
(classical, ML-based, and DL-based) and the effects of the atmospheric correction methods ACOLITE,
iCOR, and ATCOR. For all band combinations and depth intervals, the ML-based random forest and
XGBoost models delivered the highest performance and best fitting ability by achieving the lowest
error with MAEs smaller than 1 m up to 10 m depth and a maximum correlation of R2 around 0.80.
These models are followed by the DL-based ANN and CNN models. Nonetheless, the non-linearity
of the reflectance–depth connection was significantly reduced by the ML-based models. Furthermore,
Landsat 8 showed better performance for 10–20 m depth intervals and in the entire range of (0–20 m),
while Sentinel 2 was slightly better up to 10 m depth intervals. Lastly, ACOLITE, iCOR, and ATCOR
provided reliable and consistent results for SDB, where ACOLITE provided the highest automation.

Keywords: satellite-derived bathymetry; Landsat 8; Sentinel 2; machine learning; deep learning;
atmospheric correction

1. Introduction

Shallow water bathymetry is crucial for nautical navigation, but it is also essential for
monitoring coastal areas covering underwater topography, sediment loads, detection and
identification of human-induced pressures, and the effects of changes in the climate such as
sea level rise [1,2]. The adverse effects of climate change have been more evident in the last
and hottest decade resulting in massive heatwaves and temperature rise, especially in polar
regions. Several studies have pointed out that the Antarctic Peninsula and sub-Antarctic
islands have faced rapid warming with the highest temperature records and acceleration in
snowbank melting [3–5]. Thus, there is a need for continuous monitoring of the ecosystem
and sea level rise in shallow zones.

The conventional approaches for surveying seas and oceans use single (SBE) and multi-
beam echosounders (MBEs). Yet these methods bear certain limitations, such as losing their
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efficacy as depth decreases, having a limited spatial coverage and temporal resolution, and
being subject to logistic restrictions with high operational costs and risks [1]. Recently, a
range of modern tools have been used to assess the ocean’s bathymetry, including remotely
operated vehicles, automated underwater vehicles, and airborne LIDAR platforms [6].
However, according to the study of Ashphaq et al., remote and autonomous technologies
are likewise expensive due to costs associated with their purchase and maintenance [7].

Due to their capacity to collect data across vast spatial areas and to offer high-frequency
temporal monitoring, space-borne remote sensing techniques have additionally been de-
veloped into a substitute method for obtaining bathymetric data in coastal zones [8]. The
method developed to survey shallow waters with optical satellite images is called satellite-
derived bathymetry (SDB). Optical SDB is based on the inverse relationship between the
amount of energy reflected from the water column and the depth of water [1]. As stated by
Duan et al., recent studies have focused on SDB technology within the scope of producing
bathymetry data [9]. Remote sensing data eliminate traditional bathymetric surveying
because of their low cost, broad regional coverage, and temporal and space-unconstrained
sensing abilities [10]. It is clear that SDB research is rising, as shown in the sharp increase
over the past five years according to a literature review in the Web of Science collection
using the keywords “satellite”, “remote sensing”, “bathymetry”, etc. Especially, Landsat 8
and Sentinel 2 open-source optical satellites have shown expanded research capability on
the optical SDB field and provide high potential in bathymetry estimation of coastal and
inland regions [9,11–13].

It can be stated that initial studies based on linear and logarithmic band ratio-based
algorithms [14,15] were followed by machine learning (ML) algorithms and DL-based ap-
proaches that are nowadays available based on a chronological review of empirical SDB
studies. The initial use of ML-based SDB mapping was introduced by Ceyhun and Yalcın [16],
and the popular use of ML-based approaches was observed coupled with the support vector
machine (SVM) algorithm [9,17], followed by the random forest (RF) [9,18–20] and XGBoost
algorithms [21,22]. Among them, the use of XGBoost in optical SDB is relatively new, and
only two studies have been undertaken to infer bathymetric depth from Sentinel 2 satellite
images. Susa’s study, drawing attention to the current use of XGBoost, suggested further in-
vestigation of its performance [22]. The DL-based SDB mapping is a recent research attempt,
which mainly focuses on determining the local spatial correlation between the reflectance
information and the water depth. Initial studies used artificial neural networks (ANNs) for
SDB mapping and reported considerable improvements in accuracy with respect to classical
models [23,24]. Another study by Dickens and Armstrong used recurrent neural networks
(RNNs) on Orbview 3 satellite images to derive SDB in Pacific islands [25]. A more recent
study used convolutional neural networks (CNNs) to identify the relationship and produce
SDB maps at spatial resolutions compatible with multispectral images [26]. Recently, Wan
and Ma used a deep belief network with a data perturbation (DBN-DP) model on Quickbird
and Worldview 2 images in which R2 correlation and RMSE metrics in comparison with other
models used in the study were reported [27]. A recent study published in 2023 compared
basic empirical models and ML-based methods (RF, SVM, and NN) in SDB mapping of
the Ganquan Dao area and their findings provided higher inversion results with ML-based
methods in up to 15 m depth. The authors of the study pointed out that a comparative
analysis of empirical and ML-based methods in different water depths is still scarce and
inconclusive [28].

The atmospheric correction process is frequently addressed as a crucial step when
satellite images are used for bathymetry extraction [29,30]. The complexity of the water
column in coastal waters caused by factors such as water quality and sediment heterogene-
ity has an impact on the proper measurement of water depth. This situation suggests a
stricter requirement for atmospheric correction accuracy [12]. Several recent studies have
experimentally compared the performance of various atmospheric correction algorithms
and examined the comparative correlation between ground-based depth measurements
and/or image band ratios and estimated depth [30,31]. Among these studies, Caballero and
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Stumpf showed that the performance of atmospheric correction directly affects empirical
methods based on band ratio [30]. Ceyhun and Yalcin stated that machine learning-based
approaches in particular do not consider the behavioral mechanism of electromagnetic
radiation in water; therefore, the effect of atmospheric correction is minimal [16]. On the
other hand, Duan et al. obtained significant correlation differences depending on the atmo-
spheric correction model on the machine learning-based SVM algorithm, and they stated
that there is still a need for a systematic comparison of the effects of different atmospheric
correction algorithms on different SDB models [9].

This study focuses on estimating and mapping the bathymetry on Horseshoe Island,
Antarctic Peninsula, by performing a comprehensive evaluation of atmospheric correction
effects on SDB with Landsat 8 and Sentinel 2 images, and by comparing the performance of
ML- and DL-based models with the basic empirical models. To the best of our knowledge,
this study is one of the first studies to conduct a thorough evaluation of SDB mapping with
optical satellite images in Antarctica, considering sensor platforms, atmospheric correction
methods, and empirical SBD models.

The main contributions of this study to the literature are the following:

• Demonstration of a comparative performance evaluation of empirical SDB map-
ping approaches with an extension of the most current ML- and DL-based methods
in Antarctica.

• Evaluation of the effects of the state-of-the-art atmospheric correction methods on
SDB mapping for a region with complex and challenging atmospheric conditions such
as Antarctica.

• Investigation of the suitability of open source mid-resolution optical satellites, Landsat 8
and Sentinel 2, in SDB mapping of Antarctica.

2. Study Area and Data

Antarctica is a unique and fragile environment that is characterized by its extreme cold,
dry, and windy conditions. It is the coldest, driest, and windiest continent on Earth, and its
landscape is dominated by ice and snow [32]. The Antarctic continent is covered by a thick
ice sheet that averages about 2100 m in thickness. The ice sheet holds approximately 70% of
the Earth’s freshwater, making it a crucial part of the planet’s climate system [33]. Despite
its harsh conditions, Antarctica is home to a wide range of plant and animal life, including
penguins, seals, and several species of algae and bacteria. However, the biodiversity of the
continent is relatively low compared with other regions of the world due to its isolation
and extreme environmental conditions. In recent years, the environment in Antarctica has
been threatened by climate change which has caused the ice to melt and the sea level to
rise [34].

Bathymetry of the Antarctic region is important for understanding the topography of
the ocean floor and related processes. The region is characterized by a complex network of
ocean currents and glaciers, which significantly impacts the region’s bathymetry. There
have been several efforts to map the bathymetry of the Antarctic region using satellite
data and other observations [35–38]. These studies utilized a number of data sources,
including aerial gravity, satellite altimetry, single beam and multibeam echo sounding,
and various methods. One important example is the International Bathymetric Chart of
the Southern Ocean (IBCSO), which is a digital map of the ocean floor in the Southern
Hemisphere. IBCSO was created using data from a variety of sources, including satellite
altimetry, ship-based measurements, and in situ sensors [39]. However, there is a gap in
evaluating the efficacy of optical satellite images in SDB mapping for this region.

Due to their free data and extensive coverage areas, Landsat 8 and Sentinel 2 satellites
successfully meet this need for optical multispectral data, and SDB studies derived from
these satellites have been widely used in recent years [9,30,31]. Landsat 8 satellite carries
two different sensors, Operational Land Imager (OLI) and Thermal Infrared (TIR). These
sensors provide 11 bands of multispectral data from the Coastal Aerosol region of the
electromagnetic spectrum to the Thermal Infrared. The temporal resolution of the Landsat
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8 satellite is 16 days. Its spatial resolution is 30 m for the visible- and shortwave-infrared
regions. Sentinel 2 is a satellite constellation consisting of the Sentinel 2A and Sentinel
2B satellites. It provides 13 bands of multispectral data in the spectrum ranging from
the Coastal Aerosol region to the Shortwave Infrared (SWIR). The common temporal
resolution of the Sentinel 2 satellite constellation is five days. The near-infrared resolution
of the Sentinel 2 satellites for the visible and near-infrared (NIR) bands is 10 m. Landsat
8 and Sentinel 2 provide good coverage of the global land surface, inland waters, and
the sea [30,40,41]. These satellites have recently demonstrated tremendous potential for
bathymetry applications in coastal, inland, and open sea waters [11–13,42].

Since the meteorological conditions of Horseshoe Island in Antarctica are quite chal-
lenging, the potential to provide data with optical satellites is low. Taking this issue and
the year 2019 as a reference, which was the date of the previous Arctic research expedi-
tion in which multibeam echosounder (MBE) measurements were performed, an archive
search was carried out through the USGS Earth Explorer [43] and Copernicus Open Ac-
cess Hub [44] portals by defining a time period of 2 years for Landsat 8 and Sentinel 2
satellite images. During the search, cloudiness was not taken into consideration in the first
stage, and image selections were made by evaluating the cloudiness rate of the study area
based on the results obtained within the scope of the scan results. The initial results of the
scan for the period of 2017–2021 provided 5 Landsat 8 and 3 Sentinel 2 cloud-free images
(Table 1). Among them, Landsat 8 images dated 19 February 2018 and Sentinel 2 images
dated 24 January 2019 were used in this study due to their temporal proximity to the in
situ MBE data.

Table 1. Properties of Landsat 8 and Sentinel 2 images available for the study region.

Scene ID Platform Date Process

LC08_L1GT_219108_20171217_20201016_02_T2 Landsat 8 17.12.2017 L1GT
LC08_L1GT_219108_20180203_20201016_02_T2 Landsat 8 03.02.2018 L1GT
LC08_L1GT_219108_20180219_20201016_02_T2 Landsat 8 19.02.2018 L1GT
LC08_L1GT_219108_20210110_20210307_02_T2 Landsat 8 10.01.2021 L1GT
LC08_L1GT_219108_20210126_20210305_02_T2 Landsat 8 26.01.2021 L1GT
S2A_MSIL1C_20170214T134051_N0204_R038_T19DEE Sentinel 2 14.02.2018 L1C
S2B_MSIL1C_20190124T131909_N0207_R095_T19DEE Sentinel 2 24.01.2019 L1C
S2B_MSIL1C_20211129T131909_N0301_R095_T19DEE Sentinel 2 29.11.2021 L1C

Processing levels of the acquired data:

- For Landsat 8 data, the L1GT level is radiometrically corrected, geometrically corrected
using a limited number of ground points and digital elevation models, and is provided
in 16-bit data form. Top of atmosphere (TOA) reflectance values can be obtained from
these data by basic coefficient transformations.

- For Sentinel 2 data, the L1C level is again radiometrically and geometrically cor-
rected, and the TOA reflectance values can be obtained from these data with basic
coefficient transformations.

As understood from this information, the images to be used within the scope of the
study can only be obtained at basic processing levels, and they need atmospheric correction
to reach the surface reflectance values required in satellite-based SDB studies.

The dense MBE data provided as point cloud data with horizontal resolution below
1 m are used as the main training and validation dataset. This dataset was collected with the
R2SONIC 2022 instrument during the Turkish Antarctic Expedition (TAE)-III to the region
between 29 January–6 March. These data embody a maximum measurement error margin
of around 1 m horizontally and 1 cm vertically for 400 m, which is the maximum depth it can
measure within its technical capabilities [45]. In this context, a total of 10,000 bathymetric
point data, 2500 homogeneously for each 5 m interval for 0–20 m depth, were randomly
selected. Of these 10,000 point data, 8000 were used for model training and 2000 were
used for validation. During the analysis, 5 m depth intervals were evaluated separately
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in addition to 0–10 m and 0–20 m intervals for holistic evaluation. The study region and
bathymetric model obtained from these data are presented in Figure 1.
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Figure 1. The coverage area of the bathymetric data obtained by the MBE (left) and 5 m grid
resolution bathymetry model produced from these data (right).

Aerosol optical depth (AOD) data that were then measured by ship-borne Microtops
II sun photometers through The Maritime Aerosol Network (MAN) component of the
Aerosol Robotic Network (AERONET) [46] were obtained from the NASA AERONET
website [47] to be used in iCOR and ATCOR atmospheric models.

3. Methodology

This section provides a detailed theoretical background of the processing steps and
the algorithms used for the performed SDB mapping. Figure 2 presents the flowchart of
the process.

3.1. Atmospheric Correction

Electromagnetic radiation transfer in the atmosphere has significant disturbance ef-
fects due to aerosol and gas absorption and Mie and Rayleigh scattering. These effects
are particularly important over water areas. Atmospheric path radiance accounts for 85%
of electromagnetic energy in the oceans, 94% in darker water bodies, and 60% in waters
with high-sediment load [48]. These effects are even more challenging in extreme latitudes
and at large solar zenith angles (70◦) since the atmospheric path of radiation is longer [49].
In addition, satellites with near nadir viewing angles such as Landsat and Sentinel 2 are
affected by sun glint. The adjacency effect is a further issue brought on by atmospheric
transmission and radiation scattering. This effect occurs when the scattered radiation from
neighboring surfaces is combined with the target radiation and recorded by the sensor,
especially when the contrast between the target pixel and its surrounding pixels is highly
strong [50]. The adjacency effect is particularly effective at short wavelengths [51]. Horse-
shoe Island has the characteristics of a region where atmospheric correction is prominent
due to its location in the extreme latitude region representing deep and clear ocean water,
melting ponds, high contrast by bright ice, and the complex cover type formed by snow
surfaces on sea ice and the related neighboring reflection effects.
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The atmospheric correction of the satellite images was performed using the ACOL-
ITE, iCOR, and ATCOR algorithms. These algorithms were chosen primarily as they are
applicable to both Landsat 8 and Sentinel 2 satellite imagery. The algorithms have also
demonstrated a strong linkage with ground-based measurements of water and sea ice in the
Arctic, a study area with similarly challenging geographical characteristics that is subject to
disturbances [52]. Vanhellemont recommended ACOLITE for marine and ocean surveys
based on Landsat and Sentinel 2 due to its correspondence with the AERONET Ocean
Color (OC) data [53]. In addition, De Kukelaere et al. reported that the iCOR algorithm
provides similar results to ACOLITE [54].

ACOLITE was developed by the Department of Natural Sciences of the Royal Belgian
Institute. It consists of processors for atmospheric correction developed especially for appli-
cations on water (e.g., handling diffuse sky reflection on the water surface). Information on
precipitated water, atmospheric pressure, and ozone concentration used in this algorithm
is obtained by connecting to the EARTHDATA platform. Two different atmospheric correc-
tion methods are presented within the ACOLITE algorithm. The first is the SWIR-based
exponential extrapolation (EXP) method [55], and the second one is the multispectral dark
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spectrum fitting (DSF) method [56]. The ACOLITE algorithm can also provide continental
and maritime aerosol parameterization. Within the scope of the research, it was deemed
appropriate to use the DSF method and the Maritime aerosol model by utilizing the find-
ings obtained in Vanhellemont [53]. According to the analysis of AERONET OC data and
Landsat and Sentinel 2 images, the DSF model performs better, notably in the blue band.
The same study’s results also indicate that the DSF algorithm performs the path reflectance
(ρ path) predictions more harmoniously, including clear and turbid coastal waters, inland
waters, and terrestrial areas with its tiled working principle. The DSF technique chooses
the band with the lowest atmospheric path reflectance automatically, thus minimizing the
negative effects of sun glint and adjacency effect. The performance of the DSF algorithm
compared with the EXP algorithm is also emphasized by Duan et al. [9].

The iCOR algorithm, previously known as OPERA, can be run by integrating it into the
SNAP open-source software provided by ESA. iCOR is an atmospheric correction algorithm
for land and sea, and basically consists of 4 work steps [54]: (1) separation of land and water
pixels by classification; (2) calculating AOT value for land pixels with the Guanter [57]
approach and transferring AOT value to water pixels, assuming a homogeneous atmo-
sphere; (3) neighborhood effect correction with SIMilarity Environment Correction (SIMEC)
algorithm; and (4) realization of atmospheric correction on LUT reflectance values obtained
using the rural aerosol model and MODTRAN 5 radiative transfer model.

The ATCOR (Atmospheric/Topographic Correction for Satellite Imagery) algorithm
uses the MODTRAN 5 radiative transfer model, precomputed LUT tables, and other
atmospheric components derived from the image [51,58]. The MODTRAN 5-based LUT
tables include four different aerosol models: rural, urban, marine, and desert. In addition,
the water vapor (Wv) parameter is parameterized as 6 different values in the range of
0.75–4.11 cm according to season. Ozone concentrations are obtained from a ready-made
database. The AOT parameter is determined by the dense dark vegetation algorithm and a
user-defined visibility parameter. The aerosol model can be selected by the user, and the Wv
parameter is selected by the atmospheric pre-corrected differential absorption algorithm. In
the ACTOR algorithm, the adjacency effect is realized by calculating the average reflectance
using neighboring pixels.

Within this research, a total of six images were obtained by applying these three
atmospheric correction models to Landsat 8 and Sentinel 2 satellite images. The images are
produced as surface reflectance (bottom of atmosphere—BoA) information. Figure 3 shows
the input ToA image and the BoA view obtained after ACOLITE DSF. Figure 4 demonstrates
the difference between the corrected reflectance values obtained with ACOLITE and the
pre-correction reflectance values. As seen from these graphs, the differences after correction
display a significant difference, especially in the visible region used in the project. The
parameter summary of the three algorithms is given in Table 2.

Table 2. Parameters of the algorithms used in atmospheric correction.

Algorithm Version LUT Transfer
Model

Aerosol
Model AOT Retrieval

WV
Retrieval

(cm)

Adjacency
Correction

Sun Glint
Correction

ACOLITE 20220222 6SV MARITIME Dark Spectrum
Fitting User Def: 0.8 acstar3 Fresnel

Correction

iCOR 3 MODTRAN 5 RURAL Image Based
(AERO Net) User Def: 0.8 SIMEC Fresnel

Correction

ATCOR 3 MODTRAN 5 MARITIME Dense Dark
Vegetation Auto Average

Filter N/A
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3.2. Post-Processing

For the purposes of bathymetric analysis, the next step after the atmospheric correction
was the sun glint correction. Several studies reported the importance of sun glint removal
in SDB mapping [59]. This correction is available inside the ACOLITE and iCOR algorithms;
however it is not present in ATCOR. Thus, the method proposed by Hedley et al. [60] was
utilized for the ATCOR-corrected images. This method, highly preferred in the literature, is
based on the lowest near-infrared reflectance value in the image and performs a regression
analysis between itself and the near-infrared reflectance values in all other pixels. As a final
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step, it reduces the reflectance values of the other bands in the pixels to the water column
reflectance value using the calculated regression formula.

The next step of post-processing is to create a land mask and perform land–sea
separation. As a result of the profile analysis of the near-infrared band BoA values, the
threshold value for the land and sea separation was determined. A mask was created
to eliminate terrestrial areas in the near-infrared band, and by applying this mask to the
visible bands, images containing only water areas were obtained using the threshold value
(Figure 5 left).
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In the final step, bottom-feature classification was performed by means of visible
band reflectance values. The depth invariant index (DII), introduced by Lyzenga [61] and
Green et al. [62], was used for this process. The DII calculation linearizes the logarithmic
effect of depth on the reflectance values, and thus makes the reflectance values free from
the effect of depth; as such, it allows the identification of similar interactions with bottom
topography. The DII transformation is realized by the calculation given in Equation (1).

DII = ln(Ri)−
[(

ki/k j
)
ln
(

Rj
)](

ki/k j
)
= a +

√
(a2 + 1)a =

σii − σjj

2σij
(1)

In this equation, Ri and Rj = the reflectance values of bands i and j, ki/kj = ratio
attenuation coefficient of bands i and j, σii = variance of band i, σjj = variance of band j, and
σij = covariance of bands i and j.

This transformation is carried out using the blue and green band reflectance values
achieved from the ACOLITE-corrected Landsat 8 OLI image. Following the transformation,
the dataset is fed into the elbow method. This method uses a graphic to show the categories
that are necessary to successfully describe the entire dataset. It works by calculating the
within-cluster sum of square (WCSS), which is the sum of the squared distances between
cluster members and the centroid of the cluster. The elbow graph displays WCSS values
(on the y-axis) linked with various K values (on the x-axis). The graph’s elbow form
indicates the ideal K-value. This area is known as the elbow point. Beyond the elbow point,
increasing the value of “K” has no discernible impact on WCSS. In the current study, the
elbow is created at K = 4 (Figure 6).
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Then, the K-means algorithm was utilized to discriminate the reflective nature of
different bottom types, with the predefined optimal number of clusters set at 4. Different
classes of bottom types in the region were identified with this process, which is expected to
be ground checked with the yet-to-be-analyzed sediment samples that were collected in
2023, (Figure 5 right). Initial analysis identified the loosest sediment cluster in the northwest
region (Cluster 1), whereas the stiffest was detected in the upper middle part of the bay
(Cluster 4).

3.3. Empirical Models for Bathymetry Estimation
3.3.1. Log Transform (Lyzenga)

The Lyzenga algorithm is based on the correlation relationship between deep water
reflectance (R∞) and total reflectance (R). This method assumes that the ratios of the bottom
reflectance values obtained for the two image bands are constant. By deducting the deep-
water reflectance value from the derived BoA value, it is projected that the effects of
atmospheric scattering and water surface reflectance distortion will be reduced [14,63]. The
measured data set also serves as calibration data for the determination of the parameters
required during the extraction of bathymetric data from the satellite image as shown in
Equation (2):

Z = α0 +
N

∑
i=1

α1ln[R(λi)− R∞(λi)] (2)

where “Z” is the satellite-derived depth value, “N” is the number of bands, “α0” and “αi”
are the coefficients obtained as a result of calibration, “i” is the number of data points
(1, 2..., N), “R(λi)” is the perceived reflectance value for the band “i”, and “R∞” is the
deep-water reflectance value for the band “i”. In the literature, green and blue bands are
preferred due to their high level of water penetration [64,65].

3.3.2. Log Ratio (Stumpf)

The band ratio method, known as the Stumpf method, basically estimates the depth
value by comparing the two bands with the highest penetration values in logarithmic
space [15]. Since the "Logarithmic Ratio" assumes that the extinction value increases with



Remote Sens. 2023, 15, 2568 11 of 27

increasing depth, it selects the lowest extinction ratio to maintain a constant proportionality
with the seafloor radiance. This method, which does not require the removal of the deep-sea
column reflection from the system, is reported to have a high performance, especially in
operating regions with low reflectivity values as shown in Equation (3):

Z = m1
ln(R(λi))

ln
(

R
(
λj
)) + m0 (3)

where “Z” represents the satellite-derived depth value, “m1” and “m0” represent the
regression coefficients that give the highest agreement between the depth value and the
ratio, and “R(λi)” and “R(λj)” represent the reflectance values for two different spectral
bands. The n component is a constant coefficient and takes the value of 1000 for studies
with float reflectance values in the literature. Although the blue-green (BG) band ratio is
mostly used for this approach [13,15,30], green-red (GR) and blue-red (BR) combinations
were also tested.

3.4. ML-Based Models
3.4.1. Support Vector Machine

Support Vector Machine (SVM), one of the machine learning models used in satellite-
based bathymetry applications, is based on the logic of minimizing the prediction reliability
within the limits provided by keeping the learning error margin constant based on the data.
By mapping the training vectors in a higher dimension, non-linear structures can also be
revealed. As seen in analytical models, the relationship between water depth and band ratio
in real measurements is far from linearity. In order to model non-linear correspondence,
Vojinovic et al. adopted the SVM approach [66]. The SVM method converts the input
vector into a multidimensional feature space through nonlinear mapping. Then, it tries
to determine the best linear relationship between the multidimensional feature space and
water depths as shown in Equation (4):

Z = f
(

ln(nR(λi))

ln(nR(λr))

)
(4)

where Z is the water depth, f is the non-linear function, and the other components are the
parameters in the logarithmic ratio method. Although the binary-based SVM algorithm can
use different kernels for the transition to multidimensional structure, the radial basis func-
tion (RBF), which has been previously accepted for its high generalization capability [66,67],
was chosen for this study. These kernel feature vectors, xi and xj, are given in Equation (5).

k
(

xi, xj
)
= e−

‖xi−xj‖
2

2σ2 (5)

3.4.2. Random Forest

Random Forest (RF) is an ensemble learning technique that creates an extensive
number of sub-sample sets at first. To increase the model’s prediction accuracy, it samples
the dataset, randomly chooses characteristics in each subset to forecast the decision tree,
and then integrates the outcomes of each decision tree’s prediction [9]. This model can be
used for classification purposes and regression-based prediction requirements [68]. The RF
technique has lately demonstrated greater performance in SDB and effectively represents
the non-linear relationship among variables. This method can establish the relationship
between directly measured water depths and spectral reflectance values without using any
logarithmic transformation [19]. The study was carried out on the Scikit-learn ensemble
package in the Python environment with log ratio combinations of red, green, and blue
bands as model inputs and the number of random data subsets as 100.
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3.4.3. XGBoost

The XGBoost gradient boosting model offers a gradient reduction approach that allows
the derivatives of the loss function to be used in optimizing the model prediction values,
resulting in a final model that minimizes residual errors. Unlike the RF model, where a
large number of decision trees are built in parallel, the primary idea behind this approach
is to construct decision trees in a sequential manner. Each model attempts to minimize the
errors of the prior one. A new model is constructed based on the errors or residuals of the
prior model for this purpose [69]. The XGBoost algorithm differs from general gradient
incremental models by its node partitioning, decision tree pruning, and weight adjustment
features, and this algorithm mainly improves the loss function via Taylor expansion [70].

3.4.4. Hyperparameter Tuning

The hyperparameters of all three models constructed for bathymetry extraction were
optimized using the "Grid Search" approach, and the results are shown in Table 3 for
each model.

Table 3. Hyper-parameter set for ML-based models.

SVM RF XGBoost

C: 1 bootstrap: True objective: “reg:squarederror”
gamma: 0.0001 ccp_alpha: 0.0 base_score: 0.5
degree: 3 criterion: squared_error booster: “gbtree”
cache_size: 200 max_features: 1.0 tree_method: “exact”
coef0: 0.0 min_samples_leaf: 1 colsample_bynode: 1
epsilon: 0.1 min_samples_split: 2 colsample_bytree: 1
kernel: rbf n_estimators: 100 learning_rate: 0.300000012
max_iter: −1 oob_score: False n_estimators: 100
shrinking: True random_state: 45 num_parallel_tree: 1
tol: 0.001 warm_start: False predictor: “auto”

3.5. DL-Based Models
3.5.1. Artificial Neural Networks

Artificial Neural Networks (ANNs) bear non-linear and sample-based structures.
Therefore, these assets in the bathymetry extraction process are preferred due to their
potential in mapping the non-linear, multi-parameter relationship between the actual
depths and corresponding reflectance values from spectral bands. The main contribution of
ANNs is that they are immune to optical problems stemming from environmental factors
such as turbulence and diversity of bottom topography. The utility of this methodology was
first assessed by Ceyhun and Yalcın [16] together with Aster and Quickbird satellite data
in Foca/Izmir-Türkiye for depths of up to 45 m and provided fairly accurate bathymetry
estimates having a determination coefficient of 0.80. Later in 2016, Patel et al. constructed
an ANN-based cascade-forward (CF) back propagation model which was evaluated for
single and multi-band applications for turbid waters of Bhopal City Lower Lake [71]. This
model delivered bathymetry estimations for depths of up to 12 m with an RMSE of 1.618 m
and an R2 of 0.9514.

In our study, we utilized a multilayer perceptron (MLP) model for our predictions
comprising 3 deep layers having 32, 16, and 8 nodes, respectively; then, we fed the model
the log values of blue, green, and red band reflectance values. The “Relu” function was
chosen as the activation function for all the layers except for the output layer which
was “linear”.

3.5.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are renowned for their performance in re-
motely sensed image classification, such as land use, land cover, and target detection on
image scenes such as planes, ships, clouds, etc. Apart from these well-known uses, they
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pose quite a potential in satellite-derived bathymetry mainly due to their two abilities:
(1) the capability of mapping non-linear relations and (2) a local join feature that allows the
evaluation of depths of unmeasured points as weighted averages of nearby known depths.
In their paper, Lumban-Gaol et al. tested different configurations of CNN architectures to
generate SDB models [72]. Based on their analysis, SDB generated from CNN outperforms
the linear log transform method, especially when designed with large window sizes. Al Na-
jar et al. demonstrated an initial application of CNN to SDB via measured bathymetric data,
wave kinematics, and synthetic replicate images from the Sentinel 2 satellite constellation
with an error rate of around 4% [73].

The CNN set-up for our studies had 3 convolution layers with filters 32, 16, and 8
respectively, all of which are subject to a 15% drop-out rate to avoid overfitting. Pooling
was utilized with the size of 2. The kernel size was applied as 5 for the 1st 2 convolution
layers, whereas the kernel size was 3 for the 3rd layer. The "Relu" function was selected as
the activation function for all layers. Finally, the optimizer for the model was set as "Adam"
with a learning rate of 0.001.

4. Results

This section presents the analysis results of SDB estimation on the coasts of Horse-
shoe Island in a comparative structure. The evaluation includes (i) comparing the effects
of ACOLITE, ATCOR, and iCOR atmospheric correction algorithms on SDB estimation,
(ii) comparing SDB algorithm performances, and (iii) comparing the performances of Land-
sat 8 and Sentinel 2 visible bands on SBD estimation. The evaluation was carried out for
5 m depth intervals up to 20 m depth. In addition, 0–10 m, 0–15 m, and 0–20 m intervals
were examined to check the estimation consistency among increasing depth ranges. Fur-
thermore, all possible visible band pairs were evaluated for Stumpf, SVM, RF, and XGBoost
algorithms to investigate the potential effects. ANN- and CNN-based algorithms used RGB
images directly in their estimations.

The RMSE- and MAE-based results proved that RF and XGBoost provided the highest
performance for the whole sensor, depth, and atmospheric correction configurations. The
ANN and CNN algorithms ranked second, and their accuracies were highly close to each
other according to the RMSE and MAE values. SVM, Lyzenga, and Stumpf BR algorithms
followed the DL-based algorithms again with comparable performances while Stumpf
BG and Stumpf GR were ranked last in this comparison (Tables A1–A6). Based on the
investigation of the best-performing RF and XGBoost algorithms (Figures 7 and 8), it can
be asserted that using different band configurations such as BG, GR, and BR has nearly no
impact on the performance of algorithms, except for the Stumpf algorithm where the BR
combination provided comparatively stable results. Moreover, notably lower RMSE values
were detected in the 0–15 m and 0–20 m intervals than the BG and GR combinations for
Landsat 8, while the same situation was not observable for Sentinel 2 (Table 4). It is worth
mentioning that DL-based models presented the best results in this study. Our experiments
demonstrated that changing the loss functions and increasing the model depth (more than
three convolutional layers), and feeding the models, either with the log values of RGB
bands or a combination of their log ratios, did not provide significant improvements.
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Table 4. Coefficient of determination (R2) metrics for the RF and XGBoost algorithms across different
depth intervals.

Landsat 8 Sentinel 2

0–5 0–10 0–15 0–20 0–5 0–10 0–15 0–20

ATCOR

RF-BG 0.46 0.80 0.84 0.87 0.80 0.85 0.71 0.55
RF-GR 0.46 0.80 0.84 0.86 0.80 0.85 0.72 0.57
RF-BR 0.46 0.79 0.84 0.87 0.80 0.85 0.70 0.50
XGBoost-BG 0.46 0.80 0.80 0.80 0.79 0.74 0.58 0.58
XGBoost-GR 0.46 0.80 0.82 0.79 0.80 0.75 0.57 0.45
XGBoost-BR 0.46 0.79 0.81 0.80 0.79 0.70 0.57 0.45

iCOR

RF-BG 0.48 0.80 0.85 0.88 0.80 0.83 0.72 0.55
RF-GR 0.48 0.79 0.86 0.87 0.80 0.86 0.72 0.54
RF-BR 0.48 0.79 0.84 0.86 0.79 0.84 0.67 0.54
XGBoost-BG 0.48 0.79 0.83 0.82 0.80 0.75 0.57 0.44
XGBoost-GR 0.48 0.79 0.84 0.81 0.79 0.74 0.58 0.46
XGBoost-BR 0.48 0.78 0.82 0.80 0.78 0.72 0.53 0.43

ACOLITE

RF-BG 0.46 0.80 0.84 0.87 0.80 0.80 0.70 0.52
RF-GR 0.46 0.80 0.84 0.86 0.80 0.80 0.65 0.49
RF-BR 0.46 0.79 0.84 0.87 0.78 0.80 0.68 0.52
XGBoost-BG 0.46 0.79 0.83 0.82 0.79 0.74 0.59 0.45
XGBoost-GR 0.46 0.80 0.82 0.80 0.80 0.73 0.56 0.40
XGBoost-BR 0.46 0.80 0.82 0.80 0.77 0.70 0.53 0.39

The atmospheric correction algorithms had a slight effect on the results, where all
sensor and algorithm configurations provided similar performances across different input
images resulting from three atmospheric correction algorithms. At this point, it is worth
mentioning that, our findings reflect the correlative behavior of surface reflectance values
with in situ depths in log space; thus, this finding does not necessarily indicate the similarity
of absolute surface reflectance values obtained by these atmospheric correction algorithms.
For the ease of application, ACOLITE is more automated and requires no additional
input information.

The sensor-based evaluation proved that Sentinel 2 provided higher accuracies in the
0–5 m, 5–10 m, and 0–10 m depth intervals, while the performance of the Landsat 8 was
higher for the remaining 5 m intervals and wider depth ranges (0–15 m and 0–20 m). As
expected from previous studies, the accuracies reduced with increasing depths; however,
ML-based algorithms minimized this increment and provided comparatively consistent
mapping performances.

R2 is another important indicator that represents the model’s ability to construct the
relationship between reflectance and depth. Depth intervals for R2 are defined differently
than the RMSE, which are 0–5, 0–10, 0–15, and 0–20, to investigate the correlation changes
in increasing interval ranges. When the results of correlation analysis were investigated,
it was similarly seen that Landsat 8 images provided high and consistent correlation
characteristics except for the 0–5 m depth ranges. For Sentinel 2, a decrease in correlation
was observable through larger depths such as the 0–15 m and 0–20 m ranges. The SDB
algorithms had a small effect, with slightly higher correlations of RF than XGBoost. The
results also provided that there is no significant effect of the three atmospheric correction
methods on the correlation performance.

The last step of the study was to evaluate the performance in terms of category of zone
of confidence (CATZOC) classification. The CATZOC levels are specified in the relevant
International Hydrographic Organization (IHO) standard documents [74], which comprise
the requisite accuracy in various depth ranges (Table 5) [27]. SDB results of the study were
mainly clustered at Level A2/B and C, while the performance of XGBoost and RF at 0–5 m
intervals with Sentinel 2 images satisfied Level A1. Lastly, the performance at 0–20 m, the
widest range for all combinations, was evaluated as Level C and Level D (Tables A7–A9).
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Table 5. Accuracy requirements according to IHO CATZOC levels.

CATZOC Level Depth (m) Horizontal Accuracy
(±m)

Vertical Accuracy
(±m)

A1

5

5 + 5% depth

0.55
10 0.60
15 0.65
20 0.70

A2/B

5

20/50

1.10
10 1.20
15 1.30
20 1.40

C

5

500

2.30
10 2.50
15 2.80
20 3.00

D - Worse than C Worse than C

The final products of the 0–20 m range bathymetry inversion were created as raster
grid maps for both RF and XGBoost methods, and Landsat 8 and Sentinel 2 images
(Figures 9 and 10). In addition, change rasters were also constructed in regard to the
grid map of the in situ MBE data for comparison purposes. When these maps are visually
investigated, it can be interpreted that both algorithms provide similar results and that
they are mostly comparable to the MBE map. The results obtained from Landsat 8 are
more in line with MBE in higher depths (Figure 9b,c vs. Figure 10b,c). Additionally, the
difference maps from Landsat 8 provided smaller difference ranges (lighter blue) when
compared with Sentinel 2 forms (Figure 9d,e vs. Figure 10d,e). Smother boundaries of the
Sentinel 2-based maps match well with the MBE data, while the step effect and boundary
discontinuities are visible for the Landsat 8-based maps related to higher spatial resolution
of the Sentinel 2 images. Lastly, the higher performance of Sentinel 2 in coastal regions
(0–5 m depth) is visible on the maps.
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5. Discussion

When the results are investigated through the algorithm context, it can clearly be
seen that ML- and DL-based algorithms cope well with the non-linear behavior of the
reflectance–depth relationship, and provide highly accurate and consistent results for 5 m
depth intervals. Although the decrease in accuracy with increasing depth is observable
for all methods, this phenomenon is less effective in these models. They also performed
well in wider-depth ranges of 0–10 m, 0–15 m, and 0–20 m, indicating their consistent
performance. The performance of Lyzenga ranked as the fifth, followed by Stumpf BR
and SVM. The worst results were obtained with Stumpf BG and Stumpf GR combinations
for Landsat 8, which faced dramatic RMSE and MAE increases in wider depth intervals.
While not providing the highest accuracy, SVM was the most consistent method with stable
RMSE and MAE values across all atmospheric correction, sensor, and band combinations.

In the sensor context, Landsat 8 provided higher accuracy with lower RMSE and
higher R2 values in higher depths (greater than 10 m) and wider depth ranges (0–15 and
0–20 m), but faced difficulties in 0–5 m and 0–10 m depth intervals. Sentinel 2 provided
better results in 0–5 m, 5–10 m, and 0–10 m intervals; however, its performance dramatically
reduced especially in wide depth ranges (higher RMSE, MAE, and lower R2), where it could
not build a correlation with in situ MBE data. From these results, it can be commented that
Sentinel 2 copes well with depth heterogeneity, which is observable on the shallower parts
due to its high spatial resolution, while it exerted a disadvantage in deeper regions where
depth became more homogenous. However, higher spatial resolution provides reflectance
heterogeneity. This finding points out that, although previous research concluded that
higher resolution results in higher accuracy [22,75], the spatial heterogeneity of the depth
and conformity of image spatial resolution is another factor to be considered. The findings
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of Ashphaq et al., 2022, also compared the performance of Landsat 8, Sentinel 2, and ASTER-
Terra images in SDB mapping of a turbid coastal water region, and they concluded that they
could reach the highest correlation and the lowest accuracy with Landsat 8 images, which
supports our findings that spatial resolution is not a direct indicator of higher accuracy [76].
On the other hand, we determined that the advantage of Sentinel 2 is its construction of
boundary geometries quite accurately compared with Landsat 8, mainly as a result of its
higher spatial resolution.

When the results are analyzed in the context of atmospheric correction, this study’s
findings show that, particularly when using ML-based techniques, the effects of the three
selected atmospheric correction models on building the relationship between surface
reflectance and in situ depth measurements are minimal. This finding conflicts with
Duan’s [9] and Abdul Gafoor’s [21] studies, which employed ML-based methods for
bathymetric modeling and found noticeable effects of atmospheric correction on modeling,
but it is quite consistent with the study conducted by Ceyhun and Yilmaz [16]. It should
be highlighted that the proper application of the atmospheric correction to the data is still
a factor to be considered. At this point, the ACOLITE model is the most parametrically
automated model. In particular, the AOT value calculated by the model agreed with the
value (0.030) obtained from the AERONET Microtops Level 2.0 dataset obtained in 2019
in the relevant season. The Wv parameter also agreed with 0.8 cm, which is the average
of the summer season between 2019 and 2021. While running the ACOLITE model, the
area of interest can be introduced as vector data, and the result data can be obtained only
for this area. Although AOT can be calculated as image based for the iCOR model, this
approach is primarily based on the calculation of land surfaces; thus, the AOT and Wv
values obtained from the AERONET Microtops Level 2.0 dataset were defined manually.
The only parameter that can be intervened for ATCOR is Wv, for which 1.0 cm was chosen
as the closest value to the Aeronet data. To summarize, iCOR and ATCOR have some
limitations related to AOT retrieval and the aerosol model; however, these limitations can
be minimized by the use of AERONET OC data.

Although the proposed approaches and the findings of this study point out efficient
SDB mapping capabilities in such a region with complex characteristics, it is worth men-
tioning that SDB is influenced by several factors such as water quality, wave structure,
salinity, and illumination conditions related to seasonal differences, which are not directly
investigated in this study. Moreover, performance of the recently investigated XGBoost
was similar to the RF; however, its advantages on other ML algorithms is mainly observed
with high-dimensional datasets [22]. Therefore, its performance should be further checked
with a multi-temporal image-based SBD approach. This work used ANN- and CNN-based
architectures in SDB mapping, although the performance of recently introduced DL-based
architectures remains to be investigated in the future. Lastly, we plan to extend the study
to different regions and other sensors for possible performance improvement, and to wider
applicability testing of our findings.

6. Conclusions

Several studies have demonstrated the effective use of optical satellite images in
satellite-derived bathymetry (SDB) mapping of shallow waters. This study investigated
the capability of free-of-charge Landsat 8 and Sentinel 2 satellite images by considering
the performances of several SDB algorithms and three atmospheric correction models on
SDB mapping in a challenging and complex study region, Horseshoe Island, Antarctic
Peninsula, for the first time. The results showed that ML-based RF and XGBoost algorithms
are the most effective ones for 5 m depth intervals by providing the highest correlation
(R2 around 0.80) and lowest RMSE and MAE values. These t2 algorithms also provide
reasonable performance in 0–20 m overall depth range, where most of the remaining al-
gorithms failed. When comparing the best-performing RF BG and closest performance
ANN for the Landsat 8 image, the MAE reduction was found to be 57% throughout the
entire depth range. Thus, these algorithms along with DL-based algorithms can be used
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for optical SDB studies concerning their large training dataset requirements. CATZOC
levels obtained with high-performance models are primarily A2/B and C, which are com-
parable to previous research employing satellite images with a similar or better spatial
resolution. Atmospheric correction algorithms tend to have a limited effect on perfor-
mance, whereas ACOLITE provided the most automated solution. Landsat 8 provided
better results in higher depth intervals such as 10–15 m and 15–20 m and wider depth
ranges (0–15 m and 0–20 m), while Sentinel 2 was better in the shallowest areas, where
the depth ranges between 0–10 m. The geometry of the boundary lines was represented
better with Sentinel 2-based maps by taking advantage of the higher spatial resolution.
Further studies are planned to extend this comparison across different regions, to integrate
multi-temporal images into methodologies, and to evaluate and integrate much newer
DL-based approaches.
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Appendix A

Table A1. RMSE results for bathymetric models derived from ATCOR-corrected images.

Landsat 8 Sentinel 2

0–5 5–10 10–15 15–20 0–10 0–15 0–20 0–5 5–10 10–15 15–20 0–10 0–15 0–20

Stumpf-BG 1.41 1.62 1.51 1.61 3.92 7.00 10.00 1.12 1.37 1.47 1.45 2.70 4.33 5.88
Stumpf-GR 1.18 1.48 1.47 1.53 3.00 5.40 8.00 1.44 1.47 1.60 1.47 3.47 6.00 7.79
Stumpf-BR 1.00 1.34 1.44 1.45 2.26 3.62 4.90 1.00 1.35 1.44 1.45 2.36 3.80 5.24
Lyzenga 1.00 1.33 1.43 1.45 2.17 3.42 4.81 0.96 1.33 1.43 1.45 2.15 3.56 5.00
SVM-BG 1.08 1.35 1.44 1.45 2.52 3.89 5.39 1.08 1.35 1.44 1.45 2.52 3.93 5.39
SVM-GR 1.07 1.35 1.44 1.45 2.52 3.89 5.39 1.08 1.35 1.44 1.45 2.52 3.93 5.39
SVM-BR 1.07 1.35 1.44 1.45 2.50 3.87 5.37 1.08 1.35 1.44 1.45 2.52 3.93 5.39
RF-BG 0.78 0.92 1.06 1.15 1.10 1.58 1.92 0.48 0.74 1.03 1.17 0.93 2.13 3.61
RF-GR 0.78 0.92 1.07 1.16 1.10 1.57 1.97 0.47 0.73 1.02 1.15 0.92 2.10 3.53
RF-BR 0.78 0.92 1.06 1.16 1.12 1.56 1.94 0.48 0.73 1.07 1.19 0.94 2.17 3.48
XGBoost-BG 0.78 0.93 1.11 1.19 1.10 1.71 2.28 0.49 0.97 1.24 1.30 1.25 2.55 4.09
XGBoost-GR 0.78 0.93 1.10 1.19 1.10 1.67 2.39 0.48 0.94 1.23 1.27 1.23 2.52 3.97
XGBoost-BR 0.78 0.92 1.10 1.18 1.12 1.70 2.39 0.48 0.95 1.21 1.31 1.32 2.58 3.99
ANN 0.84 1.30 1.42 1.57 1.69 3.00 4.03 0.89 1.31 1.46 1.44 2.06 3.36 4.74
CNN 0.88 1.29 1.42 1.47 1.87 3.10 4.40 0.90 1.33 1.44 1.44 2.07 3.38 4.76
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Table A2. RMSE results for bathymetric models derived from iCOR-corrected images.

Landsat 8 Sentinel 2

0–5 5–10 10–15 15–20 0–10 0–15 0–20 0–5 5–10 10–15 15–20 0–10 0–15 0–20

Stumpf-BG 1.34 1.56 1.68 1.58 2.70 6.39 10.22 1.06 1.39 1.44 1.45 2.44 3.91 5.61
Stumpf-GR 1.12 1.43 1.53 1.50 2.81 4.80 7.27 1.06 1.36 1.44 1.45 2.41 3.85 5.30
Stumpf-BR 1.02 1.33 1.43 1.45 2.36 3.62 4.91 1.05 1.35 1.44 1.45 2.42 3.90 5.35
Lyzenga 1.02 1.31 1.43 1.45 2.22 3.23 4.58 0.93 1.32 1.43 1.45 2.04 3.29 4.71
SVM-BG 1.08 1.35 1.44 1.45 2.52 3.89 5.38 1.08 1.35 1.44 1.45 2.52 3.91 5.39
SVM-GR 1.07 1.35 1.44 1.45 2.52 3.89 5.39 1.08 1.35 1.44 1.45 2.52 3.90 5.38
SVM-BR 1.06 1.35 1.44 1.45 2.48 3.85 5.38 1.08 1.35 1.44 1.45 2.52 3.91 5.39
RF-BG 0.77 0.94 1.10 1.13 1.10 1.49 1.91 0.47 0.75 1.08 1.18 0.95 2.00 3.64
RF-GR 0.77 0.93 1.10 1.14 1.12 1.49 1.98 0.47 0.75 1.07 1.17 0.93 2.09 3.62
RF-BR 0.77 0.94 1.10 1.13 1.12 1.57 2.02 0.49 0.74 1.04 1.17 0.98 2.25 3.59
XGBoost-BG 0.77 0.94 1.12 1.17 1.11 1.60 2.30 0.47 0.96 1.23 1.29 1.23 2.56 4.00
XGBoost-GR 0.77 0.94 1.12 1.17 1.13 1.58 2.32 0.48 0.97 1.24 1.30 1.23 2.53 3.95
XGBoost-BR 0.77 0.94 1.12 1.17 1.13 1.63 2.41 0.49 0.95 1.22 1.30 1.25 2.70 4.05
ANN 0.81 1.23 1.38 1.45 1.77 2.83 3.97 0.83 1.30 1.43 1.44 2.00 3.40 4.74
CNN 0.86 1.28 1.41 1.47 1.90 2.95 4.03 0.89 1.31 1.44 1.48 2.00 3.41 4.76

Table A3. RMSE results for bathymetric models derived from ACOLITE-corrected images.

Landsat 8 Sentinel 2

0–5 5–10 10–15 15–20 0–10 0–15 0–20 0–5 5–10 10–15 15–20 0–10 0–15 0–20

Stumpf-BG 1.41 1.62 1.51 1.61 3.92 7.10 10.60 1.06 1.47 1.44 1.45 2.43 3.88 5.38
Stumpf-GR 1.18 1.48 1.47 1.53 3.00 5.47 8.00 1.06 1.37 1.44 1.45 2.43 3.84 5.39
Stumpf-BR 1.00 1.34 1.44 1.45 2.26 3.67 4.90 1.05 1.34 1.44 1.45 2.43 3.86 5.36
Lyzenga 1.01 1.33 1.43 1.45 2.17 3.42 4.81 0.94 1.32 1.43 1.45 2.06 3.31 4.74
SVM-BG 1.08 1.35 1.44 1.45 2.52 3.91 5.39 1.08 1.35 1.44 1.45 2.52 3.86 5.39
SVM-GR 1.08 1.35 1.44 1.45 2.52 3.91 5.39 1.07 1.35 1.44 1.45 2.52 3.86 5.39
SVM-BR 1.07 1.35 1.44 1.45 2.50 3.90 5.37 1.08 1.35 1.44 1.45 2.52 3.86 5.39
RF-BG 0.78 0.92 1.06 1.15 1.10 1.56 1.92 0.48 0.85 1.14 1.26 0.92 2.00 3.79
RF-GR 0.78 0.92 1.07 1.16 1.10 1.60 1.97 0.47 0.82 1.12 1.24 0.92 2.30 3.67
RF-BR 0.78 0.92 1.06 1.16 1.10 1.59 1.93 0.49 0.83 1.14 1.23 0.91 2.20 3.75
XGBoost-BG 0.78 0.93 1.10 1.19 1.10 1.65 2.28 0.48 0.99 1.25 1.32 1.24 2.48 3.90
XGBoost-GR 0.78 0.92 1.10 1.19 1.10 1.69 2.40 0.47 1.00 1.23 1.31 1.27 2.56 3.97
XGBoost-BR 0.78 0.92 1.10 1.18 1.10 1.70 2.39 0.50 1.00 1.24 1.31 1.34 2.64 4.15
ANN 0.82 1.30 1.41 1.44 1.70 2.87 4.02 0.82 1.29 1.44 1.57 2.00 2.12 4.78
CNN 0.81 1.25 1.41 1.44 1.70 3.22 4.16 0.81 1.30 1.43 1.45 2.12 3.45 4.82

Table A4. MAE results for bathymetric models derived from ATCOR-corrected images.

Landsat 8 Sentinel 2

0–5 5–10 10–15 15–20 0–10 0–15 0–20 0–5 5–10 10–15 15–20 0–10 0–15 0–20

Stumpf-BG 1.38 1.41 1.27 1.29 3.46 6.35 9.37 0.98 1.15 1.31 1.25 2.76 4.64 5.83
Stumpf-GR 1.07 1.29 1.26 1.27 2.49 4.45 6.55 1.27 1.28 1.36 1.26 2.77 4.80 6.25
Stumpf-BR 0.83 1.14 1.25 1.26 2.04 3.19 4.43 0.84 1.15 1.25 1.26 2.07 3.31 4.55
Lyzenga 0.83 1.13 1.25 1.25 1.85 2.89 4.10 0.78 1.13 1.25 1.25 1.81 2.98 4.24
SVM-BG 0.83 1.14 1.25 1.25 2.11 3.37 4.66 0.83 1.14 1.25 1.25 2.11 3.39 4.66
SVM-GR 0.83 1.14 1.25 1.25 2.11 3.37 4.66 0.83 1.14 1.25 1.25 2.11 3.39 4.66
SVM-BR 0.83 1.14 1.25 1.25 2.11 3.37 4.66 0.83 1.14 1.25 1.25 2.11 3.39 4.66
RF-BG 0.58 0.72 0.83 0.92 0.82 1.13 1.35 0.34 0.51 0.74 0.83 0.58 1.27 2.37
RF-GR 0.58 0.71 0.84 0.91 0.81 1.11 1.38 0.34 0.52 0.74 0.85 0.58 1.26 2.35
RF-BR 0.58 0.71 0.83 0.91 0.81 1.13 1.37 0.34 0.51 0.75 0.85 0.60 1.26 2.36
XGBoost-BG 0.58 0.73 0.88 0.99 0.84 1.26 1.74 0.36 0.76 1.02 1.08 0.97 2.07 3.35
XGBoost-GR 0.58 0.72 0.90 0.98 0.82 1.26 1.83 0.35 0.79 1.03 1.08 0.93 1.98 3.24
XGBoost-BR 0.58 0.73 0.88 0.97 0.82 1.28 1.84 0.37 0.75 1.02 1.08 1.03 2.02 3.39
ANN 0.65 1.06 1.22 1.28 1.43 2.30 3.13 0.75 1.12 1.28 1.30 1.58 2.65 3.99
CNN 0.72 1.10 1.32 1.33 1.52 2.62 3.59 0.76 1.15 1.33 1.34 1.64 2.71 3.97
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Table A5. MAE results for bathymetric models derived from iCOR-corrected images.

Landsat 8 Sentinel 2

0–5 5–10 10–15 15–20 0–10 0–15 0–20 0–5 5–10 10–15 15–20 0–10 0–15 0–20

Stumpf-BG 1.34 1.38 1.39 1.28 3.11 5.55 9.31 0.88 1.18 1.26 1.25 2.27 3.80 4.84
Stumpf-GR 0.99 1.25 1.30 1.27 2.25 3.94 5.97 0.86 1.16 1.25 1.25 2.12 3.31 4.61
Stumpf-BR 0.84 1.14 1.25 1.26 2.04 3.21 4.41 0.86 1.15 1.25 1.26 2.13 3.37 4.64
Lyzenga 0.83 1.10 1.24 1.25 1.83 2.75 3.79 0.75 1.11 1.24 1.26 1.69 2.76 3.93
SVM-BG 0.83 1.14 1.25 1.25 2.11 3.38 4.66 0.83 1.14 1.25 1.25 2.11 3.39 4.66
SVM-GR 0.83 1.14 1.25 1.25 2.11 3.38 4.66 0.83 1.14 1.25 1.25 2.11 3.39 4.66
SVM-BR 0.83 1.14 1.25 1.25 2.11 3.38 4.66 0.83 1.14 1.25 1.25 2.11 3.39 4.66
RF-BG 0.58 0.72 0.85 0.91 0.82 1.11 1.35 0.34 0.52 0.76 0.83 0.60 1.25 2.33
RF-GR 0.58 0.72 0.85 0.91 0.82 1.10 1.38 0.34 0.51 0.73 0.83 0.59 1.24 2.33
RF-BR 0.58 0.72 0.86 0.91 0.82 1.12 1.38 0.34 0.51 0.76 0.84 0.60 1.29 2.40
XGBoost-BG 0.58 0.73 0.89 0.96 0.83 1.22 1.75 0.35 0.77 1.03 1.08 0.93 2.01 3.28
XGBoost-GR 0.58 0.73 0.89 0.97 0.83 1.21 1.80 0.35 0.77 1.02 1.08 0.98 1.96 3.20
XGBoost-BR 0.58 0.73 0.91 0.98 0.85 1.26 1.84 0.36 0.76 1.03 1.06 1.01 2.10 3.35
ANN 0.63 0.98 1.20 1.25 1.36 2.15 3.14 0.65 1.06 1.25 1.25 1.68 2.75 4.02
CNN 0.76 1.14 1.32 1.32 1.50 2.39 3.50 0.72 1.11 1.28 1.26 1.75 2.84 4.07

Table A6. MAE results for bathymetric models derived from ACOLITE-corrected images.

Landsat 8 Sentinel 2

0–5 5–10 10–15 15–20 0–10 0–15 0–20 0–5 5–10 10–15 15–20 0–10 0–15 0–20

Stumpf-BG 1.38 1.41 1.27 1.29 3.46 6.47 9.37 0.84 1.17 1.26 1.25 2.37 4.01 4.97
Stumpf-GR 1.07 1.29 1.26 1.27 2.49 4.50 6.55 0.84 1.16 1.25 1.25 2.12 3.31 4.61
Stumpf-BR 0.83 1.14 1.25 1.26 2.04 3.23 4.43 0.85 1.15 1.25 1.26 2.12 3.33 4.64
Lyzenga 0.83 1.13 1.25 1.25 1.85 2.94 4.10 0.76 1.12 1.24 1.26 1.71 2.74 3.96
SVM-BG 0.83 1.14 1.25 1.25 2.11 3.39 4.66 0.83 1.14 1.25 1.25 2.11 3.35 4.66
SVM-GR 0.83 1.14 1.25 1.25 2.11 3.39 4.66 0.83 1.14 1.25 1.25 2.11 3.35 4.66
SVM-BR 0.83 1.14 1.25 1.25 2.11 3.39 4.66 0.83 1.14 1.25 1.25 2.11 3.35 4.66
RF-BG 0.58 0.72 0.83 0.92 0.82 1.17 1.35 0.34 0.57 0.86 0.96 0.63 1.40 2.53
RF-GR 0.58 0.71 0.84 0.91 0.81 1.14 1.38 0.35 0.57 0.84 0.93 0.64 1.41 2.64
RF-BR 0.58 0.71 0.83 0.91 0.81 1.14 1.37 0.35 0.59 0.83 0.93 0.67 1.40 2.53
XGBoost-BG 0.58 0.73 0.88 0.99 0.84 1.28 1.74 0.36 0.76 1.07 1.10 0.95 1.98 3.23
XGBoost-GR 0.58 0.72 0.90 0.98 0.82 1.29 1.83 0.35 0.78 1.04 1.11 0.97 2.00 3.33
XGBoost-BR 0.58 0.73 0.88 0.97 0.82 1.26 1.84 0.37 0.79 1.03 1.11 1.04 2.15 3.45
ANN 0.65 1.03 1.24 1.25 1.31 2.32 3.13 0.66 1.09 1.24 1.25 1.67 2.72 4.00
CNN 0.77 1.15 1.29 1.30 1.55 2.58 3.56 0.73 1.13 1.32 1.35 1.76 2.75 4.03

Table A7. CATZOC classification of bathymetric models derived from ATCOR-corrected images.

Landsat 8 Sentinel 2

0–5 5–10 10–15 15–20 0–10 0–15 0–20 0–5 5–10 10–15 15–20 0–10 0–15 0–20

Stumpf-BG C C A2/B A2/B D D D A2/B A2/B C A2/B D D D
Stumpf-GR A2/B C A2/B A2/B C D D C C C A2/B D D D
Stumpf-BR A2/B A2/B A2/B A2/B C D D A2/B A2/B A2/B A2/B C D D

Lyzenga A2/B A2/B A2/B A2/B C D D A2/B A2/B A2/B A2/B C D D
SVM-BG A2/B A2/B A2/B A2/B C D D A2/B A2/B A2/B A2/B C D D
SVM-GR A2/B A2/B A2/B A2/B C D D A2/B A2/B A2/B A2/B C D D
SVM-BR A2/B A2/B A2/B A2/B C D D A2/B A2/B A2/B A2/B C D D
RF-BG A2/B A2/B A2/B A2/B A2/B A2/B A2/B A1 A1 A2/B A2/B A1 A2/B C
RF-GR A2/B A2/B A2/B A2/B A2/B A2/B A2/B A1 A1 A2/B A2/B A1 A2/B C
RF-BR A2/B A2/B A2/B A2/B A2/B A2/B A2/B A1 A1 A2/B A2/B A2/B A2/B C

XGBoost-BG A2/B A2/B A2/B A2/B A2/B A2/B C A1 A2/B A2/B A2/B A2/B C D
XGBoost-GR A2/B A2/B A2/B A2/B A2/B A2/B C A1 A2/B A2/B A2/B A2/B C D
XGBoost-BR A2/B A2/B A2/B A2/B A2/B A2/B C A1 A2/B A2/B A2/B A2/B C D

ANN A2/B A2/B A2/B A2/B C C D A2/B A2/B A2/B A2/B C C D
CNN A2/B A2/B C A2/B C C D A2/B A2/B C A2/B C C D
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Table A8. CATZOC classification of bathymetric models derived from iCOR-corrected images.

Landsat 8 Sentinel 2

0–5 5–10 10–15 15–20 0–10 0–15 0–20 0–5 5–10 10–15 15–20 0–10 0–15 0–20

Stumpf-BG C C C A2/B D D D A2/B A2/B A2/B A2/B C D D
Stumpf-GR A2/B C C A2/B C D D A2/B A2/B A2/B A2/B C D D
Stumpf-BR A2/B A2/B A2/B A2/B C D D A2/B A2/B A2/B A2/B C D D

Lyzenga A2/B A2/B A2/B A2/B C C D A2/B A2/B A2/B A2/B C C D
SVM-BG A2/B A2/B A2/B A2/B C D D A2/B A2/B A2/B A2/B C D D
SVM-GR A2/B A2/B A2/B A2/B C D D A2/B A2/B A2/B A2/B C D D
SVM-BR A2/B A2/B A2/B A2/B C D D A2/B A2/B A2/B A2/B C D D
RF-BG A2/B A2/B A2/B A2/B A2/B A2/B A2/B A1 A1 A2/B A2/B A2/B A2/B C
RF-GR A2/B A2/B A2/B A2/B A2/B A2/B A2/B A1 A1 A2/B A2/B A1 A2/B C
RF-BR A2/B A2/B A2/B A2/B A2/B A2/B A2/B A1 A1 A2/B A2/B A2/B A2/B C

XGBoost-BG A2/B A2/B A2/B A2/B A2/B A2/B C A1 A2/B A2/B A2/B A2/B C D
XGBoost-GR A2/B A2/B A2/B A2/B A2/B A2/B C A1 A2/B A2/B A2/B A2/B C D
XGBoost-BR A2/B A2/B A2/B A2/B A2/B A2/B C A1 A2/B A2/B A2/B A2/B C D

ANN A2/B A2/B A2/B A2/B C C D A2/B A2/B A2/B A2/B C C D
CNN A2/B A2/B C A2/B C C D A2/B A2/B A2/B A2/B C D D

Table A9. CATZOC classification of bathymetric models derived from ACOLITE-corrected images.

Landsat 8 Sentinel 2

0–5 5–10 10–15 15–20 0–10 0–15 0–20 0–5 5–10 10–15 15–20 0–10 0–15 0–20

Stumpf-BG C C A2/B A2/B D D D A2/B A2/B A2/B A2/B C D D
Stumpf-GR A2/B C A2/B A2/B C D D A2/B A2/B A2/B A2/B C D D
Stumpf-BR A2/B A2/B A2/B A2/B C D D A2/B A2/B A2/B A2/B C D D

Lyzenga A2/B A2/B A2/B A2/B C D D A2/B A2/B A2/B A2/B C C D
SVM-BG A2/B A2/B A2/B A2/B C D D A2/B A2/B A2/B A2/B C D D
SVM-GR A2/B A2/B A2/B A2/B C D D A2/B A2/B A2/B A2/B C D D
SVM-BR A2/B A2/B A2/B A2/B C D D A2/B A2/B A2/B A2/B C D D
RF-BG A2/B A2/B A2/B A2/B A2/B A2/B A2/B A1 A1 A2/B A2/B A2/B C C
RF-GR A2/B A2/B A2/B A2/B A2/B A2/B A2/B A1 A1 A2/B A2/B A2/B C C
RF-BR A2/B A2/B A2/B A2/B A2/B A2/B A2/B A1 A1 A2/B A2/B A2/B C C

XGBoost-BG A2/B A2/B A2/B A2/B A2/B A2/B C A1 A2/B A2/B A2/B A2/B C D
XGBoost-GR A2/B A2/B A2/B A2/B A2/B A2/B C A1 A2/B A2/B A2/B A2/B C D
XGBoost-BR A2/B A2/B A2/B A2/B A2/B A2/B C A1 A2/B A2/B A2/B A2/B C D

ANN A2/B A2/B A2/B A2/B C C D A2/B A2/B A2/B A2/B C C D
CNN A2/B A2/B A2/B A2/B C C D A2/B A2/B C A2/B C C D
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