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Abstract: The accurate inversion of actual evapotranspiration (ETa) at a regional scale is crucial for 
understanding water circulation, climate change, and drought monitoring. In this study, we pro-
duced a 1 km monthly ETa dataset for Turpan and Hami, two typical arid cities in northwest China, 
using multi-source remote sensing data, reanalysis information, and the ETMonitor model from 
1980 to 2021. We analyzed the spatiotemporal variation of ETa using various statistical approaches 
and discussed the impact of climate and land use and cover changes (LUCC) on ETa. The results 
show the following: (1) the estimation results correlate well with ETa products on monthly scales 
(coefficient of determination (R2) > 0.85, root mean square error (RMSE) < 15 mm/month) with high 
reliability. (2) The ETa values were spatially distributed similarly to precipitation and LUCC, with 
the multi-year (1980–2021) average of 66.31 mm and a slightly fluctuating downward trend (−0.19 
mm/a). (3) During the 42-year period, 63.16% of the study area exhibited an insignificant decrease 
in ETa, while 86.85% experienced pronounced fluctuations (coefficient of variation (CV) > 0.20), and 
78.83% will show an upward trend in the future. (4) ETa was significantly positively correlated with 
precipitation (94.17%) and insignificantly positively correlated with temperature (55.81%). The im-
pact of human activities showed an insignificant decreasing trend (85.41%). Additionally, the inten-
sity of ETa varied considerably among land types, with the largest for cropland (424.12 mm/a). The 
results of the study have implications for promoting the rational allocation of regional water re-
sources and improving water use efficiency in arid zones. 
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1. Introduction 
Evapotranspiration (ET) is a crucial component of the global energy exchange 

through the water cycle and the carbon cycle [1]. In arid regions, it can release over 80% 
of water to the atmosphere. According to the Sixth Assessment Report (AR6) of the Inter-
governmental Panel on Climate Change, the global surface temperature (TEM) reached 
its highest level in 125,000 years between 2011 and 2020, and the water cycle rate rose 
dramatically, leading to significant and complex changes in ET. Furthermore, according 
to the report of the 20th National Congress of the Communist Party of China, we should 
“advance green development and harmonious coexistence between humans and nature,” 
and the human–water relationship is an important manifestation of the human–nature 
relationship [2]. Therefore, the accurate estimation and monitoring of ET in arid areas are 
of great significance for assessing the supply–demand balance of water resources, guiding 

Citation: Wang, L.; Wang, J.;  

Ding, J.; Li, X. Estimation and  

Spatiotemporal Evolution Analysis 

of Actual Evapotranspiration in  

Turpan and Hami Cities Based on 

Multi-Source Data. Remote Sens. 

2023, 15, 2565. https://doi.org/ 

10.3390/rs15102565 

Academic Editor: Gabriel Senay 

Received: 4 April 2023 

Revised: 8 May 2023 

Accepted: 11 May 2023 

Published: 14 May 2023 

 

Copyright: © 2023 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Remote Sens. 2023, 15, 2565 2 of 31 
 

 

agricultural irrigation, and preventing desertification [3]. However, accurate ET infor-
mation or datasets with continuous coverage and medium-high resolution in space (i.e., 1 
km) and time are still lacking in the Turpan-Hami region. 

Traditional ET estimations are based on point-scale observations made using instru-
ments such as evaporation pans, lysimeters, and flux towers to derive ET from the under-
lying surface of Earth. However, these data cannot effectively reflect surface ET at regional 
scales and cannot meet the needs of planning for the rational development and utilization 
of regional water resources [4]. Remote sensing (RS) technology provides a new way to 
obtain ET data [5], and it has spawned a variety of ET estimation models [6–8], including 
SEBAL [9], TSEB [10], HSEB [11], and EEOET [12]. RS data can provide surface parameters 
such as temperature, net radiation, and vegetation index with a high spatiotemporal res-
olution, and models can then be used to describe the physical relationships between ET 
and these parameters. By combining RS data and models, regional-scale ET can be esti-
mated more effectively, and factors such as different land-cover types, seasonal changes, 
and climatic conditions can be considered. 

However, these models also have their own defects and uncertainties, such as ignor-
ing the physiological processes of vegetation, soil moisture stress, and cloud effects. For 
this reason, Hu and Jia developed the ETMonitor model, which comprehensively consid-
ers energy balance, water balance, and the physiological processes of vegetation [13,14]. 
The ETMonitor model uses multi-source satellite observations and introduces variables 
such as the soil moisture (SM) index, vegetation temperature index, and cloud cover index 
in parameterizing the soil–atmosphere energy and water exchange [15]. This model can 
effectively invert daily ETa and its components at a 1 km global scale, and it has been 
validated against the results of other models. 

The development of RS cloud-computing platforms [16,17] has prompted the crea-
tion of RS evapotranspiration products such as MOD16A2, GLASS, GLEAM, and PML–
V2. These products have their own benefits and drawbacks: data such as GLEAM and 
GLDAS have long coverage times and wide applicability but low spatial resolution; 
MOD16A2 has a higher spatiotemporal resolution (500 m/8-day) and is widely used [18], 
but it is value-free in areas without vegetation cover; PML-V2 is a relatively new ETa data 
product (2000.02–2020.12) that is more applicable in arid zones [19]. 

In recent decades, the northwestern arid area of China has been affected by global 
climate change, especially the increase in temperature [20]. The cities of Turpan and Hami 
are ecologically fragile and sensitive to climate change, and warming, retreating glaciers, 
melting permafrost, the increased water cycle, and significant changes in ET in the region 
have significant impacts on regional socioeconomic development and the protection of 
the ecological environment. Warming leads to an increase in potential evapotranspiration 
(ETp), but ETa depends on water availability [21]. Moreover, since the implementation of 
reforestation in 2000, the local forestry and fruit industries have grown, and a protective 
forest system—mainly for wind and sand control—has been built. However, vegetation 
restoration may lead to increased water loss through transpiration, and the spatiotem-
poral dynamics and attribution of ETa in Tuha are still unclear. 

In light of the above, in this work, using multi-source RS and reanalysis data, the 
ETMonitor model [13] was applied to produce a monthly ETa dataset for Tuha from 1980 
to 2021, and the characteristic patterns of spatiotemporal changes in ETa at the raster scale 
of Tuha were analyzed by combining Sen’s slope estimator, the Mann–Kendall (MK) trend 
test, the coefficient of variation (CV), and the Hurst index. The effects of climate factors 
and land use on ETa are discussed in this paper with a view to providing a reference for 
ETa estimation, sustainable water resource utilization, and the protection of the ecological 
environmental in Tuha and other similar subsurface areas. 
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2. Materials and Methods 
2.1. Study Area 

The Turpan-Hami region (Tuha, 41°18′–43°43′N, 86°40′–96°04′E) is located in the east-
central part of Xinjiang, China (Figure 1), and comprises the cities of Turpan, Xinxing, and 
Hami. Tuha belongs to a region with a typical arid continental climate and a distinct and 
fragile mountain-oasis-desert ecosystem. 

Tuha is located in the hinterland of Eurasia with seasonal differences in precipitation 
(PRCP, 16–35 mm/a) and evaporation (2314 mm/a). Additionally, the region’s long sun-
shine hours (3360.3 h) [22], high effective cumulative temperature (>5300 °C), low relative 
humidity, strong wind force, and other characteristics aggravate the occurrence and im-
pact of natural catastrophes such as sandstorm, drought, salinization, etc. Small rivers, 
springs, and canals are important water sources in this area due to the uneven distribution 
of water resources in space and time [23]. However, Tuha also faces multiple water short-
ages caused by resource and engineering factors. 

Tuha is one of the key areas of the Third Xinjiang Scientific Examination and the key 
construction area of the “Three Bases and One Passage” in Xinjiang. The region is abun-
dant in coal, oil, and gas resources [24], but its topography is undulating and meteorolog-
ical stations are sparse, which makes the estimation of water cycle elements challenging. 
Therefore, in such an intricate and sensitive ecosystem, the analysis of surface energy bal-
ance and water cycle processes is of great practical importance for understanding and 
predicting climate change in the region and its impact on water resources and the ecolog-
ical environment. 

 
Figure 1. Overview of the study area.  

2.2. Data 
2.2.1. Satellite Data 

To quantitatively estimate the ETa of Tuha at a 1 km scale, we used the ETMonitor 
model with multi-source RS and reanalysis data (Table 1) as input parameters. Since Mod-
erate Resolution Imaging Spectroradiometer (MODIS) products are more influenced by 
clouds and spatiotemporal discontinuities [13], we adopted Global Land Surface Satellite 
(GLASS) products as the main data source and used Python, the Internet Download Man-
ager (IDM), and the MODIS Reprojection Tool (MRT) to batch download GLASS data with 
the stitching row numbers h24v04 and h25v04, and brought them into the model to esti-
mate ETa. Among these, because of the lack of data for recent years from GLASS products, 
the data from MODIS products were used instead. 

  



Remote Sens. 2023, 15, 2565 4 of 31 
 

 

Table 1. The datasets utilized for estimating ETa. 

Type Variables Datasets Resolutions Periods 

Input 

Albedo 
GLASS02 [25,26] 1981−2020, 8−day, 1 km, 0.05° 

1980−2021 

MOD09GA 2000−2023, Daily, 500 m 
CDR AVHRR1 v5.3 1979−2022, Daily, 0.05° 

Leaf Area Index (LAI) GLASS01 [27] 1981–2021, 8−day, 250 m, 0.05° 
Fraction Vegetation Coverage 

(FVC) 
GLASS10 [28] 1981–2021, 8−day, 500 m, 0.05° 

Landsat-3-NDVI 1980, 16−day, 80 m 

Land Use and Cover Change 
(LUCC) 

MCD12Q1 v061 [29] 2001–2021, Yearly, 500 m 
CLCD2 [30] 1985–2021, Yearly, 30 m 

CNLUCC2 [31] 1980–2020, 5−year, 30 m, 1 km 
MOD10A2_Snow 2000–2023, 8−day, 500 m 

Surface Soil Moisture 
(SSM) 

ESA CCI3 v07.1 [32] 1978–2021, Daily, 0.25° 
ERA35-Fill Null 

1950–2023, Hourly, 0.1° 

2 m TEM (Ta) 

ERA5-Land 

2 m Dewpoint TEM (Td) 
Surface Pressure (Pa) 

Surface Thermal Radiation 
Downwards (RL↓) 

Surface Solar Radiation Down-
wards (RS↓) 

Wind Speed (WIN, µ10 and v10) 
Total PRCP 

Cross-comparison ETa Products 

GLEAM4 v3.6a_E [33] 1980–2021, Daily, 0.25° 

2000–2018 PEW4 [34] 1982–2018, Month, 0.1° 
GLASS_ET [35,36] 1982–2018, 8−day, 1 km, 0.05° 

GPR4 [37] 2000–2018, 10−day, 1 km 
1 CDR AVHRR, Climate Data Record Advanced Very High Resolution Radiometer. 2 CLCD, China 
Land Cover Datasets; CNLUCC, China’s National LUCC. 3 ESA CCI, European Space Agency Cli-
mate Change Initiative; ERA, ECMWF Reanalysis. 4 GLEAM, Global Land Evaporation Amsterdam 
Model; PEW, Proportionality Hypothesis-Based Surface Energy–Water Balance Model; GPR, Gauss-
ian Process Regression. 

To ensure the validity of ETa estimation in Tuha, an accuracy evaluation is necessary. 
However, due to the paucity of actual measurements of ETa data in Tuha, we mainly eval-
uated the accuracy by comparing the results with existing ETa products. Although a va-
riety of global-scale ETa products have been released, such as MOD16A2, GLEAM, and 
SSEBop (Simplified Surface Energy Balance operational), these products either have low 
spatial resolution or have large regions of missing values in the desert or Gobi areas of 
Tuha. In view of this, based on the worldwide development frontiers of ETa simulation 
research, four sets of relatively new ETa products were selected as references (Table 1). 
Because these products have differing spatial resolutions, to ensure the accuracy of re-
gional-scale evaluation, they needed to be resampled to 1 km using bilinear interpolation 
and translated into unified units of mm/month. 

2.2.2. Meteorological and LUCC Data 
To ensure the integrity of the meteorological data time series and the uniformity of 

the distribution of meteorological stations, we obtained the TEM, WIN, sunshine duration 
(SSD), relative humidity (RHU), and evaporation (EVP) for 11 stations in Tuha from 1980 
to 2020 from the China Meteorological Data Network and Xinjiang Provincial Meteoro-
logical Bureau (Table 2). Linear interpolation was used for missing values, and the EVP 
Ice Age conversion factor was 0.55 [38]. Then, reference crop evapotranspiration (ET0) data 
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were calculated for each site using the Penman–Monteith (PM) formula [39]. Finally, 
ANUSPLIN 4.37 [40] combined with digital elevation model (DEM) interpolation was 
used to generate the Tuha 1 km monthly ET0-PM data, which were used to aid in verifying 
the estimated ETa. 

Table 2. Information of meteorological stations in Tuha. 

Station Name Latitude Longitude Altitude 
CLCD [30]_2021  1980–2021 

LUCC TEM (℃) PRCP (mm/a) 
51,495 Thirteen rooms 43.216667 91.733333 721.40 

Barren 
10.90 35.41 

51,526 Kumish 42.233333 88.216667 922.40 11.23 66.23 
51,571 Toksun 42.766667 88.60 49.50 Grassland 15.35 42.44 
51,572 Turpan Dongkan 42.833333 89.25 −48.70 Cropland 15.31 18.73 
51,573 Turpan 42.95 89.233333 39.30 15.64 20.31 
51,581 Shanshan 42.85 90.233333 398.60 Barren 13.03 32.91 
52,101 Balikun 43.60 93.05 1679.40 Grassland 2.68 181.76 
52,112 Naomaohu 43.75 94.983333 479.00 

Barren 
10.55 27.84 

52,118 Yiwu 43.266667 94.70 1728.60 4.62 85.97 
52,203 Hami 42.816667 93.516667 737.20 Impervious 10.80 39.40 
52,313 Hongliuhe 41.533333 94.666667 1573.80 Barren 7.81 50.48 

TEM and PRCP are obtained by annual summing and multi-year (1980–2021) mean calculation 
based on the datasets [41–43] published by Peng Shouzhang. 

LUCC is a crucial element of global climate change research as it significantly impacts 
changes in ETa. The CNLUCC [31] is a remote sensing monitoring product that provides 
comprehensive data on the current status of land use in China from 1980 to 2020, issued 
by the Chinese Academy of Sciences. It is considered to be one of the most authoritative, 
complete, and precise datasets relating to the current status of LUCC in China [44]. Wuhan 
University has collected the CLCD, which is the most detailed and complete dataset in 
China for the 30 m resolution of land use and land cover change from 1985 to 2021 [30]. 
These two datasets are characterized by a higher resolution, more accurate categorization 
systems, and richer information on changes than other sources. To reduce uncertainty in 
the ETa analysis arising from using multiple data sources, we have chosen these two da-
tasets to examine the differences in ETa for different land classes in Tuha. To maintain 
data integrity and consistency with the CNLUCC, we converted the CLCD from the 30 m 
to 1 km resolution using nearest-neighbor resampling. 

2.3. Methods 
2.3.1. Algorithm of ET 

The ETMonitor model is an ETa model, capable of simulating processes such as snow 
sublimation, that has been validated and applied in different climatic regions and land 
surface types, so this paper ran the model with reference to the calculation method (Table 
3) and parameter values [45–50] proposed by Zheng et al. However, the random forest 
(RF) in the article could not be implemented due to the lack of real soil measurement data 
in Tuha, so this paper used Delta for downscaling based on the gap-free SSM data after 
ERA5 filled the ESA CCI, combined with the 1 km daily SM datasets [51] in China pub-
lished by Song et al. and then estimated resistance (Figure 2). This approach provides an 
idea and method for estimating ETa in arid areas where there is a scarcity of measured 
data, and it can be used as a reference for other similar studies. 
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Table 3. Partial formulas are used to estimate ET. 

Purpose Equation Description 

Net radiation (Rn) 
4(1 ) (1 )S L LRn Albedo R R T Rσε ε↓ ↓ ↓= − + − − −  σ = 5.67 × 10−8 W/(m2∙K4); 

T: average temperature, °C; 0.96(1 ) 0.98FVC FVCε = − +  

Resistance (r) [14] 

350( )s res
s

sat res

SM SMr
SM SM

−−=
−  

s
sr : soil surface r; 

SMsat, SMres: soil map, pedo-transfer. 
min0.3 1.2

[1 exp( )](1 ) ( ) ( )
500

c s
s

S
VPD a root

rLAIr RLAI K VPD f T f θ↓

+=
− − −

 

rcs : canopy surface r; 
min
sr : minimum leaf stomatal r, s/m; 

KVPD: fitting parameters; 
'
rootθ : relative water content; 

Ksf: tenacity factor. 

17.27
237.30.611 1

100

a

a

T
T RHVPD e +  = × × − 

   
max min( )( )

max

max

min( )
min

opt optT T T T

a
a

opt

T TTa Tf T
Topt T T T

− −
   −−=    − −  

 

'
' sin(2 )( )

2
root

root sf rootf K πθθ θ
π

= −  

' 0.1 (1 0.1 ) 1 exp ( 0.5 1)res
root

sat res

SM SMLAI LAI LAI
SM SM

θ
  − = + − − − −  −   

 

zref ca
a a

zref

r r
μ μ

μ
−

= ; c c
a a

a zref

r rμ
σ μ

= ; 
(1 )

s c
a a

a zref

r rμ
σ μ

=
−

 

zref: reference height, m; μ: wind speed, m/s; 
Ψ : stability correction functions. 

0 0

1 ( ) ( )
0.1681 0.1

ref ref
m h

zref m m

z d z d
ra In In

z zμ
− −   

= − Ψ − Ψ   
   

 

20.51 exp( )
0.5 8a

LAI
LAI

σ = − −
+

 

0.83 ( )c a zref a zrefμ σ μ σ μ= +  

ET [52] 

[ ]2( ) 6.43(0.5 0.54 2)( )s
W

Rn G e e
E

γ μ
γ

Δ − + + −
=

Δ +  

∆: Slope of es; γ: psychrometer constant, 0.067 kPa/°C; 

2

0
2

9000.408 ( n ) ( )
273

(1 0.34 )

s aR G e e
TET

γ μ

γ μ

Δ − + −
+=

Δ + +  

2

17.274098[0.6108exp( )]
273

( 273)

T
T

T
+Δ =

+  

2 10 10
4.87 0.7480

(678 5.42)In
μ μ μ= ≈

−  

601 20E K E= ×  

0ET Kpan Epan= ×  

K: conversion coefficient, 0.55; 
Kpan: pan evaporation coefficient; 

Epan: pan evaporation. 

C 0CET K ET=  KC: crop coefficient; 
ETC: ETa of crops, mm. 

The IGBP land cover codes for the Turpan-Hami region are 1, 8, 9, 10, 11, 12, 13, 15, 16, and 17, 
corresponding to Z0 values of 1, 0.7, 0.1, 0.03, 0.03, 0.06, 0.5, 0.0002, and 0.05, respectively. The asso-
ciated values of vegetation storage (SL) and Ksf for each category have been identified. Specifically, 
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for categories 1, 8, 9, and 10-12, SL values of 0.25, 0.21, 0.16, and 0.06, respectively, have been deter-
mined along with a Ksf value of 3 for category 1 and a Ksf value of 2 for category 9. In addition to SL 
and Ksf values, the values of KVPD, Tmin, Topt, and Tmax have been established for categories 1 and 8−12. 
Specifically, for category 1, KVPD, Tmin, Topt, and Tmax values of 0.025 h/Pa, 0 °C, 20 °C, and 40 °C, 
respectively, have been determined. Similarly, for categories 8−12, the corresponding values of KVPD, 
Tmin, Topt, and Tmax have been identified as 0.023 h/Pa, 0 °C, 25 °C, and 50 °C, respectively. 

 
Figure 2. Technical roadmap. SVM, support vector machine; VPD, vapor pressure deficit; CDO, 
climate data operators. The influencing factors in the statistical analysis are the effects of (b) LUCC, 
(c) TEM and (d) PRCP on ETa in the Turpan-Hami region. 
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2.3.2. Precision Evaluation 
In order to accurately evaluate the efficacy of the ETa estimation method in Tuha, it 

is essential to use appropriate parameters as measures. As such, a set of parameters (Table 
4) including the correlation coefficient (R), coefficient of determination (R2), root mean 
square error (RMSE), bias, and Kling-Gupta efficiency (KGE) [53] were identified as suit-
able measures for assessing the accuracy of the ETa estimation method. 

Table 4. Accuracy evaluation metrics. 

Index Formula Description 

R 
 

= =

=

−−

−−
=

n

i

n

i estestobsobs

n

i estestobsobs

ETETETET

ETETETET
r

1 1
22

1

)()(

))((  
The number of samples is 

denoted as n; 
ETobs and ETest represent the 
observed and simulated ET, 

respectively; 
The upper line denotes the 

temporal average; 
σ denotes the standard devi-

ation; 
The range of KGE is from −∞ 

to 1. 

R2 



=

=
−

−= n

i obs

n
estobs

ET

ETET
R

1
2

1i
2

2 )(
1  

RMSE 
=

−=
n

i
estobs ETETRMSE

1

2)(
n
1  

Bias 
n

ETET
Bias

n

i estobs =
−

= 1
||  

KGE 222 )1()1()1r(1 −+−+−−=
obs

est

obs

est

ET
ETKGE

σ
σ  

2.3.3. Statistical Analysis 
Using methods (Table 5) such as Sen, MK, CV, Hurst, and a partial correlation anal-

ysis based on MATLAB R2022a, a comprehensive and in-depth analysis was conducted 
in Tuha’s ETa from 1980 to 2021. This revealed the spatiotemporal variation characteris-
tics, fluctuations, future trends, and attributions with a view to providing a reference for 
understanding water resource changes in Tuha. 
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Table 5. The computational formulas and explanations for the analytical method [10,19]. 

Method Formula Description Note 

Sen )( j

ij
ETET

Media i
ET −

−
=β  

 The ET at times j and i are 
represented by ETj and ETi, 

respectively. 

1980 ≤ i < j ≤ 2021. 
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Coefficient of Variation (CV) 
ET

CV σ=  σ denotes the standard de-
viation. The interval is 0.05. 
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T
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n

i
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1
)t( == 

=

 Define the mean series. 

0 < H < 0.5; 
H = 0.5; 

0.5 < H < 1. 

TtETETX
t

t
TtT ≤≤−=

=

1,)(
1

)()(),t(
 Cumulative deviations. 
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1
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1
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Tt

Tt
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T XXR
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Extreme differences. 

( ) 2
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1t

2
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1







 −= 
=

T

TtT ETET
T

S  Standard deviation. 

( )HCT
TS
TR =
)(
)(  Hurst index. 

Pearson Correlation 
42

i 1
42 422 2
1 1

(x )

( ) (y )

i

i ii i

x
R

x x y
=

= =

−
=

− −


 

 
x represents ETa;  
y represents TEM;  
z represents PRCP.  

p < 0.05; 
df = 39; 

t0.05 = 2.023;  
t0.01 = 2.708. Partial Correlation Analysis xy, 2 2(1 ) (1 )

xy xz yz
z

xz yz

R R R
R

R R

−
=

− −
 

Residual Analysis (RA) 
edActR

P

ETETET
cPRCPbTEMaET

Pres

red

−=
+×+×= If the ETRes is >0, it indicates that human activities 

exert a promoting effect on ETa, whereas ETRes < 0 
indicates an inhibitory effect. 

3. Results 
3.1. Accuracy Evaluation 
3.1.1. Comparison with ET0-PM 

Because of the dearth of measured ETa data in Tuha, to validate the estimated ETa, 
we first used data from E-601 evaporators (measuring water surface evaporation) and 
ET0-PM to assist with the validation. Although their values are much higher than ETa in 
arid areas such as Tuha, a comparison between them has a certain degree of validity under 
the conditions of a scarcity of measured data [54]. 

To ensure the accuracy of ET0-PM, we selected four meteorological stations with com-
plete and typical time-series data from 1980 to 2018 for Tuha distributed across distinct 



Remote Sens. 2023, 15, 2565 10 of 31 
 

 

land-use types (grassland, construction, and unused land). We compared ET0-PM with 
E-601 data from these stations on a monthly scale for the analysis (Figure 3). The results 
showed that the correlation between ET0-PM and E-601 was high, with the R values all 
greater than 0.85 and R2 values ranging from 0.79 to 0.97. The spatiotemporal trends 
showed that ET0-PM was higher than E-601 in areas with more vegetation, such as grass-
lands and croplands, and this might be related to the effects of plant transpiration. In gen-
eral, the ET0-PM values coincided relatively well with the E-601 data, with RMSE ranging 
from 12.6 to 29.21 mm/month. 

 
Figure 3. Comparison of PM-calculated reference crop evapotranspiration (ET0-PM) and E-601 evap-
orimeter data at four typical meteorological stations ((a) 52,101, Balikun; (b) 52,112, Naomaohu; (c) 
52,203, Hami; (d) 52,313, Hongliuhe) in Turpan-Hami region from 1980 to 2018. 

The actual crop evapotranspiration (ETc) was calculated by multiplying the reference 
crop evapotranspiration (ET0) by the crop coefficient (KC). The KC is a dimensionless at-
tenuation coefficient that takes into account the effects of growth status, environmental 
differences, and other factors on ETc. According to the main vegetation types and their 
characteristics within the Turpan-Hami region, and referring to the KC table recom-
mended by FAO, combined with the relevant research on oasis in arid zones [55], the 
value of KC at Balikun station was determined to be 0.38 in this article comprehensively. 

Then, we compared the calculated ETa values with the actual evapotranspiration of 
crops. Figure 4a describes the relationship between ETc and the estimation results in 
Balikun station, with ETc on the horizontal axis and ETa on the vertical axis. The fitted 
line demonstrates a certain degree of correlation between the two, with good statistical 
parameters. A strong correlation was indicated by R = 0.84, whereas ETa could explain 
71.20% of the deviation in ETc as demonstrated by R2 = 0.71. Prediction errors with a small 
RMSE of 14.15 mm/month and relatively good prediction results with KGE = 0.58 were 
observed. As shown in Figure 4b, the lower edge and median of ETc were higher than 
ETa, indicating that ETc was more robust than ETa. This may be due to the fact that the 
crop releases a large amount of water vapor through the stomata and leaf surfaces, which 
increases the ambient humidity and thus promotes ET. Meanwhile, the upper edge of ETc 
was lower than Eta. This may be due to the hot and humid climate in the summer, when 
the crop is stimulated by light and heat to release more water, leading to an increase in 
ETc and a corresponding increase in ETa. Conversely, in the winter, when temperatures 
are low and humidity is low, ET is minimal. The graph also shows that ET varied with the 
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seasons: it was highest in the summer, lowest in the winter, and in between in the spring 
and autumn. 

 
Figure 4. Comparison of the spatiotemporal characteristics of actual crop evapotranspiration (ETc) 
with the estimated results ETa at the Balikun station in Turpan-Hami region from 1980 to 2020 at 
monthly and annual scales. The figure contains (a) a visualized relationship between ETc and ETa, 
along with univariate distribution of ETc and ETa; (b) boxplots with overlaid scatterplot of monthly 
ETa and ETc data; (c) interannual variation trend of ETc and ETa from 1980 to 2020; and (d) spatial 
distribution map of the ETa multi-year average in the Turpan-Hami region, and the difference be-
tween ETa and ETc, shown on the left, with a locally magnified map near the Balikun station on the 
right. 

The overall trend of ETc and ETa at Balikun station from 1980 to 2020 was increasing, 
and the former was higher than the latter (Figure 4c). This difference may be caused by 
various factors, such as interannual climate change, the crop cultivation area, and the crop 
species. For example, a dry climate can lead to a decrease in ET for all plants, while an 
increase in the acreage of a crop can affect ETc more significantly. The trends in ETa and 
ETc were the same in some years and different in others, and this may be influenced by a 
variety of factors such as climate, acreage, and variety. For example, the temperature and 
rainfall in some years will have similar effects on the amount of ET for all plants, making 
the trends of ETa and ETc the same, while in other years they will be different because the 
changes in different crop varieties and planting areas lead to different trends. From Figure 
4d, it can be seen that the difference between ETa and ETc shows a decreasing trend from 
south to north. In the local enlargement near Balikun station, the higher ETa was accom-
panied by a slightly higher ETc. In summary, ETa in the Turpan-Hami region is generally 
stable, with higher values in the Balikun station area, while the difference between ETc 
and ETa is small. 
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3.1.2. Comparisons with Other ETa Datasets 
A correlation analysis between the estimated ETa for Tuha and the existing ET prod-

ucts (GLEAM, PEW, GPR, and GLASS) on a monthly scale is shown in Figure 5. The re-
sults show that the estimated ETa had a high positive correlation with the existing ETa 
products, with the highest correlations with GPR and PEW, reaching 0.95 and 0.92, re-
spectively. In terms of bias and KGE, the estimated ETa values were closer to GLEAM 
(−8.26 and 0.85 mm/month), while they were closer to PEW in terms of RMSE. There are 
large differences in comparison to the GLASS v4.0 data, which may be due to the errors 
caused by summing up 8-day composites into months. These comparative analyses indi-
cate that although there were some discrepancies between the estimated ETa and previous 
research results due to the different data sources, lengths of time series, and other factors, 
they showed good correlation on a monthly scale and the annual fluctuations between 
them. Therefore, the estimated ETa values satisfied the requirements of the existing ET 
products [56] and can be used to explore the spatiotemporal variation characteristics of 
ETa in Tuha. 

 
Figure 5. Comparison of the ETa estimation in this study and other existing products. The matrix 
scatterplot displays the distribution of five ETa data in the Turpan–Hami region on the histogram 
at the diagonal position. The scatterplots above and below the diagonal present the relationships 
between the data pairs, with confidence ellipses and fitted lines shown as red dashed lines. The last 
row shows four existing ETa products on the horizontal axis and the estimated results on the vertical 
axis. The statistical parameters (R, R2, RMSE, bias, and KGE) are indicated in red font, with the units 
of bias and RMSE being mm/month. 

Our estimated results exhibit spatial distribution patterns comparable to those of the 
other four ETa products, as shown in Figure 6. In the Turpan-Hami region, the average 
ETa from 2000–2018 obtained from our study was 64.33 mm/a, somewhat less than that of 
GLEAM v3.6a (77.05 mm/a), GPR (102.63 mm/a), and PEW (92.12 mm/a), yet higher than 
the mean of GLASS v4.0 (51.38 mm/a). The estimated results show lower ETa values in 



Remote Sens. 2023, 15, 2565 13 of 31 
 

 

most barren compared to ETa products such as GLEAM, GLASS, and PEW. Considerable 
variabilities were found in the spatial distribution of ETa within the Turpan city center 
and Hami northwestern regions, which could be attributed to differences in model struc-
tures and input data quality. 

 
Figure 6. Spatial patterns and differences in average annual actual evapotranspiration for five ETa 
datasets including ETMonitor during 2000–2018. When the TEM is 20 °C, the latent heat of vapori-
zation (LV) is approximately 2.45 MJ/kg, 28.35 W/m2 = 1 mm/day. 

The ETMonitor model considers soil-surface evaporation, canopy-interception water 
evaporation, and plant transpiration to better reflect the non-uniformity of desert and oa-
sis substrates [13]. Although the simulated values obtained from this model are generally 
low when compared to ET0-PM and other existing ET products, their accuracy is sufficient 
for regional-scale studies. Therefore, the estimated ETa can be used to reveal the spatial 
and temporal dynamic characteristics of regional ET, especially in Tuha, where observa-
tion sites are sparse. 

3.2. Spatiotemporal Variations of ETa 
3.2.1. Annual Scale 

Elucidating the spatial and temporal variation patterns of ET in arid regions provides 
a crucial guideline for studying regional hydrology, agricultural water demand, irrigation 
planning, and water resource management. Consequently, in this work, a typical repre-
sentative of the arid zone in northwest China, namely Tuha, was selected as the research 
object, and the ETa of Tuha from 1980 to 2021 was quantified and analyzed using the 
ETMonitor model. 

The results indicate that there are significant spatial variations in Tuha’s annual ETa 
(Figure 7a), and these are intimately connected to PRCP and LUCC. For the past 42 years, 
the low ETa zone in the Turpan-Hami region has been widely distributed. The spatial 
pattern exhibits a gradual decrease from the mountainous areas towards the surrounding 
plains. This is partly because ETa in arid areas is principally driven by moisture status, 
which directly affects the water content of surface soil and increases the magnitude of ETa 
[57]. The western mountainous areas of Tuha have abundant PRCP due to the influence 
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of the westerly circulation bringing moist flow from the Atlantic Ocean to the windward 
slopes (Figure 7c); in contrast, the plains have comparatively low PRCP. Although Tuha 
has a high altitude, strong solar radiation, and sufficient energy for ET, its inland location, 
sparse PRCP, and low soil moisture result in a huge proportion of Tuha having low ETa 
values.  

LUCC also impacts the spatial pattern of ETa in Tuha (Figure 1). ETa was found to 
be higher in woodlands and grasslands in mountainous areas such as the Tianshan and 
Bogda mountains, while it was lower in sparsely vegetated areas and unutilized land in 
the Igo and Tuha basins. The vegetation cover and soil moisture of agricultural land in 
oasis areas are higher than those in the sparsely vegetated areas at the edges of oases due 
to artificial cultivation and irrigation, causing significant spatial heterogeneity in ETa. In 
contrast, ETa values are lower than 200 mm in high mountainous areas such as the Altai 
mountains; this can be explained by the greater ability of these ice-covered mountains to 
reflect short-wavelength radiation, meaning there is less energy available for evaporation. 
This distribution is opposite to that of the distinct altitudes of Tuha because of disparities 
in the dynamical and thermal properties of the different land coverings, leading to a re-
distribution of energy in ground–air interactions. 

 
Figure 7. Spatial distribution of multi−year (1980−2021) mean annual (a) ETa, (b) TEM, and (c) PRCP 
in the Turpan-Hami region, where (a1–a4) are local enlargements of the mean multi−year ETa values 
of the oasis in the Turpan-Hami area. The underlying image is sourced from TianDiTu. 

To illustrate the characteristics of changes in ETa, TEM, and PRCP in Tuha from 1980 
to 2021, a one-dimensional linear regression analysis of their regional means was con-
ducted. Figure 8a displays the annual dynamics in the spatial barycenter of ETa in the 
Turpan-Hami area, which indirectly indicated variations in water resource distribution in 
the region. The latitude and longitude of the ETa center of gravity showed an insignificant 
upward trend (p > 0.05), indicating that there was an inconspicuous eastward or north-
ward trend of the ETa centroid. Figure 8 indicates that TEM showed an overall increasing 
tendency during these 42 years, while ETa and PRCP showed fluctuating changes, with 
slight overall decreasing trends. Among these, ETa reached a maximum value of 66.31 
mm in 1998 and declined to a minimum value of 46.15 mm in 2009. The year with the 
largest ETa change was 2015, which saw a surge of 55.73% compared with 2014. This is 
associated with the implementation of a reforestation policy in Tuha, and the years in 
which the vegetation reached high values correspond to it, further indicating that the in-
crease in and restoration of vegetation play imperative roles in the increase of ETa in Tuha. 
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Figure 8. Interannual variations of ETa, PRCP, and TEM in the Turpan-Hami region from 1980 to 
2021. Caption: (a) changes in barycenter of ETa in Turpan-Hami area; variations in the annual mean 
(b) ETa, PRCP, and (c) TEM over time; (d) spatial distribution of multi−year mean annual water 
budget representing the disparity between the annual PRCP and ETa. 

Moisture gain or loss is a pivotal metric for characterizing the surface moisture con-
ditions [58]; it integrates the combined effects of PRCP and ETa [59] and can reflect the 
water balance more intuitively [60]. From the interannual variations of water surplus and 
deficit in Tuha from 1980 to 2021 (Figure 8b), it can be seen that most years were water-
deficit years. The spatial distribution of multi-year average moisture gain or loss showed 
the differences between PRCP and ETa, indicating a distribution pattern that was “large 
in the middle and small at the ends” as the altitude increased. Furthermore, 24.54% of the 
areas in Tuha had moisture loss, which means that the ETa values in these areas were not 
high enough to account for evaporation, i.e., there was a lack of available moisture, mainly 
in the alpine meadow, grassland, and cold desert zones. Areas of water surplus accounted 
for 75.46% of Tuha, and these were mostly located on unused land (Figure 8d). Overall, 
the spatial variations of water surplus and deficit in Tuha are large. 

3.2.2. Seasonal Scale 
Using meteorological data and the climatic characteristics of the Tuha oil field, ArcPy 

batch processing was used to distinguish March–May as spring, June–August as summer, 
September–November as autumn, and December–February as winter in Tuha for 1980–
2021. The spatial distributions of multi-year quarterly ETa averages for Tuha are depicted 
in Figure 9. In all seasons, the high-ETa areas were mainly located in regions with higher 
elevation and higher vegetation cover, while the low-ETa areas were mainly located in 
bare land and oasis regions. The spatial distribution patterns of ETa in spring and autumn 
in Tuha were similar; the spatial pattern of ETa in summer was similar to the multi-year 
average ETa; and the aggregation of low values of ETa in winter was significantly higher 
than that in other seasons. Spring and summer contributed more to the annual ETa, ac-
counting for 79.21% of the year; the spatial pattern of the ETa raster was predominantly 
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driven by the trend of ETa changes in summer. The ETa values in different regions were 
dynamic at all time scales, and this is related to the climate and human activities in Tuha. 

 
Figure 9. Quarterly variation of average ETa, TEM, and PRCP for multi-year (1980–2021) in Turpan-
Hami region. The figure is divided into four rows representing each season, from top to bottom: 
spring, summer, autumn, and winter. Each column presents the spatial distribution of the multi-
year average of (a−d) ETa, (e−h) TEM, and (i−l) PRCP from left to right. 

The multi-year pattern of seasonal ETa variations in Tuha is shown in Figure 10. The 
multi-year ETa variations had a consistent seasonal pattern, with the seasonal ETa re-
gional averages listed in descending order as follows: winter (2.88 mm) < autumn (10.98 
mm) < spring (12.82 mm) < summer (39.62 mm); the Tuha ETa also exhibited a certain 
regularity during the seasonal transitions: the magnitudes of the changes in the summer–
autumn and winter–spring transitions were significantly greater than those in the spring–
summer and autumn–winter transitions [61]. The main reason for this phenomenon is that 
the summer–autumn and winter–spring seasonal transitions are accompanied by two be-
ginning and end stages of vegetation dieback and growth [62]. In summer, abundant 
PRCP and high TEM lead to vigorous vegetation growth and maximum ETa values. After 
entering autumn, TEM decreases and PRCP gradually decreases, leading to vegetation 
wilting and a decreasing ETa value. After entering winter, the vegetation completely 
wilts, transpiration is nearly zero, and ETa is mainly provided by the weak evaporation 
of soil moisture; the ETa value thus reaches its annual minimum in winter. After entering 
spring, the vegetation enters its growing season due to the increase in PRCP and TEM, 
and the transpiration is enhanced; the evaporation of soil moisture is also enhanced by 
the increase in TEM, resulting in a gradual increase in ETa in spring [63]. 
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Figure 10. Seasonal variability of ETa in Turpan–Hami region from 1980 to 2021: a comparative 
analysis. Caption: (a) Dot-line plot showing the changes in ETa values over four seasons, (b) Kite 
chart indicating the overall season-wise distribution of ETa, (c) boxplot with normal curve revealing 
the range and central tendency of ETa in each season, and (d) stacked bar chart providing a visual 
overview of the contribution of each season to the total ETa in the region. 

3.2.3. Monthly Scale 
The spatial distribution of monthly ETa for January–December in Tuha from 1980 to 

2021 is illustrated in Figure 11. The mean monthly scale ETa had large spatial differences 
among different months: the spatial variability of ETa in January–March and October–
December was low, and the overall ETa values tended to be stable; in contrast, the inten-
sity of ETa variation in May–August was drastic. In general, the characteristics of the spa-
tial distributions of high and low values of monthly ETa are similar to those of the annual 
and seasonal ETa variations. 
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Figure 11. Spatial distribution of multi-year (1980–2021) monthly averages in the Turpan-Hami re-
gion. 

The monthly averages of ETa, TEM, and PRCP in Tuha showed unimodal variation 
within each year, with peak values lasting from June to August and minimum values oc-
curring in the coldest month, which was analogous to the temporal distribution of water 
and heat (Figure 12). Among these values, the ETa grew more slowly from January to 
March; it grew faster during April–July than in other months and peaked in July; subse-
quently, the ETa declined dramatically from August to November; and December–Janu-
ary was a period of low ETa values, and the variation was not noticeable. The multi-year 
monthly average ETa fluctuated between 0.75 and 15.62 mm, and the lowest value of ETa 
of each year occurred in December; the highest values occurred in July. 

 
Figure 12. Monthly variations of Tuha’s ETa, TEM, and PRCP. After comparing the existing climate 
data in the Turpan–Hami region with meteorological station data, it was found that there are sig-
nificant wet and cold biases. 
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Regarding the meteorological conditions in Tuha, the monthly mean ETa from Janu-
ary to March and from October to December was less than 3 mm. Considering the whole 
year, these two periods had lower average TEM and less PRCP, which caused sluggish 
vegetation growth rates and reduced plant transpiration, and this resulted in low monthly 
ETa values. The period from May to August was the peak-value period for the monthly 
mean ETa across the year. During this period, TEM incrementally increased; PREP and 
solar radiation gradually increased, reaching their maximum levels for each year; and SSD 
increased, which was conducive to the evaporation of surface water. In addition, vegeta-
tion was in its vigorous growth period with strong transpiration and evaporation, so the 
monthly mean ETa values were higher. The monthly mean ETa values declined from Au-
gust to October, which was mainly a result of decreases in PRCP and TEM. The variation 
characteristics of the multi-year monthly means of PRCP and TEM were basically con-
sistent with the annual variation pattern of ETa, indicating that ETa was basically syn-
chronized with water and heat changes in Tuha. PRCP and TEM variations were im-
portant climatic factors contributing to continuous changes in ETa. 

3.3. Trend Analysis of ET 
3.3.1. Spatial Variability 

The Sen and MK trend-detection methodology was used to further explore the trends 
in the spatiotemporal variation of ETa in Tuha for the 42-year period of interest. The β 
values calculated by the Sen slope were used as the change slopes. The trend-change rates 
of ETa in Tuha from 1980 to 2021 ranged from −16.78 to 2.17 mm/a, with an average trend-
change rate of −0.2 mm/a, showing a decreasing overall trend. Spatially, there was a trend 
distribution characteristic of increasing around the mountains southwest of Yizhou and 
north of Balikunhasake and part of Yiwu and decreasing in the south of Turpan City. Since 
the length of the research sequence was 42 years, the Z statistic was adopted for testing 
with a significance level α = 0.05 and Z1−α/2 = Z0.975 = 1.96 to obtain the spatial distribution 
of the ETa change trend in Tuha (Figure 13). 

 
Figure 13. Spatial distribution of (a−c) ETa, (d,e) TMP, and (f−h) PRCP variation trend and signifi-
cance test in the Turpan–Hami region from 1980 to 2021. The three columns from left to right repre-
sent the degree of trend in Sen's slope estimate, the Z statistic for the MK test, and the results of the 
superposition analysis of the first two, respectively. 
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The results showed the following. Areas with significant increases in ETa accounted 
for 2.79% of the study region, and these were mainly distributed near the Tianshan moun-
tains. Areas with significant ETa decreases accounted for 14.18% of the total area, and 
these were mainly located in most parts of Turpan City. Areas with insignificant increases 
in ETa accounted for 19.87% of the study area and were mainly distributed in northeast 
Balikunhasake, southwest Yizhou, and central Hami City. Areas with insignificant de-
creases in ETa accounted for 63.16% of the study region (Figure 13c). The annual mean 
TEM exhibited an extremely significant increasing trend from 1980 to 2021 (Figure 13e), 
while PRCP mostly showed an insignificant decreasing trend (Figure 13h). 

3.3.2. Spatial Volatility of ET 
The CV was used to analyze the spatial-pattern variabilities of ETa, TEM, and PRCP 

in Tuha from 1980 to 2021 (Figure 14), and the pixel-scale CV was categorized into eight 
levels [64]. The results show that among the various land-use types, PRCP fluctuated more 
than the other parameters, with CV values greater than 0.15. The areas around Tianshan 
and Bogda were low-CV regions for ETa and TEM; these locations are relatively less pop-
ulated and have stable alpine vegetation cover. Conversely, southern Tuha, 
Balikunhasake, and northeastern Yiwu were high-CV areas for ETa, and these areas are 
mainly bare land. Their high ETa fluctuations may be related to the implementation of the 
ecological restoration project (returning cropland to forest and grass) in Tuha and the in-
crease in urbanization. 

 
Figure 14. Spatial distribution and statistical analysis of the coefficient of variation (CV) for (a) ETa, 
(b) TEM, and (c) PRCP values in the Turpan–Hami region. 

3.3.3. Analysis of Future Trends in ETa 
The Hurst index was introduced to intuitively quantify and better predict the future 

development of Tuha’s ETa (Figure 15a). Through a spatial analysis, the Hurst index of 
Tuha’s ETa ranged from 0.122 to 0.682, with a mean value of 0.344. Pixels with H < 0.5 
accounted for 97.99% of the entire area, among which pixels with values of 0.2–0.4 ac-
counted for the bulk, making up 81.15%. This finding indicates that ETa has a significant 
anti-persistence in its future development trend in Tuha; that is, the future change trend 
of ETa in most areas of Tuha will be opposite to that seen in the past, and there may be an 
increasing trend in the future. The high Hurst values were mainly concentrated at the 
junction zone between Balikunhasake and southern Yiwu, while the low Hurst values 
were widely distributed, mainly across Turpan City, northwestern Balikunhasake, and 
southeastern Yizhou. 

To further investigate the change trend and sustainability of Tuha’s ETa, we com-
bined the slope values of the linear regression (Figure 13a) and the Hurst index calculation 



Remote Sens. 2023, 15, 2565 21 of 31 
 

 

results (Figure 15a) to visualize the change trend and persistence results together. The 
pixels representing persistent increase, persistent decrease, anti-persistent decrease (i.e., 
ETs that increased in the past will decrease in the future), and anti-persistent increase (i.e., 
ETs that decreased in the past will increase in the future) trends accounted for 1.75%, 
0.26%, 20.91%, and 77.08%, respectively (Figure 15b). These results indicate that the areas 
with an upward trend in the future (78.83%) are much larger than those with a downward 
trend in the future (21.17%). Specifically, most areas of Turpan City showed an anti-per-
sistent increasing trend, most areas of Yizhou and Yiwu showed an anti-persistent reduc-
ing trend, central Hami City showed a persistent increasing trend, and areas of persistent 
decline were sporadically distributed. 

 
Figure 15. Spatial distribution and statistics of (a) Hurst index and (b) future trends of ETa in the 
Turpan-Hami region from 1980 to 2021. The Hurst exponent of Tuha’s ETa has no pixel equal to 0.5. 

3.4. Analysis of Factors Influencing ETa 
3.4.1. Climate Factors 

Figure 16a,b portray the pixel-wise Pearson correlation coefficients of ETa with TEM 
and PRCP in Tuha, respectively. It can be seen that more than 50% of the area had a posi-
tive correlation between ETa and PRCP; this is a significantly greater proportion than the 
area of positive correlation between ETa and TEM (39.63%), indicating that PRCP may be 
a more important factor than TEM in terms of affecting ETa variation in Tuha. 

 
Figure 16. The relationship between ETa and climatic factors in the Turpan–Hami region from 1980 
to 2021: (a) correlation analysis (CA) of ETa and TEM; (b) CA of ETa and PRCP; (c) partial correlation 
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analysis (PCA) of ETa and TEM; (d) PCA of ETa and PRCP; (e) the significance test (t-test) of the 
PCA between ETa and TEM; (f) the t-test of the PCA between ETa and PRCP. 

In order to exclude the mutual interference between ETa and meteorological factors, 
the spatial distribution of partial correlation coefficients of ETa with TEM and PRCP (Fig-
ure 16c,d) was calculated by the partial correlation coefficient formula. Additionally, we 
obtained the significant spatial distribution (Figure 16e,f) using a t-test. The areas with a 
significant positive correlation between ETa and TEM accounted for 3.29%, with partial 
correlation coefficients ranging from −0.63 to 0.74. ETa was extremely significantly posi-
tively correlated with PRCP (p < 0.01), with a mean value of 0.54 and partial correlation 
coefficients ranging from −0.52 to 0.80. According to these results, the spatial distribution 
trend of partial correlation coefficients was consistent with that of the correlation coeffi-
cients. Controlling for PRCP, the correlation between ETa and TEM in Tuha was found to 
be small; controlling for TEM, the correlation between ETa and PRCP was found to be 
large. 

Table 6 further illustrates that ETa was positively correlated with TEM (59.10%) and 
PRCP (97.91%). In terms of statistical significance, the significance level of PRCP (97.20%) 
was higher than that of TEM (14.76%), possibly due to the arid climate zone. In addition, 
factors such as global warming have led to an increased probability of drought, resulting 
in insufficient vegetation recovery and even degradation, which reduces transpiration 
and subsequently affects the increase in ETa. 

Table 6. Partial correlation analysis between ETa and climatic factors in the Turpan–Hami region 
from 1980 to 2021. 

R T Value 1, 2 Type 
Percentage 

ETa-TEM ETa-PRCP 

<0 
<−2.708 Negative (p < 0.01) 5.69% 0.37% 

−2.708 ≤ T < −2.023 Negative (p < 0.05) 5.78% 0.66% 
−2.023 ≤ T < −0 Negative (n.s.) 29.43% 1.07% 

>0 
0 ≤ T < −2.023 Positive (n.s.) 55.81% 3.74% 

2.023 ≤ T ≤ −2.708 Positive (p < 0.05) 1.43% 6.30% 
>2.708 Positive (p < 0.01) 1.86% 87.87% 

1 Sample size (n) = end year-begin year = 2021–1980 + 1 = 42; order of partial correlation (q) = 1, 
degrees of freedom (df) = n-q-2 = 39; 2 The two-sided T-test p-values correspond to extremely signif-
icant and significant at the levels of 0.01 and 0.05, respectively. As seen from the t-test table, t0.05 = 
2.023, t0.01 = 2.708. 

3.4.2. Human Factors 
Apart from the impact of climatic factors, human activities are significant driving 

forces behind changes in ETa. To predict ETa from 1980 to 2021 in the Turpan–Hami area, 
a multiple linear regression model was employed, using TEM and PRCP data as inde-
pendent variables and ETa as the dependent variable. The difference between the actual 
and predicted ETa values indicates the anthropogenic effects during this period. Based on 
residual sequence data, trends were analyzed to reveal the spatial distribution of ETa re-
siduals. 

The ranges of ETa predicted values (ETPred) and residuals (ETRes) in the Turpan–Hami 
area from 1980 to 2021 were respectively between 0–987.73 mm/a and −15.39–492.28 mm/a, 
with averages of 65.97 mm/a and 0.15 mm/a, as shown in Figure 17. Under the influence 
of only TEM and PRCP, the spatial distribution of ETPred in the Turpan–Hami area still 
shows a decreasing trend from oasis to the outside. Additionally, the ETPred in 57.78% of 
the total area exhibited a decrease, mainly concentrated in the Yizhou District, 
Balikunhasake, and Yiwu central region, while the ETPred in 42.22% of the total area dis-
played an increase, mainly concentrated in most areas of Turpan City. In contrast to the 
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ETPred, the distribution of ETRes shows that the percentage of regions with decreasing resid-
uals was 91.65%, with 8.11% of the areas marked by significance tests. The northern part 
of Turpan and the central part of the Hami mountain area have significantly increased 
(1.86%) due to the positive effects of ecological restoration measures such as ecological 
engineering construction, agricultural development, and land retirement and afforesta-
tion. The Turpan oasis and surrounding areas have significantly decreased (6.25%), which 
may be attributed to continued urbanization and economic development in recent years, 
resulting in more agricultural land being turned into construction land and human activ-
ities playing a restraining role in ETa. 

 
Figure 17. A residual analysis of bivariate linear regression for ETa in Turpan-Hami region from 
1980 to 2021. Caption: figures (a−c) show the bivariate regression coefficients of raster data. Figures 
(d−i) show the spatial distribution and change trend of ETa driven by climate change and human 
activities. (j) presents the interannual variability of ETAct, ETPred, and ETRes from 1980 to 2021. 

Anthropogenic factors, especially land-use types, have a significant and strong influ-
ence on ETa [65]. Figure 18 presents that in Tuha, unused land occupied the largest portion 
of the area, followed by grassland, cropland, and construction land, whereas forest and 
water had relatively smaller areas. Forests and grasslands were predominantly distrib-
uted in mountainous regions with elevations of 3500–4877 m. Meanwhile, croplands were 
mainly concentrated in plain areas adjacent to rivers and water sources. 
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Figure 18. Spatial distribution of LUCC in the Turpan–Hami region. The CLCD and MCD12Q1 mis-
classified some grassland and construction as unused land, but due to its temporal continuity, the 
CLCD can assist CNLUCC in determining the changes of ETa. 

In this paper, we have discussed the impact of different land-use types on the ETa in 
Tuha and its change trends based on the partition statistics of LUCC data after raster-to-
vector conversion and ETa estimation results after rounding. The primary conclusions of 
this examination of human factors are as follows. 
1. The differences in the physicochemical properties of different land classes determine 

the disparities in their ETa capacities. As shown in Figure 19, the annual average ETa 
of cropland in Tuha was the highest, reaching 424.12 mm/a, indicating that cropland 
has higher water-use efficiency and ET potential. The annual average ETa of unused 
land was the lowest, at only 32.27 mm/a, reflecting the low vegetation coverage and 
weak evaporation capacity of unused land. The annual average ETa values of the 
forest, construction land, water, and grassland were between these two values. 

2. The urban heat-island effect has a certain impact on the ETa of construction and un-
used land. The land-surface temperatures of these two types of land were higher than 
those of other land types, especially in the summer. Since TEM is one of the important 
factors affecting the ET process, the ETa values of these two land types likewise fluc-
tuated with TEM; nevertheless, their ETa values remained lower because bare soil 
acts as a suppressor of water evaporation [66]. 
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3. LUCC has a significant effect on Tuha’s ETa. During 1980–2021, significant land-use 
changes occurred in Tuha, and this led to corresponding changes in the ETa values 
for different land types. Except for the forest, the annual average ETa values of the 
other five types of land showed downward trends, indicating an overall decrease in 
the ETa capacity of Tuha. 

 
Figure 19. Change of average annual ETa of LUCC in Tuha from 1980 to 2021. 

4. Discussion 
The Turpan–Hami region, as an important part of the northwest arid area, is sensitive 

to climate change. Therefore, this study compares the actual evapotranspiration charac-
teristics of the Turpan–Hami region with those of the northwest arid region. Deng et al. 
found that the spatial distribution of ETa in the northwest arid region is influenced by 
both PRCP and LUCC [67]. Due to its inland location and low PRCP, the area of low ETa 
is large. The leeward slopes of high mountains such as the Qilian mountains and Tianshan 
mountains have abundant PRCP, while the surrounding basin and corridor have low 
PRCP. Therefore, the amount of ETa gradually decreases from the mountainous areas to 
the plains on both sides, which is consistent with the distribution shown in Figure 7a. Ji et 
al. used 12 grassland flux stations and satellite remote sensing products to produce a 5 km 
ETa product and found that from 2000 to 2018, the non-bare ground underlying surface 
in the northwest showed an overall increasing trend of ETa (19 mm/a) [68], which is con-
sistent with the results shown in Figure 13c of this study, indicating an increase in ETa in 
the mountain forests and grasslands where PRCP is abundant. Wei et al. predicted the 
ETa data of China’s PML-V2 from 2003 to 2020 and found that most of the Hurst indices 
in the Turpan–Hami region were less than 0.5, indicating that the future trend is opposite 
to the past [19]. This is consistent with the results shown in Figure 15a of this article. At 
the same time, due to differences in dynamic and thermodynamic properties, the differ-
ence in ETa between different land cover types is significant. Kong et al. found that from 
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2000 to 2018, the average ETa of different land uses in the Manas River Basin ranked from 
large to small: forest (418.65 mm) > water (302.36 mm) > cropland (257.32 mm) > unused 
land (222.00 mm) > construction land (218.10 mm) > grassland (207.04 mm) [69]. Deng et 
al. found that the forest had the largest amount of ETa [67], while the results in this study 
were arranged in the order of cropland > forest > grassland > unused land, mainly due to 
the smaller areas of forests and water bodies in the study area. Fu et al. analyzed the spa-
tiotemporal variation characteristics of ETa on land in China from 2000 to 2019 using a 
model–process–mechanism framework and concluded that PRCP is the main factor de-
termining the size of ETa in the northwest arid zone [64]. The findings of Fu et al.’s study 
are similar to those of the present study. Therefore, our findings add new evidence to the 
understanding of ETa patterns in different spatial dimensions in the Turpan–Hami region. 

Under the combined influence of human activities and climate change, ETa saw a 
weakly decreasing trend in most regions of Tuha from 1980 to 2021, with a change rate of 
−0.2 mm/a, and the trend was dominated by large fluctuations. The typical oasis agricul-
ture that has developed in Tuha, the implementation of the project for returning farmland 
to forest and grassland, the expansion of oasis areas, the adjustment of planting structures, 
and changes in the species that are planted will cause fluctuations in ETa. In addition to 
human activities, climate change is also having a profound impact on the variation of ETa, 
especially in the alpine mountains with their fragile ecological environment. The response 
of ETa to climate change and the time-series variation of ETa in China have been exten-
sively discussed [70–72]. The natural elements of the Tuha “mountain–oasis–desert” sys-
tem have distinctive characteristics and are highly representative of arid zones. This 
study’s findings provide a scientific reference for understanding the spatial and temporal 
ET patterns in arid regions driven by global warming and human activities. 

It is predicted that the future of ETa in Tuha will have a significant anti-continuous 
trend, i.e., ETa in most of Tuha will be anti-continuously increasing in the future. The high 
Hurst values were found to be mainly concentrated in the junction zone of Balikunhasake 
and southern Yiwu, and low Hurst values were more widely distributed, mainly across 
Turpan City, northwestern Balikunhasake, and southeastern Yizhou. This trend of an anti-
continuous increase in variability will affect the special ecological and environmental ele-
ments of the arid zone, such as oases, dust storms, and lakes. The questions of whether 
the trend of increasing ETa will continue to develop with changes in the regional climate 
system and anthropogenic interventions, and how the hydrological cycle, ecosystems, and 
surface processes in the arid zone will respond [73]—especially regarding the impact of 
conservation and restoration of the desert ecosystem—will require comprehensive and 
longitudinal data and an in-depth study to answer. 

5. Conclusions 
In this work, we quantitatively estimated the monthly ETa of Tuha at a 1 km resolu-

tion from 1980 to 2021 using the ETMonitor model based on multi-source RS and reanal-
ysis data. We then analyzed the spatiotemporal characteristics of the pixel-scale ETa of 
Tuha over the past 42 years using Sen, MK, CV, and Hurst. Finally, we explored the cor-
relations between ETa, TEM, and PRCP in Tuha and the spatial ETa distribution charac-
teristics and trends of different land types. The main conclusions of this work are as fol-
lows. 
1. The R between the estimated results of this study and the PM calculation results and 

existing ETa products such as PEW are all greater than 0.8, the corresponding R2 val-
ues are between 0.7 and 0.9, and the RMSE values are all less than 15 mm/month. 
This verifies that the results of the ETMonitor model in Tuha inversion have high 
reliability and can be used to analyze the spatial and temporal variation characteris-
tics of Tuha’s ETa. 

2. There are significant regional differences and seasonal variations in the spatial dis-
tribution of Tuha’s ETa. The high values are mainly located in mountainous valley 
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areas with high PRCP and in plain areas adjacent to rivers and water supply zones; 
this is similar to the spatial patterns of LUCC and PRCP. The trend of annual ETa in 
each pixel was mainly dominated by the trend of ETa in summer; the influences of 
spring, autumn, and winter on the trend of annual ETa were weak. The overall inter-
annual changes in ETa in Tuha from 1980 to 2021 showed a fluctuating decreasing 
trend; the monthly ETa showed a single-peaked curve, which was basically con-
sistent with the characteristics of the monthly TEM and PRCP changes. This indicates 
that the changes in Tuha’s ETa were closely related to the changes in hydrothermal 
conditions, especially maintaining a correlation with water changes. A similar pat-
tern was shown on the pixel scale: ETa and PRCP were mainly significantly and pos-
itively correlated, while there was a non-significant positive correlation with TEM. 

3. The trend rate of change of ETa in Tuha from 1980 to 2021 ranged from −16.78 to 2.17 
mm/a, with an average trend rate of change of −0.2 mm/a, showing an overall de-
creasing trend. Spatially, there was an increase around the mountain range, the 
southwestern part of Yizhou, the northern part of Balikunhasake and Yiwu, and there 
was a decrease in the southern part of Turpan City. The areas of high ETa fluctuation 
were mainly concentrated in the south of Tuha and the northeast of Balikunhasake 
and Yiwu, and the land types in these areas were mainly bare land; the huge ETa 
fluctuations here could be due to the implementation of the ecological restoration 
project (returning cropland to forest and grass) in Tuha and the increase in urbaniza-
tion. The ETa evolution trends were all significantly resistant to persistence, and 
78.23% of the areas were predicted to have increases in ETa. 

4. The anthropogenic impact in the Turpan–Hami region exhibited a slight decreasing 
trend (85.41%), with 91.65% of the area experiencing an increase while only 8.35% 
showing a decrease in human impact. The ETa intensities of different land-use types 
in Tuha differed significantly: cropland (424.12 mm/a) > forest (354.65 mm/a) > con-
struction (324.9 mm/a) > water (301.45 mm/a) > grassland (241.39 mm/a) > unused 
land (32.27 mm/a). During the study period, the average annual ETa values of 
cropland, grassland, water, construction, and unused land showed decreasing 
trends; the forest showed a roughly stable and constant trend, and the changes in 
land-use type also affected the changes in ETa. 
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