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Abstract: With the development and popularization of remote sensing earth observation technology
and the remote sensing satellite system, the problems of insufficient proactiveness, relevance and
timeliness of large-scale remote sensing supporting services are increasingly prominent, which seri-
ously restricts the application of remote sensing resources in multi-domain and cross-disciplinary. It is
urgent to help terminal users make appropriate decisions according to real-time network environment
and domain requirements, and obtain the optimal resources efficiently from the massive remote
sensing resources. In this paper, we propose a recommendation algorithm using fusion of atten-
tion and multi-perspective (MRS_AMRA). Based on MRS_AMRA, we further implement an active
service recommendation model (MRS_ASRM) for massive multi-source remote sensing resources
by combining streaming pushing technology. Firstly, we construct value evaluation functions from
multi-perspective in terms of remote sensing users, data and services to enable the adaptive provision
of remote sensing resources. Then, we define multi-perspective heuristic policies to support resource
discovery, and fusion these policies through the attention network, to achieve the accurate pushing
of remote sensing resources. Finally, we implement comparative experiments to simulate accurate
recommendation scenarios, compared with state-of-the-art algorithms, such as DIN and Geoportal.
Furthermore, MRS_AMRA achieves an average improvement of 10.5% in the recommendation accu-
racy NDCG@K, and in addition, we developed a prototype system to verify the effectiveness and
timeliness of MRS_ASRM.

Keywords: multi-source remote sensing information; multi-perspective value evaluation; attention
mechanism; collaborative filtering; recommendation system

1. Introduction
1.1. Research Background

In recent years, the remote sensing satellite system has maintained high-speed growth
and formed an application system covering various series of satellites, including commu-
nication satellites, navigation satellites, earth observation satellites and engineering test
satellites. With the deep integration of remote sensing earth observation technology with
emerging technologies, such as Internet, cloud computing and artificial intelligence, remote
sensing resources have obtained a wide application. It has played an important role in many
pivotal domains, such as land resource, economic construction, disaster prevention and mit-
igation, meteorological service and environmental monitoring [1]. Meanwhile, the demand
for remote sensing resources from users in different industries and domains has changed
disruptively. In the past, the demand for static investigation and statistics of qualitative
analysis was homogeneous, normative and posterior. Nowadays, it has been upgraded to
the demand for dynamic monitoring and forecasting based on quantitative research, which
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has the characteristics of diversification, thematicization and perspectiveness. However,
it is difficult for users to comprehensively assess and expeditiously locate the satisfying
content of numerous remote sensing resources in the system. At first, the remote sensing
information system is an open and negotiable resource center, in which remote sensing
resources (such as data and services) from different organizations are brought together with
strong professionalism and distinctive spatio-temporal characteristics. They have structural
and functional differences that cannot be ignored, as well as exhibit similar characteristics,
such as spatio-temporal characteristics, etc. Thus, it seems difficult for non-professional
users to distinguish them through in-depth information analysis. Moreover, diverse users
may have vastly different experiences on similar resources, due to the contrasts among
users in terms of professional background, research domains, and resource requirements.
Additionally, the network bandwidth, server performance, access load and user location of
the runtime environment are also factors that cannot be ignored. At present, most existing
remote sensing information services are in the modes of a query-based and subscription-
based service. To be specific, in the query-based service, users set query criteria to express
their requirements including key words, product grade, satellite model, etc. Then, the
satisfactory resources will be provided to them accordingly. As for subscription-based
service, users always encapsulate query criteria as resource orders and submit them to the
remote sensing information system. Once there exist remote sensing resources meeting
the requirements, the system will push them to users automatically. Although these two
methods help to complete the process of remote sensing resource discovery to a certain
extent, there are still evident shortcomings, such as high professionalism in use and low
accuracy, and diversity in results. These approaches require users to have a professional
background and be able to translate their needs into specific retrieval criteria, thus in-
evitably setting obstacles for ordinary users. Moreover, these approaches are essentially
resource filtering methods based on simple metrics, which limit the search scope and make
it difficult for users to access high-value resources with implicit relevance. Nowadays,
users pay more attention to the proactiveness, pertinence and timeliness of remote sensing
information services. The contradiction between these demands and the traditional remote
sensing information service, with characteristics of passiveness, posteriority and monotony,
is increasingly prominent [2]. To alleviate the above problem, it is urgent to design a “fast,
accurate and flexible” remote sensing information service method to help end-users in
different domains make a comprehensive evaluation and appropriate judgment.

A log of research has been carried out on remote sensing information services to
improve user experience, in which various excellent recommendation algorithms are intro-
duced to address the information filtering problem, such as collaborative filtering recom-
mendation [3–7], context-based recommendation [7–12] and hybrid recommendation [13].
Unfortunately, these methods always face the challenge of achieving high accuracy and
novelty in remote sensing resources discovery, due to the lack of consideration for the
domain characteristics in information analysis and knowledge fusion. Specifically, these
methods fail to recommend remote sensing resources that are truly satisfying and valuable
from the perspective of remote sensing users, and especially lack the modeling analysis of
remote sensing users, and quantitative evaluation of remote sensing data and remote sens-
ing service resources, resulting in many valuable remote sensing resources unmined, and
the remote sensing resources finally recommended to users are too popular. To address this
issue, we propose an active service recommendation model for multi-source remote sensing
information, using a fusion of attention and multi-perspective, to enable self-regulated
filtration and the intelligent recommendation of remote sensing resources. Firstly, we char-
acterize remote sensing users, then we build a user behavior information model and divide
user groups. On the basis of user modeling and grouping, we conduct value evaluation
methods of remote sensing information from multi-perspectives. Specifically, we build the
user-side value evaluation function by analyzing and mining the composition, access the
frequency and behavior trajectory of users, as well as the resource-side value evaluation
function of remote sensing data and services by way of analyzing their characteristics, costs
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and actual value generated in applications. Then, three different heuristic policies with
multi-perspective value evaluation are defined to support resource discovery, including the
user interest value policy, the expert value policy and the domain value policy. The user
interest value policy can help users discover high-value remote sensing resources that are
highly relevant to their own historical trajectories. Additionally, the expert value policy can
help users discover resources that are of interest to expert users in the same group, in order
to encourage users to pursue the trajectories of domain experts. The domain value policy
can help the users to discover hot resources in the domain they belong to, thereby effectively
expanding the scope of users’ interests. Finally, based on the attention network, we propose
a multi-source remote sensing information recommendation algorithm (MRS_AMRA) by
fusion of the multi-perspective resource discovery polices. Based on MRS_AMRA, we
further implement an active service recommendation model (MRS_ASRM) for massive
multi-source remote sensing resources, by combining streaming pushing technology, to
achieve the accurate pushing of remote sensing data and service resources.

1.2. Contributions

The main contributions of our study are as follows:

1. We optimize the remote sensing information evaluation method by modeling and
analyzing actual metrics in user behaviors, remote sensing data and remote sensing
services, and reduce the impact on remote sensing resource representation from the
uncertainty of the cloud environment and mutual independence of disciplinary domains.

2. We put forward a series of targeted heuristic policies to support remote sensing
information discovery, which optimizes the value assessment results from multi-
perspectives, and meet the demands for remote sensing resources in different domains
and groups.

3. We innovatively put forward a recommendation model, which based on the attention
mechanism, fuses different resource discovery policies into the deep collaborative fil-
tering technology to upgrade the “foresight” ability of the remote sensing information
system platform.

1.3. Paper Organization

The rest of the current paper is organized as follows: Section 2 summarizes some of the
previous studies closely related to our work. Our proposed methodology is presented and
described in Section 3, including the problem formulation, information value evaluation
and recommendation model design. Experimental evaluation and result analysis are carried
out in Section 4. Finally, conclusions and prospects are given in Section 5.

2. Related Work

With the continuous development of satellite remote sensing technology, various
satellite systems emerge endlessly, and the comprehensive observation capability of the
earth has reached an unprecedented level. Remote sensing data acquisition systems are in a
gradual perfection process conformably, in which the remote sensing data show exponential
growth in quantity, diverseness and technical indicators, such as spatial resolution, temporal
resolution and spectral resolution [14,15]. Simultaneously, the updating periods of remote
sensing data are gradually shortened and lead to stronger timeliness [16]. Remote sensing
data exhibit the obvious characteristics of big data: volume, variety, velocity, veracity, and
value, as well as new characteristics, such as multi-load, multi-resolution, multi-temporal
and multi-feature [15,17]. Remote sensing big data covers a large amount of spatio-temporal
continuous global data with high-resolution, which can provide more detailed information
of ground objects. Their value mainly lies in the representation of ground surface in a
multi-grain, multi-temporal and multi-level comprehensive manner, and potentially useful
knowledges, such as geoscience, social, cultural, etc. [16] These knowledges can be mined
and refined to gain insight into macro-level trends, to conduct a holistic study of the earth
system, and to reveal intricate inter-connections in it [18]. The unique value of remote
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sensing big data also promotes the wide application of remote sensing technology in the
fields of land resource, urban planning, agroforestry meteorology, ecological environment,
disaster reduction, and defense security [15]. The research on remote sensing big data
has mainly oriented to the specific applications involving information exaction [19,20],
data retrieval [21,22], data fusion [23,24] and data mining [25,26]. In a broad sense, remote
sensing big data consists of data from satellite remote sensing and ground sensor networks,
which can reflect the characteristics of earth-surface environment, and data from social
sensing equipment, such as smart phones, navigation devices, wearable devices, video
surveillance devices, etc., which can illustrate the patterns in human activities, and social
and economic forms. However, the characteristics of remote sensing big data such as huge
volume-wide sources and complex diversity make it a difficult research task in order to
analyze and utilize these data effectively. In this context, the remote sensing active service
technology comes into being. Active service technology can automatically generate models
and rules through deep analysis, the mining and processing of remote sensing big data
to assist decision makers in strategic planning and scientific research, and improve the
utilization and accuracy of remote sensing big data [27]. Active service technology can
help decision makers better understand remote sensing big data, and thus provide more
valuable decision-making support. For example, in the field of agriculture [28], active
service technology can help solve the problem of wasted agricultural resources, reduce
the incidence of pests and diseases, and improve the quality and yield of agricultural
products. In the field of environmental monitoring [29], active service can quickly and
effectively discover pollution sources, detect the condition of vegetation, etc., and provide
the corresponding determination results and countermeasures, as well as quickly extract
the high-precision data needed in urban planning. In conclusion, the application of active
service technology can enable the transformation of massive remote sensing data into
valuable information to support decision making and planning. In the future, active service
technology will provide more credible and valuable data support for Geoscience research.

In recent years, active service technology has been continuously developed and op-
timized in the field of Geoscience, and is widely used in the research of remote sensing
big data processing and analysis. Remote sensing the active service is the premise of
remote sensing big data information mining and promoting the transformation of remote
sensing data to remote sensing knowledge. It can help users combine the application field
characteristics and their own needs to discover valuable remote sensing data resources
and service resources from the remote sensing cloud platform, laying the foundations
for the subsequent realization of comprehensive analysis and deep application of remote
sensing resources. The remote sensing active service in the traditional mode mainly pro-
vides remote sensing data downloads and remote sensing service invocations by the way
of catalogue search. However, the degree of remote sensing information extraction and
analysis is far from enough to support the adaptive provision of remote sensing resource
information according to the dynamic changes of the environment and users’ needs, which
makes it arduous to realize service on demand [16]. In addition, remote sensing application
scenarios are becoming more and more complicated and personalized, which requires
comprehensive consideration of storage capacity, access time, scalability, data security,
service quality and other aspects for resource evaluation, as well as the dynamic changes of
above indicators with the environment. It is also necessary to deliberate the pyramidally
personalized requirements of remote sensing resources brought by the expanding user
category [30]. Therefore, it is necessary to measure the diversity and similarity among
different resources [30], analyze their intrinsic connection and the degree of matching with
users’ demands, then provide users with the optimal remote sensing data resources and
remote sensing service resources on this basis to enhance the resource utilization efficiency
of the remote sensing cloud platform. Existing remote sensing services are mostly tailored
towards particular utilizations. However, the potential needs of information fusion and
knowledge discovery are ignored, which forms a situation of data explosion and knowl-
edge shortage. It is a very pressing need to upgrade from the traditional query-based



Remote Sens. 2023, 15, 2564 5 of 33

remote sensing service to the remote sensing knowledge service with knowledge reasoning
ability. In order to address the problems above, researchers intend to provide remote
sensing knowledge services, an intelligent service with significant cognitive characteristics,
to proactively recommend data of potential interest to users, based on the analysis of
their preferences [31]. Existing studies on remote sensing knowledge service are mainly in
the conceptual stage, in which remote sensing information discovery and remote sensing
information recommendation are typical application scenarios and essential parts. Re-
mote sensing information discovery is a passive-method of service provision, which helps
users find qualified remote sensing services on demand. Studies in this domain can be
divided into two categories: content matching based discovery and semantic similarity
based discovery. Jordy Sangers et al. proposed a service discovery method using natural
language processing technology, which determined the search target according to keywords
provided by users, and improved the matching degree by the word sense disambiguation
method [8]. Manoj Paul et al. calculated the matching degree and ranked the services from
the perspective of service parameters and text descriptions to accomplish remote sensing
service discovery [9]. These methods usually have low accuracy in service similarity cal-
culation and therefore an enormous keyword set must be built in advance. In semantic
similarity-based service discovery, the ontology method is introduced to measure the se-
mantic similarity between user requests and remote sensing services. An Luo et al. used
geographic ontology to propose a multi-level semantic-based remote sensing information
matching method [11]. QY Wu et al. achieved different levels of remote sensing informa-
tion matching via hierarchical matching and ontology classification [12]. All above methods
realize the importance of efficient remote sensing information discovery. Nevertheless,
their accuracy decreases significantly when users are neither professional nor purposeful.
Remote sensing information recommendation is an active method which could push the re-
mote sensing data of users’ interests despite their vague requirements [32]. Corresponding
research can be divided into two categories: the preference-based recommendation and
the feature-based recommendation. The preference-based recommendation analyzes the
behavior patterns of users from historical records and excavates their interests for selection.
LN Yao. et al. adopted probabilistic generation model to collect rating data and semantic
content data of Internet services, and captured user tendency through large amounts of
hidden variables in the model [7]. Hao Tian et al. used user experience, the recommen-
dation effect and evaluation tendency to build trust relationships to realize personalized
recommendations [33]. Blessina Gonsalve et al. considered the user location in collaborative
filtering and improved recommendation accuracy by analyzing the historical load between
clients and remote sensing services [34]. These methods mainly concentrate on the analysis
of user behavior, ignoring the utilization of inherent spatio-temporal characteristics of re-
mote sensing services, whereas the feature-based recommendation takes them into account.
JH Hong et al. proposed a location-based remote sensing resources finding engine (LIFE) to
rank and recommend a series of relevant remote sensing images to users according to the
user-specific AOI [35]. Xu Chen et al. extracted the content information of remote sensing
images to construct the topic model, and used the continuity of spatio-temporal features to
enhance recommendation performance [27]. XH Zhang et al. proposed a recommendation
model of remote sensing data by using retrieval history records and the unstructured
meta-data of them, and discussed the influences of the granularity of spatial location
and the number of latent tasks on top-K recommendation, as well [36]. Benefiting from
the development of artificial intelligence technology, resource recommendation gradually
shields the barriers in underlying domain and semantics, and helps ordinary users obtain
satisfied resources conveniently. It is worth noting that the migration and application of
the prevalent recommendation algorithm need to be carried out on the basis of delicate
knowledge mining of remote sensing resources.

The method we proposed can be counted as the application and the expansion of
remote sensing knowledge service in the remote sensing domain. As previously mentioned,
the remote sensing information system carries abundant multi-resolution, multi-temporal
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and multi-type remote sensing data and services. Although current studies mostly focus
on the integration, organization and management of these resources, they did not provide
enough consideration to the explosion of information caused by the expanding scale of
resources, leading to a polarization problem that remote sensing resources are huge in
quantity but scarce in application. Most importantly, the incredibly valuable remote sensing
resources are not fully evaluated and mined out, which ultimately affects user experience.
Therefore, we propose a recommendation model using the fusion of attention and multi-
perspective. We design a working model of remote sensing knowledge service to analyze,
mine and transform the information and knowledge from both user-side and resource-
side. Meanwhile, relying on expert experiences and scientific research needs in remote
sensing domain, we propose the recommendation method for remote sensing resources,
and endow the remote sensing information platform with the ability of resource perception
and scientific decision-making.

3. Proposed Methodology

This section introduces the proposed recommendation model in detail. Firstly, we
point out the problems that need to be solved urgently in conventional remote sensing
information service methods. Then, by modeling and analyzing the actual metrics of
remote sensing information system, we establish a value evaluation method of remote
sensing information from multi-perspective, such as the value of remote sensing users,
data and service resources. Finally, we take advantage of the attention network to fuse
multi-perspective resource discovery policies, and propose a neural network based rec-
ommendation algorithm. Based on the recommendation algorithm, we further propose
and implement an active service recommendation model for massive multi-source remote
sensing information by combining streaming pushing technology.

3.1. Problem Formulation

In the conventional service model of remote sensing resource, there are human-
computer interface, the remote sensing resource portal, remote sensing resource catalog,
remote sensing resource service and remote sensing resource database, as shown in Figure 1.
Users access the remote sensing resource portal through the human-computer interface,
and provide keywords based on specialized domain knowledge to retrieve relevant re-
sources from the remote sensing resource catalog. The remote sensing resource catalog uses
keyword filtering to extract eligible results from the remote sensing resource service and
the remote sensing resource database and return them to users. There are large amounts
of remote sensing resources with similarities in features and functions, especially in the
same domain or relevant domains, which may lead to high volumes of retrieval results.
Thus, it is difficult for users to seek relatively consistent and useful resources through
filtering returned records one-by-one and repeatedly updating query criteria. Users who
lack domain expertise are caught in a situation where they spend lots of time and still find
that it is an arduous task to find satisfying resources. More importantly, many users in the
remote sensing information system do not realize their implicit requirements in most cases,
which limits the service ability of the system and significantly reduces the user experience.



Remote Sens. 2023, 15, 2564 7 of 33Remote Sens. 2023, 15, 2564 7 of 33 
 

 

Human-computer 
Interface

Remote Sensing 
Resource Portal

Remote Sensing 
Resource Catalog

Remote Sensing 
Resource Service

Search Results

Request Response

Remote Sensing  
Resource Database

Request Response

 
Figure 1. Conventional service model of remote sensing resource. 

3.2. Value Evaluation of Remote Sensing Information from Multi-Perspective 
3.2.1. User Value Evaluation Function 

With the development of the remote sensing industry and the intensification of com-
petition, more and more researchers begin to realize that the competitiveness of the re-
mote sensing information system ultimately comes from creating and delivering excellent 
user value, and improving the experience and loyalty of remote sensing users. Thus, the 
collection and analysis of remote sensing users’ behavior information is the basis of the 
value evaluation of remote sensing information. This section specifically introduces the 
proposed value evaluation method of user information, which is used to integrate and 
analyze the information of remote sensing users and to complete the value quantification. 
1. Behavior information model of remote sensing users 

Users in the remote sensing information system mainly come from different scientific 
research institutes, government agencies or the public. The resource requirements of users 
are always discrepant due to their different domains and backgrounds. Among them, the 
personnel of scientific research institutes are both the providers of resources in this do-
main and the consumers of resources in related domains, and their fields of concern are 
relatively concentrated. At present, many global-level thematic studies have been carried 
out on remote sensing technology, such as climate change, vegetation and land use, land 
coverage change, biodiversity change, etc. This research usually relies on massive remote 
sensing data and the services on the remote sensing information system to complete multi-
disciplinary scientific calculation and statistical analysis. Therefore, users in scientific re-
search institutes always log in for a long time and access remote sensing data and invoke 
remote sensing services frequently. Government institutional users are more engaged in 
the work related to social sustainable development on remote sensing information system 
with a wide range of area concerns. They usually take countries, cities, market towns, 
villages and communities as research objects to conduct the corresponding dynamic mon-
itoring and analysis of environment, economy, society and population. Relying on the 
powerful resource integration ability of the remote sensing information system, they in-
tend to obtain accurate statistical results more efficiently rather than the demand for re-
mote sensing resource production. In comparison, therefore, they have a shorter login 
time and lower operation frequency. The public users generally expect to obtain the re-
search status or experimental results in the domains they care about through the remote 
sensing information system, which may have strong dispersion. The access trajectories of 
different users in different time periods may be quite different, which is the most difficult 
to model. According to the general access patterns of different users in the remote sensing 
information system, we carry out a unified abstract description of remote sensing users 

Figure 1. Conventional service model of remote sensing resource.

3.2. Value Evaluation of Remote Sensing Information from Multi-Perspective
3.2.1. User Value Evaluation Function

With the development of the remote sensing industry and the intensification of com-
petition, more and more researchers begin to realize that the competitiveness of the remote
sensing information system ultimately comes from creating and delivering excellent user
value, and improving the experience and loyalty of remote sensing users. Thus, the collec-
tion and analysis of remote sensing users’ behavior information is the basis of the value
evaluation of remote sensing information. This section specifically introduces the proposed
value evaluation method of user information, which is used to integrate and analyze the
information of remote sensing users and to complete the value quantification.

1. Behavior information model of remote sensing users

Users in the remote sensing information system mainly come from different scientific
research institutes, government agencies or the public. The resource requirements of users
are always discrepant due to their different domains and backgrounds. Among them,
the personnel of scientific research institutes are both the providers of resources in this
domain and the consumers of resources in related domains, and their fields of concern
are relatively concentrated. At present, many global-level thematic studies have been
carried out on remote sensing technology, such as climate change, vegetation and land use,
land coverage change, biodiversity change, etc. This research usually relies on massive
remote sensing data and the services on the remote sensing information system to complete
multi-disciplinary scientific calculation and statistical analysis. Therefore, users in scientific
research institutes always log in for a long time and access remote sensing data and invoke
remote sensing services frequently. Government institutional users are more engaged
in the work related to social sustainable development on remote sensing information
system with a wide range of area concerns. They usually take countries, cities, market
towns, villages and communities as research objects to conduct the corresponding dynamic
monitoring and analysis of environment, economy, society and population. Relying on the
powerful resource integration ability of the remote sensing information system, they intend
to obtain accurate statistical results more efficiently rather than the demand for remote
sensing resource production. In comparison, therefore, they have a shorter login time
and lower operation frequency. The public users generally expect to obtain the research
status or experimental results in the domains they care about through the remote sensing
information system, which may have strong dispersion. The access trajectories of different
users in different time periods may be quite different, which is the most difficult to model.
According to the general access patterns of different users in the remote sensing information
system, we carry out a unified abstract description of remote sensing users from the three
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aspects in terms of profession, behavior and trend, and then we establish the behavior
information model, as shown in Figure 2.

The behavior information model is based on a series of actual behavior data, including
the profession attribute, behavior attribute and trend attribute, which can reflect the overall
picture of remote sensing user information. Among them, the profession attribute provides
static characteristics of remote sensing users, which consists of base information, such as
user ID, geographical region, occupation, research direction, etc., and domain information
including military command, land resource, marine resource, ecological environment,
urban planning, population distribution and disaster emergency. The behavior attribute
and the trend attribute are dynamic characteristics of remote sensing users. Among them,
the behavior attribute describes the interaction information between users and the system,
including login information, such as login frequency and login duration, and operation
information, such as upload frequency, download frequency, browsing frequency, etc. The
trend attribute is the description of potential interest pattern formed through user behavior
trajectory analysis and mining, including base interest information, such as user access
resource types and domains, as well as hot interest information, such as hot resource
occupancy and hot resource utilization, reflecting users’ contribution to the system. Among
them, hot resources refer to the resources that are frequently used in the remote sensing
information system. Hot resource occupancy refers to the ratio of the count of hot resources
used by the target user, in order to count the total hot resources. Hot resource utilization
refers to the ratio of the number of times a target user employs hot resources to the total
times all users employ them. Profession, behavior, and trend attributes are associated to
the target user by user ID. Additionally, the behavior attribute and the trend attribute are
connected by time slot ID. We split users’ online duration into time slots to master the
changes of the user’s behavior pattern over a period of time. Significantly, the user behavior
information model is the foundation of user division and association, and is a core element
of remote sensing information recommendation.
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2. Division and association of remote sensing users

The user behavior information model expresses a single remote that senses the user’s
historical behavior. Additionally, user behavior in the remote sensing information system
is always diverse, complex and interrelated. So, we further analyze and mine the behavior
trajectories among different users and put forward the concept of user group to divide and
associate users. According to relevant application scenarios and domain requirements, there
are strong correlations among different users in the same group under certain conditions,
which can be used to reduce the search scope of optimal resources and reduce the calculation
cost of user value evaluation.

Based on the user behavior information model, we propose a method to divide and
associate remote sensing users, as shown in Algorithm 1. Firstly, cluster all users from the
two dimensions of user static attribute (profession attribute) and user dynamic attribute
(behavior attribute and trend attribute) to generate two kinds of clustering results. Then,
the groups of target users under the two clustering methods are aggregated, that is, the
associated user groups of target users are obtained after the group results are merged and
de-duplicated.

Algorithm 1 Division and Association of Remote Sensing Users

INPUT: the user attribute set UA = {udata1, udata2, . . . , udataM}, the number of groups K;
OUTPUT: the user group UG;

1. for udata in UA parallel do:
2. user_static_vector, user_dynmic_vector = Word2vecEmbedding(udata);
3. add user_static_vector to user_static_vectors;
4. add user_dynmic_vector to user_dynamic_vectors;
5. end for
6. user_static_groups = Kmeans(user_static_vectors, K);
7. user_dynamic_groups = Kmeans(user_dynamic_vectors, K);
8. UG = combine(user_static_groups, user_dynamic_groups);
9. return UG;

3. Value evaluation function of remote sensing users

Firstly, we decompose the composition of user value from the three aspects of user
activity, system familiarity and user credibility and conduct quantitative characteriza-
tion. Then, we further propose the value evaluation function of remote sensing users to
comprehensively identify and measure the contribution degree of users.

For the set U = {u1, u2, . . . , uN} composed of N users, it is divided into M groups
according to Algorithm 1, and the set Gi is used to represent the group to which the current
user ui belongs, then the detailed definitions of user activity, system familiarity and user
credibility are as follows:

User activity refers to the intensity of the user’s memory of the system. Only when
users log in the system frequently and have higher levels of stickiness, the value of remote
sensing information system can be reflected. We quantified user activity by counting the
system login frequency and login duration, as shown in Formula (1):

UA(ui) = |Ω|·∑j∈Ω Tj(ui)/24D2, (1)

where D represents the total number of days from the date when users registered in the
system to the current date, Ω represents the set of user login dates, |Ω| represents the size
of set Ω, and Tj represents the total login duration of ui on date j (unit: h). The more days
the user logs into the system and persists for a longer period of time, the more active the
user will be. For cold-start users, the user activity cannot be directly calculated because
the system interaction has not been carried out. Considering the similarity of user activity



Remote Sens. 2023, 15, 2564 10 of 33

between users in the same group, we use the average activity of all historical users with
similarities in the group Gi instead.

System familiarity refers to how often users interact with the system. The interactive
behaviors of users in the remote sensing information system include uploading, down-
loading, browsing and evaluating remote sensing data and service resources. Users’ active
interaction behavior can bring vitality to the system and effectively promote the benign
development of the remote sensing ecosystem. Combined with the characteristics of user
access, we tag the remote sensing users with two roles: the producers who always upload
resources, and the consumers who usually consume and evaluate resources. We quantify
system familiarity through Formula (2):

SF(ui) = αi·DUR1(ui) + (1− αi)·DUR2(ui),
s.t. αi = DUR1(ui)/

(
DUR1(ui) + DUR2(ui)

)
,

(2)

where resource update rate DUR1(ui) represents the ratio of update times of remote sensing
data and service resources by ui to all users. Resource consumption rate DUR2(ui) is the
ratio of usage times by ui to all users. The weighting coefficient αi is used to balance the
two. Similarly, the system familiarity of cold-start users is expressed by the mean of all
historical users in Gi.

User credibility refers to the degree to which a user can be trusted in the system. A
large amount of behavioral data will be generated when users interact with the system, in
which we can find with similarities via trajectory analysis. We use 3-sigma [37] to detect
the abnormal behavior of remote sensing users. Under this hypothesis, the user behavior
statistics data conform to the standard Gaussian distribution. Since the probability of
data points falling within µ ± 3σ in the Gaussian distribution is 99.73%, the behavior
statistics data outside µ ± 3σ can be defined as outliers, where µ is the mean of all user
behavior statistics data in group Gi, and σ is its variance. We comprehensively quantify user
credibility from two aspects, abnormal rate of resource access and evaluation, as shown in
Formula (3):

UC(ui) = βi·(1− ARA(ui)) + (1− βi)·(1− ARE(ui)),
s.t. βi = 1− ARA(ui)/(ARA(ui) + ARE(ui)),

(3)

where the abnormal rate of resource access ARA(ui) represents the ratio of abnormal access
times of remote sensing data and service resources by ui to all users. Additionally, the
abnormal rate of resource evaluation ARE(ui) represents the ratio of abnormal evaluation
times by ui to all users. Weighting coefficient βi is used to balance the two. Similarly, the
credibility of cold-start users is expressed by the mean of all historical users in Gi.

Finally, we standardize UA(ui), SF(ui) and UC(ui), respectively, and divide them
into γi(1 ≤ i ≤ 3) segments, respectively. The value level of each segment is defined in
Table 1. Then the user’s comprehensive value level can be expressed as Formula (4):

UVL(ui) =
1

∑3
i=1 Ki

(
γ1·UA′(ui) + γ2·SF′(ui) + γ3·UC′(ui)

)
, (4)

where UA′(ui), SF′(ui) and UC′(ui), respectively, represent the value levels of each seg-
ment UA, SF and UC. Notice that the number and level of segmentation in Table 1 can be
determined based on a specific business scenario.

Table 1. Mapping of remote sensing user value level.

UA Segmentation Value Level SF Segmentation Value Level UC Segmentation Value Level

[0, r1) R1 [0, f1) F1 [0, m1) M1
[ r1, r2) R2 [ f1, f2) F2 [m1, m2) M2

. . . . . . . . . . . . . . . . . .[
rγ1−1 , 1

]
Rγ1

[
fγ2−1, 1

]
Fγ2

[
mγ3−1, 1

]
Mγ3
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3.2.2. Data Value Evaluation Function

Remote sensing data consists of unstructured image data and structured description
information (metadata) attached to the image, which can be divided into raw data and
thematic products from the perspective of application. The amount of raw data is huge,
usually tens of GB or even TB scale. The result of raw data analysis by thematic appli-
cation models is called thematic products. Remote sensing thematic products have been
widely used in agriculture, forestry, water resources, geological environment investigation,
environmental protection, land use, urban planning and major engineering construction.
Different from the value composition of general intangible assets, the value formation
process of remote sensing data has the characteristics of creativity, fuzziness of cost and
expense, and risk in the process of value transformation. By analyzing the features of
remote sensing data, domain characteristics, and the actual effects produced in applications,
we comprehensively evaluate the value of remote sensing data from two aspects: explicit
value and implicit value.

As for the explicit value, we adopt statistical analysis of the evaluation data provided
by remote sensing users and use the improved Bayesian average model [38] to evaluate the
comprehensive value of remote sensing data, as shown in Formula (5):

DVL(j) =
N·∑i,j λi,j · R(i, j) + M·Ravg

N + M
, (5)

where R(i, j) represents the rating of user i on remote sensing data j, and N represents the
total number of users participating in the rating of j. Ravg represents the mean ratings of all
remote sensing data in the same domain as j, and M is the preset number of rating users.
By increasing the number of preset rating users and the mean ratings of all remote sensing
data, the Bayesian average model reduces the influence of the one-sided evaluation of the
data value caused by the sparsity of actual ratings. In addition, considering the difference
of rating contribution users, we introduce user value levels to weigh the historical ratings of
remote sensing data to improve the accuracy of the Bayesian average model. The weighted
coefficient is shown in Formula (6):

λi,j = UVL(i)/ ∑
i∈Uj

UVL(i), (6)

where Uj represents the set of all users who have rated remote sensing data j, and UVL(i)
represents the value level of user i. Formula (6) indicates that the higher the value level of
users, the greater the proportion of their rating in the value evaluation of remote sensing
data, which reflects the importance of high-value users’ evaluation.

In the actual scenario, users’ explicit evaluation of remote sensing data is extremely
sparse, but implicit evaluation data, such as clicking, browsing and collecting, are con-
siderably abundant. These implicit data contain valuable information that can be used to
compensate for the data sparsity of explicit evaluation. We carry out explicit processing on
the implicit evaluation data, as shown in Formula (7):

R(i, j) =


bni,j·Ravg/

−
Nc, δi,j = 0, ni,j > 0

Rmax, δi,j = 1, ni,j >
−
N

Ravg, else

(7)

where ni,j represents the number of visits to remote sensing data j by user i, and
−
N rep-

resents the average number of visits to all remote sensing data in the same domain as j.
Ravg and Rmax are the mean and maximum explicit ratings of all remote sensing data in the
same domain as j. Indicator function δi,j shows whether remote sensing data j is collected
by user i, δi,j = 1 indicates collection and 0, otherwise, b·c is used for rounding down.
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3.2.3. Service Value Evaluation Function

Remote sensing services are an important resource in the remote sensing information
system, which is mainly used for remote sensing data-oriented analysis, processing, access,
decision-making with a characteristic of high integration, complete platform independence
and language independence. We analyze the domain characteristics, access performance
and running state of remote sensing services and evaluate them in terms of application
value, maintenance cost, as well as service performance.

The application value of the remote sensing service refers to the value of remote
sensing data it carries. The remote sensing service in the remote sensing information
system is mainly oriented to the analysis, processing and production of remote sensing
data: the core element. Therefore, the value of remote sensing data is the crucial part of
the value of remote sensing service. The set of remote sensing data carried by the remote
sensing service j is denoted as DG = {DG1, DG2, . . . , DGM}, and the set of values of them
is denoted as DVL = {DVL1, DVL2, . . . , DVLM}. Then, the application value of j can be
generated, as shown in Formula (8):

AV(j) = ∑M
i=1 DVLi/M. (8)

The maintenance cost can be expressed by the storage space required by remote sensing
data, whereas the service performance is mainly composed of response delay, throughput,
SLA violation rate and request error rate of the remote sensing service. More storage
space indicates that the remote sensing service consumes more resources, such as storage,
computing and network, which raises operation and maintenance costs. However, longer
response latency or lower throughput indicates poorer performance of the remote sensing
service, which degrades the user experience. It is noteworthy that the storage and service
performance of the remote sensing service for diverse businesses are quite different. As an
example, the remote sensing services for offline data processing are usually disk-intensive
and in need of more storage overhead, while remote sensing services for data accessing are
mainly bandwidth-intensive and have a smaller response latency. At this point, there is
little practical significance in cross-domain and cross-business comparison. Our discussion
on the evaluation of different remote sensing services covers the ones in the same domain
and for the same business, in terms of maintenance costs and service performance.

We use the improved TOPSIS [39] to comprehensively measure maintenance costs
and service performance, in which the entropy weight method is introduced to objectify
the weight of the decision-making factors accounting for low accuracy, which is caused
by subjective weighting in earlier studies. The remote sensing service evaluation vector is
composed of five critical metrics, as shown in Formula (9):

FS(j) =
(
Qj, RT j, TH j, SLAj, ERRj

)
, (9)

where Qj is the storage space of remote sensing service j, RT j is the average response time in
concurrent access scenarios, and the throughput TH j is the number of requests successfully
processed per unit time. SLAj is the SLA violation rate of j and can be expressed as
SLAj =

(
RT j − δ

)
/RT j. δ is the tolerance threshold of response time. ERRj is the request

error rate, which is the proportion of the number of failed requests to the number of requests
in total. In Formula (9), TH j is a positive metric, while the others are negative metrics.
Thus, the optimal evaluation vector A+ and the worst evaluation vector A− of TOPSIS can
be expressed as Formulas (10) and (11):

A+ = (min(Q), min(RT), max(TH), min(SLA)), (10)

A− = (max(Q), max(RT), min(TH), max(SLA)), (11)
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where Q =
{

Q1, Q2, . . . , Qj, . . . QN
}

is the storage space set served by all remote sensing
services, min(Q) is the element with the minimum value in Q, while max(Q) is the element
with the maximum value, and so on, for each of the others in Formulas (10) and (11).

We respectively calculate the distance between the evaluation vector of the remote
sensing service and the optimal evaluation vector, A+, and the worst evaluation vector,
A−, and then get the value of the remote sensing service with respect to maintenance costs
and service performance, as shown in Formula (12):

RI(j) = (D−j /(D+
j + D−j ))

s.t. D+
j =

√
∑K

k=1 Wk(A+(k)− FS(j, k))2

D−j =
√

∑K
k=1 Wk(A−(k)− FS(j, k))2

, (12)

where D+
j denotes the distance between FS(j) and A+, D−j denotes the distance between

FS(j) and A−. FS(j, k) is the k-th element of FS(j), A+(k) and A−(k), respectively, denotes
the k-th element of A+ and A−, and Wk is the weight coefficient of the feature of FS(j) in
the k-th dimension.

As shown in Formula (13), the comprehensive value of the remote sensing service can
be obtained by synthesizing the multi-dimensional evaluation results, such as application
value, maintenance cost and service performance.

SVL(j) = β·∑M
i=1

DVLi
M

+ (1− β)·
D−j

D+
j + D−j

, (13)

where the first part in Formula (13) is the application value, and the second part is the value
in relation to maintenance cost and service performance, weighed by β.

3.3. Recommendation Model of Multi-Source Remote Sensing Information
3.3.1. Definition of Heuristic Policies to Support Resource Discovery

The heuristic policies supporting resource discovery defines the rules for discovering
high-quality remote sensing data and service resources in the remote sensing information
system. These rules are based on the multi-perspective value evaluation including users,
data and services, and summarized according to the characteristics of remote sensing
domain, application scenarios, etc.

We divide N users in the set U = {u1, u2, . . . , uN} into M groups using Algorithm 1,
and use the matrix G =

(
Gij
)

N×M to represent the user division result, where Gij = 1 if ui
belongs to the j-th group, and Gij = 0 otherwise. Then the detailed definitions of interest
value policy, expert value policy and domain value policy are as follows:

1. User interest value policy (ST1)

There are massive behavior trajectories that are generated during the interaction
between users and the remote sensing information system, which are cross-correlated with
each other and contain a wealth of valuable information. Firstly, we analyze the behavior
trajectories of users to capture their interest patterns. Then we extract the interactive
resources of all members in the same group. Finally, we intercept the top K resources
with the highest value that the current user has not interacted with as interest resources
to support the user to “discover current research trends”. The formal expression of user
interest value policy is given in Formula (14):

{
ui ∪ G ∪ HU ⇒ Qui

∣∣{HG = reduce
(
Gij 6= 0

)
, Qui = topK(RVL(HG)), Qui ∩ Hui = ∅

}}
, (14)

where HU = {Hu1 , Hu2 , . . . , HuN} denotes the set of interacted resources of all users, HG
denotes the set of interacted resources of the current user group members, and Qui denotes
the set of interest resources recalled to ui with the top K value ranking. In the constraints,
reduce

(
Gij 6= 0

)
means to aggregate the interacted resources of group members, RVL(HG)



Remote Sens. 2023, 15, 2564 14 of 33

means to evaluate the value of interacted resources in set HG, which is based on Formula (5)
for remote sensing data and Formula (13) for remote sensing services. topK means to
intercept resources with the top K value ranking into set Qui , and Qui ∩ Hui = ∅ represents
to extract resources in Qui that the current user has not interacted with.

2. Expert value policy (ST2)

The experts in remote sensing information system are defined as the most valuable
users in each group, who usually have higher user activity, system familiarity and user
credibility. Expert value policy focuses on analyzing the behavior of experts, and recalls
resources which are used more frequently by experts to help unprofessional users “follow
the expert track”. The formal expression of the expert value policy is given in Formula (15).

{
ui ∪ G∪HU ⇒ Qû

∣∣{û = argmax
(
UVL

(
Gij 6= 0

))
, Qû = topK(RVL(Hû), Qû ∩ Hui = ∅)

}}
, (15)

where HU = {Hu1 , Hu2 , . . . , HuN} denotes the set of interacted resources of all users, û
denotes experts in groups to which ui belongs, and Qû denotes the set of expert resources
recalled to ui with the top K value ranking. In the constraints, UVL

(
Gij 6= 0

)
calculates the

value of user group members, as specified in Formula (4). argmax means extracting the
group member with the highest value as experts; RVL(Hû) means value evaluation of the
interacted resources of û; topK means to intercept resources with the top K value ranking
into set Qû, and Qû ∩ Hui = ∅ represents to extract resources in Qû that the current user
has not interacted with.

3. Domain value policy (ST3)

As mentioned earlier, the applications of remote sensing technology have entered
into many domains, such as military command, land resource, marine resource, ecological
environment, urban planning, population distribution and disaster emergency. Generally
speaking, there are also intrinsic connections among users and remote sensing resources
in related domains. The domain always represents a high level of technical expertise in a
certain field. Thus, in the domain value policy, resources with a greater value ranking in
the relevant domains will be recalled to help users “recognize the hot research in a specific
field”. The formal expression of the domain value policy is provided in Formula (16).{

ui ∪ G∪HU ⇒ Qs
∣∣{Ei =

{
ek|uk ∈ Gi, Gij 6= 0

}
,

D= reduce(Ei), Qs = topK(RVL(D)), Qs ∩ Hui = ∅}}, (16)

where HU = {Hu1 , Hu2 , . . . , HuN} denotes the set of interacted resources of all users; Ei rep-
resents the associated domain set that is the concatenated set of domains to which all mem-
bers in user groups belong; D represents the set of domain resources in Ei, Qs represents the
set of interest value resources recalled to ui with the top K value ranking. In the constraints,
reduce(Ei) means aggregating all resources in associated domains; RVL(D) means value
evaluation of domain resources; topK means to intercept resources with the top K value
ranking into set Qs, and Qs ∩ Hui = ∅ represents to extract resources in Qs that the current
user has not interacted with.

3.3.2. Recommendation Algorithm of Multi-Source Remote Sensing Information

The network structure of multi-source remote sensing information recommendation
using the fusion of attention and multi-perspective, is shown in Figure 3, which consists
of a sparse input layer, embedding layer, policy fusion layer, concatenation layer, deep
collaborative filtering layer and output layer. The sparse input layer realizes feature space
modeling by fusing the attribute information of remote sensing users, remote sensing data
and service resources. The embedding layer reduces the computation complexity of the
neural network by mapping the high-dimensional sparse vector from the sparse input layer
into the low-dimensional dense embedding vector. In the policy fusion layer, an attention
activation unit is designed to fuse three heuristic policies proposed for resource discovery.
The concatenation layer splices the user embedding vector and the attention-weighted
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resource embedding vector, and inputs the obtained vector to the deep collaborative
filtering layer. The deep collaborative filtering layer realizes the deep fusion and interaction
of the remote sensing user, remote sensing data and service features through the tower
structure composed of multi-layer neural networks. Through the sigmoid activation
function, the output layer maps the interactive features to the users’ evaluation of remote
sensing resources. Then, we will illustrate the design of the network structure in detail,
in terms of the feature space, the value policy fusion, and network output, and further
propose a recommendation algorithm for multi-source remote sensing information.
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• Design of feature space

Users always give priority to the applicability of remote sensing resources, which re-
quires that the recommended resources are highly consistent with their historical trajectory.
Secondly, it is necessary to ensure the value and novelty of resource contents. The value
indicates the excellent quality and high performance of resources, and the novelty refers to
the diversity of resources, which can help users broaden their horizons and discover new
knowledge. Therefore, the Feature Space (FS) input to the above recommendation network
consists of five components: the User Feature Field (UFF), the Candidate Resource Feature
Field (CRFF), the Interest Resource Feature Field (IRFF), the Expert Resource Feature Field
(ERFF) and the Domain Resource Feature Field (DRFF), as shown in Formula (17):

FS = (UFF, CRFF, IRFF, ERFF, DRFF), (17)
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where UFF includes attribute features such as user ID, gender, age, geographical region,
user domain, etc. CRFF includes data and service features of the resource to be evaluated
currently. Among them, Data Features (DF) are composed of satellite identification, sensor
identification, shooting time, production time, reference system, etc., and Service Features
(SF) are composed of response time, throughput, request error rate, and SLA violation
rate, etc. IRFF is a feature sequence of resources within the user’s range of interests
recalled by policy ST1. ERFF and DRFF are the feature sequence of resources recalled by
ST2 and ST3, respectively. The attribute features of users and resources are summarized
in Table 2. Additionally, Algorithm 2 provides a method in which the three heuristic
policies mentioned above are integrated to recall resources and prepare data to feed into
recommendation networks.

Table 2. Description of user and resource features in remote sensing information system.

Categories Features Attributes Description

User
Basic Feature

UserID User’s identification

Gender User’s gender

Age User’s age

GeoRegion User’s geographical region

Education User’s education background

Occupation User’s occupation

ResearchDirection User’s research direction

Domain Feature
UserDomain User’s domain

UserSubDomain User’s sub-domain

Resource

Data Feature

SatelliteCode Satellite identification of remote sensing data

SensorCode Sensor identification of remote sensing data

ShootingTime Shooting time of remote sensing data

ProductionTime Production time of remote sensing data

ReferenceSystem Reference system of remote sensing data

SpatialResolution Spatial resolution of remote sensing data

DataCategory Category of remote sensing data

DataFormat Format of remote sensing data

Service Feature

SvcID Identification of remote sensing service

SvcResponseTime Response time of remote sensing service

SvcThroughput Throughput of remote sensing service

SvcErrorRate Request error rate of remote sensing service

SLAViolationRate SLA violation rate of remote sensing service
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Algorithm 2 Recall of Remote Sensing Resources Based on Heuristic Polices

INPUT: the user set U, the user grouping matrix G, the number of recalled resources K1, K2, K3;
OUTPUT: the recalled resource set Q;

1. for ui in U parallel do:
2. Get member set Gi according to G;
3. if K1 > 0 then: // recall interest value resources using policy ST1;
4. for uk in Gi do:
5. HG ← HG ∪ Huk //aggregate user group resources;
6. end for
7. for qj in HG do:
8. Evaluate value of qj using Formulas (5) or (13) according to resource type;
9. end for
10. Encapsulate K1 resources with the highest value from HG as Q1(ui);
11. else if K2 > 0 then: // recall expert value resources using policy ST2;
12. for uk in Gi do:
13. Evaluate value of uk using Formula (4);
14. end for
15. Take user with the greatest value as expert û;
16. for qj in Hû do:
17. Evaluate value of qj using Formulas (5) or (13) according to resource type;
18. end for
19. Encapsulate K2 resources with the highest value from Hû as Q2(ui);
20. else if K3 > 0 then: // recall domain value resources using policy ST3;
21. for uk in Gi do:
22. Add ek to set Ei // ek is the domain that uk belongs to;
23. end for
24. Aggregate all resources in domains Ei into set D;
25. for qj in D do:
26. Evaluate value of qj using Formulas (5) or (13) according to resource type;
27. end for
28. Encapsulate K3 resources with the highest value from D as Q3(ui);
29. end if
30. Q(ui) = Q1(ui) ∪Q2(ui) ∪Q3(ui);
31. end for
32. return Q;

• Design of value policy fusion

In Section 3.3.1, we design three heuristic policies to support remote sensing resource
discovery. These policies focus on the availability, value and novelty of recalled resources,
respectively, so we need to fusion them according to the actual scenarios to meet different
user requirements. We design an “Attention Activation Unit” using neural network, and
comprehensively characterize the candidate resources in terms of applicability, value and
novelty by adjusting attention weights adaptively, as shown in Formula (18):

VA
j =

L
∑

l=1
sim(Vj,

−
V

l
)·
−
V

l
,

s.t.
−
V

l
= 1

K

K
∑

k=1
V l

k ,
(18)

where VA
j denotes the attention-weighted vector of candidate resource j, sim(Vj,

−
V

l
) de-

notes attention weight, Vj denotes the original vector of j, and
−
V

l
(1 ≤ l ≤ L) denotes user

attention vector in applicability, value or novelty. Specifically,
−
V

l
is quantified by the mean

vector of recalled resources using value policy “ST l (ST1, ST2, ST3)”. In its expansion, V l
k
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denotes the embedding vector of recalled resource k(1 ≤ k ≤ K). In terms of implementa-
tion, we use a small neural network as the “Attention Activation Unit” to calculate attention
weight. Its specific structure is shown in the upper right corner of Figure 3. A similar
method can be referred to Alibaba’s DIN model [40]. The input layer of the activation unit
are two embedding vectors, which are connected with the original embedding vectors after
element-wise minus operation, and finally the attention weight is the output through a
single neuron output layer.

• Design of network output

In Figure 3, user vector Vi and attention-weighted resource vector VA
j are concatenated

in a concatenation layer as the input of neural network with deep collaborative filtering
(NeuralCF) [41]. This neural network deeply interacts with the feature of user and resource,
and maps it to the user’s evaluation R(i, j) (such as rating or click-through rate) through
the Sigmoid function for top-K recommendation, as shown in Formula (19):

R(i, j) = NeuralCF(Vi, VA
j ). (19)

As shown in Figure 4, there are seven steps in the flow of the recommendation
algorithm of multi-source remote sensing information using the fusion of attention and
multi-perspective (MRS_AMRA).
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Step 1: Initialize the algorithm parameters. The parameters of neural network are
initialized with random weights on the interval 0–1. Corresponding codes are line 1.

Step 2: Divide and associate users. Users are divided and associated by Algorithm 1
to reduce the search scope of optimal resources. Corresponding codes are in line 2.

Step 3: Recall resources with heuristic policies. The interest, expert, and domain value
resources are recalled using Algorithm 2. Corresponding codes are in line 5.

Step 4: Construct attention vectors. Calculate user attention vectors in terms of availability,
value and novelty of remote sensing resources. Corresponding codes are in lines 7–17.

Step 5: Construct attention-weighted vector. Firstly, calculate th attention weight
sim
(
Vj, Vk

)
through the attention neural network. Then, attention vectors are weighted to

obtain the attention-weighted vector of candidate resources to realize the comprehensive
characterization of candidate resources on applicability, value and novelty. Corresponding
codes are in lines 19–22.
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Step 6: Predict users’ evaluation. Concatenate user vector and attention-weighted
resource vector, and conduct feature interactions using the deep collaborative filtering network
to predict the user’s evaluation on candidate resources. Corresponding codes are in line 23.

Step 7: Top-K recommendation. rank all candidate resources according to evaluation value,
and recommend the top K remote sensing resources for the current user. Corresponding codes
are in line 26.

MRS_AMRA is trained in a similar way to Alibaba’s DIN model, which will not be repeated
here. In terms of time complexity, the time consumption of MRS_AMRA mainly lies in the
multi-layer for loop of Steps 7–17 and 18–25. Assuming that the number of users is M, the
number of resources is N, and each user has K attention resources, the time complexity of Steps
7–17 is O(M× N), and Steps 18–25 is O(M× N × K). So, the time complexity of MRS_AMRA
is O(M× N × K). Since parallel computing can be performed using a distributed framework,
such as Spark, the time complexity can be controlled to linear level, which can fully meet
the time requirements of actual recommendation scenarios in the remote sensing information
system. Corresponding pseudo-code of MRS_AMRA is provided in Algorithm 3.

Algorithm 3 MRS_AMRA

INPUT: the user set U, the resource set D, the number of recalled resources K1, K2, K3,
and the number of recommended resources K;
OUTPUT: the recommended resource set RS;

1. Initialize network with random weights;
2. Divide user groups using Algorithm 1;
3. for ui in Uparallel do:
4. Get the attribute features of ui and build Embedding vector Vi;
5. Recall resources using Algorithm 2

Q(ui) = Q1(ui) ∪Q2(ui) ∪Q3(ui);

6. Initialize vector
−
V

1
,
−
V

2
,
−
V

3
, VA

j to 0 and set AFG to ∅;

7. for rj in Q(ui) parallel do: // Construct attention vectors;
8. Get the attribute features of rj and build Embedding vector Vj;
9. if rj ∈ Q1(ui) do:

10.
−
V

1
=
−
V

1
⊕ 1

K1

⊗
Vj // availability attention;

11. else if rj ∈ Q2(ui) do:

12.
−
V

2
=
−
V

2
⊕ 1

K2

⊗
Vj // value attention;

13. else:

14.
−
V

3
=
−
V

3
⊕ 1

K3

⊗
Vj // novelty attention;

15. end if

16. add
−
V

1
,
−
V

2
,
−
V

3
to set AFG;

17. end for
18. for rj in Q(ui) parallel do:

19. for
−
V

l
in AFG do:

20. sim(Vj,
−
V

l
) = NeuralNet(Vj,

−
V

l
);

21. VA
j = VA

j ⊕ sim(Vj,
−
V

l
)·
−
V

l
// Construct attention-weighted vector;

22. end for

23. R(i, j) = NeuralCF
(

Vi, VA
j

)
// Predict users’ evaluation;

24. add R(i, j) to set S;
25. end for
26. RS(i) = Top− K(S, K) // Top-K recommendation;
27. end for
28. return RS;
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3.3.3. The Implementation of Recommendation Algorithm

On the base of MRS_AMRA algorithm, we design the remote sensing user behavior anal-
ysis component, remote sensing resource recommendation component and streaming pushing
framework as supplements to the conventional service model provided in Figure 1, and
propose an active service recommendation model of multi-source remote sensing information
(MRS_ASRM), as shown in Figure 5. In this model, the remote sensing user behavior analysis
component, as an integral part of the remote sensing resource portal, realizes the user behavior
collection, user behavior modeling, user division and association at the application-side, and
persists the analysis results to the user behavior database. The remote sensing resource rec-
ommendation component, as an integral part of the remote sensing resource catalog, realizes
fusion sorting and the recommendation of remote sensing data and service resources at the
service-side. It integrates resource discovery policies (user interest value policy, expert value
policy and domain value policy) through deep collaborative filtering technology combined
with the attention mechanism to improve recommendation performance. The streaming
pushing framework realizes real-time information interaction between the remote sensing
portal and the remote sensing resource catalog.

Remote Sens. 2023, 15, 2564 20 of 33 
 

 

improve recommendation performance. The streaming pushing framework realizes real-
time information interaction between the remote sensing portal and the remote sensing 
resource catalog. 

Human-computer 
Interface

Remote Sensing 
Resource Service

Remote Sensing  
Resource Database

Remote Sensing 
Resource Portal

User Behavior 
Database

User Behavior Collection

User Behavior Modeling

User Division and Association

Remote Sensing User Behavior 
Analysis

Remote Sensing Resource 
Recommendation

Streaming Pushing Framework 

Fusion Sorting
Recommendation

Interest Value 
Policy Recall
Expert Value 
Policy Recall

Domain Value 
Policy Recall

User Value 
Evaluation
Data Value 
Evaluation

Service Value 
Evaluation

Remote Sensing 
Resource Catalog

Event

 
Figure 5. Active service recommendation model of multi-source remote sensing information 
(MRS_ASRM). 

Based on the WebSocket technology [42], we design and implement a streaming 
pushing framework for remote sensing resources recommendation, as shown in Figure 6. 
The framework uses a reactor thread pool to manage the massive WebSocket connection 
channels from application clients, and uses an I/O thread pool to handle resource pushing 
tasks from different client channels. In Figure 6, each reactor aggregates a multiplexed 
WebSocket channel selector, which can register, monitor and poll hundreds of channels at 
the same time, so that a thread can handle the connections of many clients at the same 
time, thus improving the substantial concurrent request processing capability of the sys-
tem. Meanwhile, we encapsulate time-consuming processes, including recall and recom-
mendation, as tasks, and employ an I/O thread pool for concurrent processing to meet 
high real-time pushing requirements of remote sensing users. 

Figure 5. Active service recommendation model of multi-source remote sensing information
(MRS_ASRM).

Based on the WebSocket technology [42], we design and implement a streaming
pushing framework for remote sensing resources recommendation, as shown in Figure 6.
The framework uses a reactor thread pool to manage the massive WebSocket connection
channels from application clients, and uses an I/O thread pool to handle resource pushing
tasks from different client channels. In Figure 6, each reactor aggregates a multiplexed
WebSocket channel selector, which can register, monitor and poll hundreds of channels
at the same time, so that a thread can handle the connections of many clients at the
same time, thus improving the substantial concurrent request processing capability of
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the system. Meanwhile, we encapsulate time-consuming processes, including recall and
recommendation, as tasks, and employ an I/O thread pool for concurrent processing to
meet high real-time pushing requirements of remote sensing users.
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Figure 7 shows the timing diagram of remote sensing resources recommendation.
Firstly, users connect to the remote sensing resource portal through human-computer
interfaces and log in to the system. When the event notification that the user has successfully
logged in is received, then after receiving the user operation event, such as search, rate,
collect, etc., the remote sensing resource recommendation component performs resource
recommendation in real time: 1© Obtain the resource discovery policies set by the user
through the RetrieveUserRecallPolicy method. 2© Conduct value evaluation from multi-
perspective and recall resources according to the policies. 3© Carry out fusion sorting and
top-K recommendation.
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4. Experiments

In this section, comparative experiments are carried out to verify the effectiveness of
the methodology we proposed, consisting of the performance experiment of the recom-
mendation algorithm, MSR_AMRA, and the availability experiment of recommendation
model, MSR_ASRM. In experiments, the remote sensing resources that were accumulated
in production operations and the opensource dataset are used as materials, and the tradi-
tional collaborative filtering methods (such as DIN [40] and NeuralCF [41]), and the most
advanced geographic resource recommendation methods (such as Geoportal [13]), are used
for comparison.

4.1. Experimental Setting

We conduct comparative experiments on a platform built on TensorFlow-GPU 2.4.3
deep learning framework and Python 3.7 under the environment of CentOS 7 with a
corresponding hardware configuration of CPU 8-core Intel Xeon E5-2630 v4, 64 GB memory,
1 TB disk, Nvidia Tesla P100 GPU and 16 GB video memory.

We take the WS-DREAM [43] open-source dataset to verify the performance of the
recommendation algorithm, and use the remote sensing resources dataset in an actual
project dataset to verify the availability of the recommendation model.

• The WS-DREAM dataset

The WS-DREAM dataset is a well-known, open-source dataset, which contains 339
users’ real-world usage data on 5825 web services. WS-DREAM is the largest published
service resource dataset in a real-world environment and consists of four files: userlist.txt,
wslist.txt, rtMatrix.txt, and tpMatrix.txt, which provide user information, service informa-
tion, service response time, and throughput respectively, as shown in Table 3. However,
this dataset does not directly provide users with evaluation labels of resources. So, we
convert the service response time (rt) and throughput (tp) into the click-through rate (ctr)
using Formula (20), and generate a set of user labels for algorithm training by marking the
resources with ctr that are greater than 0.65 as “user likes” and the remaining resources as
“user dislikes”.

ctr = λ·rt′ + (1− λ)·tp′,
s.t. rt′ = (rtmax − rt)/rtmax, tp′ = tp/tpmax.

(20)

Table 3. Information statistics of WS-DREAM dataset.

Statistics Value

Num. of Web Service Invocations 1,974,675
Num. of Service Users 339
Num. of Web Services 5825

Num. of User Countries 30
Num. of Web Service Countries 73

Mean of Response-Time 1.43 s
Standard Deviation of Response-Time 31.9 s

Mean of Throughput 102.86 kbps
Standard Deviation of Throughput 531.85 kbps

• The remote sensing resource dataset

Typical remote sensing data resources and remote sensing service resources are gath-
ered in this dataset. There are ten types of typical remote sensing data resources covering
the whole world, including satellite image data, three-dimensional terrain data, street view
image data, vector map data, etc. The remote sensing data resources in this dataset belong
to different domains, such as land resource, marine resource, ecological environment, urban
planning, population distribution, etc., and the resolution of them is over 30 m. The remote
sensing service resources in the dataset contain a large number of services accumulated in
the remote sensing production business, including offline batch processing, spatial anal-
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ysis, image processing, data extraction, data access, product production, environmental
assessment, spatial calculation, decision support and other business types.

In terms of experimental evaluation, we selected metrices widely used in the domain
of information recommendation for algorithm performance evaluation, including Mean
Absolute Error (MAE), F1-Score, Normalized Discounted Cumulative Gain (NDCG), as
shown in Formulas (21)–(23):

MAE = ∑N
i=1|ŷi − yi|/N, (21)

where yi and ŷi represent the real value and predicted value of the resource evaluation
respectively, and N is the total number of resources. The smaller the MAE, the higher the
prediction accuracy, and vice versa.

F1− Score = 2× Precision×Recall
Precision+Recall

s.t. Precision = TP/(TP + FP)
Recall = TP/(TP + FN)

, (22)

where TP denotes the number of samples that are both positive, in fact, and predicted;
FP denotes the number of samples that are negative but predicted to be positive; FN
denotes the number of samples that are positive but predicted to be negative. F1− Score is
a compromise between Precision and Recall.

NDCGK = DCGK
IDCGK

s.t. DCGK =
K
∑

i=1

2reli−1
log2(i+1)

IDCGK =
|REL|

∑
i=1

2reli−1
log2(i+1) , reli ∈ {0, 1}

, (23)

where NDCGK is the normalized discounted cumulative gain, DCGK is the discounted
cumulative gain, and IDCGK is the ideal discounted cumulative gain. reli = 1 means
that the resource at position i in the recommendation sequence is really liked by the user,
otherwise reli = 0. REL and K represent the number of recalled resources and recom-
mended resources, respectively. A larger value of NDCGK indicates that the recommended
performance of top-K is better, and vice versa.

4.2. Experimental Results
4.2.1. Performance Experiment of Recommendation Algorithm

At first, we evaluate the convergence stability of the algorithm. We use 70% of the data
in WS-DREAM dataset as user historical behavior data for algorithm training (training set),
and 30% as user future behavior data for algorithm testing (testing set). As can be seen
from the Train Loss in Figure 8 that after a few iterations, the MAE errors of all algorithms
decrease rapidly, which mainly benefits the matrix decomposition technology, which can
deeply mine the high-level features of users and resources and has good convergence. With
the number of iterations increasing to A point, Geoportal and DIN began to outperform
NeuralCF. However, as the iteration continues to increase, the Geoportal and DIN declines
began to slow. Note that MRS_AMRA has gradually widened the gap with the comparison
algorithms. When the iteration increases to point B, MRS_AMRA has achieved the same
performance evaluation as the final convergence of Geoportal and DIN, and continues
to decline until stable convergence. From the convergence trend, MAE forms three ob-
vious levels, the top is NeuralCF, the middle is Geoportal and DIN, and the bottom is
MRS_AMRA, which shows that the convergence performance of MRS_AMRA is obviously
superior. As can be seen from the Test Loss in Figure 8, the test error and training error of
each comparison algorithm maintain a strong consistency, and the performance ranking
is MRS_AMRA > Geoportal ≈ DIN > NeuralCF. Numerical analysis shows that the MAE
error of MRS_AMRA is improved by about 10.3% 7.6%, and 7.9% on average, compared
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with NeuralCF, Geoportal and DIN. By grouping users from two dimensions of static
and dynamic attributes, MRS_AMRA reduces the search scope of optimal resources and
speeds up the algorithm convergence. At the same time, by integrating the characteristics
of current users’ historical interests, domain experts, and high-value resources in related
domains, more accurate user interest prediction is achieved, and the accuracy of resource
evaluation is improved. However, the convergence of NeuralCF is difficult to improve
due to network structure deficiencies. The performance of DIN proves the effectiveness of
the attention mechanism, but faces bottlenecking due to the lack of domain information
considerations. Despite Geoportal using collaborative filtering to integrate user domain and
geographic similarity information, the use of traditional matrix decomposition methods
limits the final convergence performance of the algorithm.
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Then, we evaluate the top-K recommendation performance of the algorithm. By fixing
the number of recalled resources, we compared the three metrices of Recall, Precision
and F1-Score. By changing the number of recommended resources, we compared the
normalized discounted cumulative gain (NDCG@K). As can be seen from Figure 9a, the
F1-Score of MRS_AMRA is superior to comparison algorithms, and the Recall is greatly
improved while ensuring substantial Precision. Meanwhile, From Figure 9b, with the
increase of recommendation number K, NDCG@K metric of MRS_AMRA is gradually su-
perior to comparison algorithms, which shows that the resource sequence recommended by
MRS_AMRA is substantially similar to the real resource sequence used by users. Compared
with NeuralCF, Geoportal and DIN, MRS_AMRA achieves the maximum performance
improvement of about 22.5%, 14.5% at K = 50, respectively. Even when K = 10, performance
improvements about 12.7%, 10% and 6.3% were achieved. In actual application scenarios,
users usually focus on the top 50 resources in the recommendation sequence, so the top-K
recommendation performance of MRS_AMRA can fully meet user requirements. The
experimental results show that MRS_AMRA is effective in integrating heuristic resource
discovery policies with the attention mechanism. Firstly, the heuristic policies ensure high-
resource Recall and Precision in terms of interest value, expert value, and domain value,
and effectively reduces the range of candidate resources. Then, the attention mechanism
reacts adaptively and adjusts the weight coefficients of different candidate resources in
applicability, value and novelty, so it effectively capture users’ potential interests and value
pattern changes to achieve an accurate recommendation. However, comparison algorithms
pose recommendation accuracy problems due to their single resource screening policies,
such as DIN using only interest matching, which is difficult to broaden the user’s interest
domain and effectively capture user interest drift.
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WS-DREAM dataset.

Next, we evaluate the cold-start recommendation performance of the algorithm. By
setting the number of cold-start users in different proportions, we compared the F1-Score
and NDCG@K metrics of each algorithm. As can be seen from Figure 10a, with the increase
of the number of cold-start users, the F1-Score of all algorithms gradually decreases due to
the increasing sparsity of the training dataset, but the downward trend of MRS_AMRA
is relatively flat, especially when the proportion of cold-start users is 50–70%. NeuralCF,
DIN and Geoportal have a precipitous decline, as can be seen from Figure 10b–e; the
fluctuation range of NDCG@K metrics fluctuates greatly at this stage. The reason is
that these algorithms mainly rely on the decomposition of the user-resource contribution
matrix; when the matrix sparsity becomes larger, less feature the information of users,
and resources can be extracted, which leads to lower recommendation accuracy. On the
contrary, MRS_AMRA reduces the search scope of optimal resources by grouping users,
and effectively compounds the popularized recommendation problem caused by the lack
of features of cold-start users and resources through the recommendation of expert users
and domain value resources.
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between NDCG@K and the proportion of cold-start users.

Finally, we conduct an ablation experiment to evaluate the effectiveness of the multi-
perspective fusion network (MFN) and the attention network (AN). Specifically, MFN
and AN are sequentially integrated on the basis of NeuralCF to evaluate the algorithm’s
recommendation performance. F1-Score and NDCG@K metric values are recorded, as
shown in Figure 11. Data analysis shows that the F1-Score, NDCG@30, and NDCG@50
metrics improve by about 6.9%, 10.3%, and 12.5% after integrating MFN alone, compared
to NeuralCF, and the performance improves by about 12.1%, 21.3%, and 22.5% after inte-
grating both MFN and AN. Therefore, the deep collaborative filtering network integrates
the multi-perspective fusion network and attention network, which can improve the recall
performance and recommendation accuracy of the algorithm. MFN reduces the retrieval of
user-preferred resources through multiple heuristic resource discovery policies based on
user grouping and value evaluation, while AN achieves comprehensive evaluation and
precise recommendation of resources in terms of applicability, value and novelty through
the user attention mechanism.
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4.2.2. Availability Experiment of Recommendation Model

We carried out an availability experiment on an actual project dataset to testify the
effectiveness and functional superiority of the recommendation model we proposed when
compared to traditional methods, such as the traditional content-based retrieval method
and subscription-based retrieval method. We validate the general process and critical func-
tions of the recommendation model at first. Then, we illustrate its efficaciousness through
horizontal contrast with the traditional content-based retrieval method and subscription-
based retrieval method from aspects of service mode, usage threshold and retrieval accuracy.
Finally, we substantiated the real-time recommendation capability of the recommendation
model when resources are newly available in the remote sensing information platform.
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Benefiting from the completed user-behavior analysis process in the proposed recom-
mendation model, including user-behavior modeling, user division and association, users
can acquire satisfactory remote sensing data and remote sensing services without tedious
procedures, such as query criteria input and resource orders submission. We randomly
select two kinds of users with different data scales for experimental study, in which User37
has 10 months of historical interaction data, while User101 has only 2 months. The user be-
havior information models are shown in Figure 12, and Figure 13 provides the distribution
of recommended resources in the multi-perspective space.
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data, (b) User101 with 2 months’ data.

In Figure 12, the professional attributes of users are filled at registration, while the
behavior attributes and the trend attributes are initialized at registration and updated with
periodic analysis of the behavior information. Figure 13 shows the distribution of the
resources recommended in the multi-perspective space. The coordinates of resources in
three-dimensions indicate their evaluations based on three policies. Additionally, different
colors are used to represent different recommendation levels. Meanwhile, we extracted
the attributes of the top three remote sensing data resources and remote sensing service re-
sources, including service ID, business type, data type, data level, provider and timestamp.
Analysis of the results in Figure 13 show that the recommended resources for User37, with
a large historical data scale, have a more balanced distribution in the multi-perspective
space, indicating that the recommended resources have greater evaluation results among
multiple resource recall policies. However, for User101 with a small historical data scale,
recommendation resources tend to favor expert value policy and domain value policy,
indicating that proactive service can compensate for the recommendation problem caused
by sparse user data through expert and domain collaborations. This leads to the conclusion
that the digital earth proactive service can effectively recommend resources that meet users’
needs in policies, such as user interest value, expert value and domain value, and help
users to discover content of potential interest, which is practical in the remote sensing
resource supply.
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Then, we adopt the proposed active service recommendation model, the content-
based retrieval method [44] and subscription-based retrieval method [45] to successfully
execute remote sensing resource query operations 100 times under the same experimental
environment. We record detailed system interaction information during each query, such
as the time required for users to perform operations, i.e., filling in query conditions, and
the query time of each execution. Then, we calculate the count of system interactions,
system interaction time, average query time and total query time when all queries are
completed. The user provides a satisfaction rating after each query, such as “Satisfied”,
“Slightly Satisfied”, “Not very satisfied” and “Unsatisfied”. The satisfaction rating with
the highest percentage among all queries is regarded as the final result. Finally, we list the
characteristics and experimental results of the three service methods in Table 4 to conduct
comprehensive comparisons.

Table 4. Comparison of different resource retrieval methods.

Comparison Items Active Service
Recommendation Model

Content-Based Retrieval
Method [44]

Subscription-Based
Retrieval Method [45]

Service mode Proactive Passive Semi-active
User satisfaction Satisfied Not very satisfied Not very satisfied

Count of interactions 207 523 336
System interaction time 93 s 13.2 min 7.1 min

Average query time 0.37 s 1.08 s 0.85 s
Total query time 78 s 9.4 min 4.8 min

As shown in Table 4, compared with the content-based retrieval method and subscription-
based retrieval method, the active service recommendation has a greater user satisfaction,
lower system operation complexity, and higher query efficiency. Additionally, users only
need to offer a simple interaction to be provided with resources matching their interests from
the massive remote sensing data and remote sensing services. However, the content-based
retrieval method relies strongly on contextual input conditions, which are difficult to adapt
to potential changes in user interests. Furthermore, the subscription-based retrieval method
requires users to specify their preferred types of resources and initiate subscriptions, but
in most cases, users fail to explicitly indicate their preferences, which requires extensive
retrieval operations and independent judgment by users. This is mainly due to how the
active service recommendation performs its optimization from two aspects. Firstly, the active
service recommendation carries out user behavior analysis and user grouping in real time
through the daemon process. Users are not required to input query criteria and perform the
search process manually to obtain resources. When a user logs in to the system or browses
resources, the active service process is triggered to automatically recommend resources of
interest, simplifying the interaction between the user and the system. Secondly, instead of
manually adjusting the query criteria to improve accuracy, the proactive service method will
fuse and rank the results that are recalled from multi-perspectives in terms of user interest
value, expert value, and domain value, and can meet user needs by capturing changes in user
interests. Thus, the proposed active service recommendation model can reduce interactions
and save resource acquisition time effectively.

When new remote sensing data resources and remote sensing service resources are
released in the platform, the remote sensing resource catalog will instantly notify the
resource recommendation component to execute recommendation process again via event
triggering. We use the average value of other resources in the domain, to which the new
resources belong as the initial value, to solve the cold-start problem caused by the lack
of historical interactive information. Taking User37 as an example, the recommendation
results after new resources going online are provided in Figure 14, and red rectangular
boxes are used to indicate the new online resources.
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Analyzing the results in Figure 14, we can see that the remote sensing information
recommendation can recall newly available resources from the perspective of domain value
(ST3), and recommend them to users as a supplement to the primal results. Therefore, it
can be considered that the recommendation model we proposed can recommend remote
sensing data and remote sensing services to users in real-time, and help them to perceive
new values in the remote sensing information platform.

5. Conclusions

Aiming at the complex problems of information management and active service in
the remote sensing information system, we innovatively put forward the recommendation
model of multi-source remote sensing using a fusion of attention and multi-perspective.
Firstly, we construct a method of information extraction and value evaluation on the user-
side by analyzing and mining the composition, access frequency and behavior trajectory of
remote sensing users. Additionally, the value evaluation method on the resource-side is
constructed by the use of characteristics, cost accounting and actual value of the remote
sensing data and remote sensing service resources in the online process of the remote
sensing information system. Then, we defined multi-perspective heuristic policies to sup-
port resource discovery, including the user interest value policy, the expert value policy
and the domain value policy. We take advantage of the attention network to fuse these
multi-perspective resource discovery policies, and propose a neural network based rec-
ommendation algorithm. Based on the recommendation algorithm, we further propose
and implement an active service recommendation model by combining streaming pushing
technology. Finally, we implement comparative experiments to simulate various recom-
mendation scenarios and verify the effectiveness from the aspects of service availability
and recommendation accuracy. The proposed active service recommendation model can
be potentially applied in many fields to help users achieve efficient data acquisition and
accurate analysis, improve work efficiency and decision-making. For example, in the fields
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of environmental detection and urban planning, applications, such as water pollution anal-
ysis, urban expansion monitoring and forest resource monitoring, can be realized through
the recommendation and intelligent combination of remote sensing service resources. In the
field of agricultural production, the recommendation of remote sensing data resources can
assist users to carry out a land resource survey, precise fertilization, etc., and improve the
efficiency of agricultural production. In addition, another direction of research application
is to provide effective data support for other domain technologies, such as UAV cluster
system [46], new mechanized operation system [47], etc. Although we have done lots of
work on remote sensing resource assessment and real-time recommendation in this study,
we were not able to bring the algorithm online to a large-scale, real production environment
for A/B testing due to the limitation of the research environment, and we failed to consider
the time-series process of the remote sensing user and resource value change in this study.
In the following research, we will attempt to establish a sequence model of value changes
on remote sensing users and resources, and adopt reinforcement learning technology for
online real-time learning and update of the model, to further improve the timeliness and
effectiveness of the remote sensing resource recommendation.
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