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Abstract: The successful launching of more satellites in recent years has made data fusion an impor-
tant and promising task because it can significantly increase the temporal frequency of the resulting
time series data. To improve the usability of Gaofen-1 analysis ready data (GF1-ARD), Sentinel-2
(S2) is selected to enhance the temporal resolution of GF1-ARD due to their similar characteristics
and short revisit period. Before constructing a denser time series from different platforms, bandpass
alignment is required. Most researchers implement bandpass alignment using the linear model.
However, the transformed bands of S2 by the linear model cannot match GF1-ARD well due to the
limited globally shared parameters. In contrast, local-derived lookup tables (LUTs) can better address
this problem. Inspired by the powerful capability of deep learning, we develop a model based on
the U-shaped network (UNet) to learn tile-adaptive LUTs. Specifically, the LUTs are adaptively
learned from the histogram of the S2 tile. Given that the bandpass alignment can be viewed as a
histogram matching process, the expected LUTs are believed to be highly correlated with the input
histogram. In addition, a simple convolutional module is further introduced to address the pixel-level
misregistration. We have created a large-scale dataset and conducted extensive experiments on it to
evaluate the competitive performance of the proposed model. Meanwhile, extensive visualizations
are generated to illustrate the mechanism of our model. Furthermore, the temporal frequency of
S2 and GF1-ARD is thoroughly assessed to demonstrate that bandpass alignment can significantly
improve the temporal resolution of GF1-ARD.

Keywords: bandpass alignment; bandpass adjustment; Gaofen; analysis ready data; lookup tables

1. Introduction

Since numerous Earth observation satellites have been launched in recent years,
the enormous potential of combining data from different platforms has been discov-
ered [1–3]. The temporal coverage is expected to significantly increase when observations
from multiple sensors are combined [4]. Higher-temporal-resolution data provides a solid
data foundation for time series analysis in many Earth-monitoring applications, such as
land cover change detection [5], terrestrial ecosystem monitoring [6], urban expansion [7],
and flood response [8,9].

A large amount of medium-resolution satellite imagery has been archived since the
open data policy was adopted for Gaofen (GF) satellites in 2019. However, the publicly
available GF1 data is in the 1A/B processing stage, necessitates additional efforts to con-
struct spatially and temporally consistent time series before most analyses, particularly for
large-scale and long-term analyses [10]. Therefore, analysis ready data (ARD) is desperately
needed to relieve users of costly pre-processing steps. As defined by the Committee on
Earth Observation Satellites (CEOS), ARD is satellite data that has been processed to a
minimum set of requirements and organized into a form that allows immediate analysis
with minimal additional user effort and interoperability both through time and with other
datasets (http://ceos.org/ard/ (accessed on 22 February 2023)). Specifically, GF1-ARD
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provides surface reflectance (SR) after atmospheric and geometric correction. Further-
more, GF1-ARD contains a quality assessment band, projected and tiled onto the same
UTM-based military grid reference system (MGRS) as Sentinel-2.

Sentinel-2 (S2) is a suitable candidate to create a virtual constellation (VC) with GF1-
ARD to produce temporally denser products. GF1-WFV has a four-day revisit cycle.
However, GF1-WFV weekly observations cannot fulfil the requirements of these appli-
cations due to the need for continuous and fine-grained monitoring and environmental
factors. These environmental factors, include challenging solar geometries, frequent snow
and ice cover, persistent cloud cover, and other poor atmospheric effects [11,12], all of
which can negatively affect the images. Therefore, it is an appealing idea to combine data
from GF1-WFV and S2 into a single dataset, and this combination of multiple sensor data is
termed “VC”. The European Space Agency launched two satellites for the S2 mission, S-2A
and S-2B, in 2015 and 2017, respectively. Both S-2A and S-2B have a repeat cycle of ten days,
while they have a joint revisit period of five days. The multi-spectral instrument (MSI)
onboard both S2 satellites provides thirteen spectral bands with a spatial resolution of 10 to
60 m, depending on the wavelength. Meanwhile, four wide field viewing (WFV) sensors
onboard the GF1 satellites contain four spectral bands with a spatial resolution of 16 m. S2
and GF1 share similarities in band specification, as shown in Table 1. Furthermore, they
both have sun-synchronous polar orbits. Because of these similarities, they are favourable
for developing more frequent multi-sensor ARD products.

Table 1. Sensor specifications of GF-WFV and Sentinel-2 MSIs.

GF1-WFV S-2A MSI S-2B MSI

Launch date 26 April 2013 23 June 2015 7 March 2017
Nominal equatorial crossing time 10:30 am 10:30 am 10:30 am

Spatial resolution 16 m 10 m
Swath width 800 km 290 km
Orbital altitude 645 km 786 km
Revisit period ~4 days 10 days (5 days together)

Spectral bands

Blue 450–520 nm 458–523 nm
Green 520–590 nm 543–578 nm
Red 630–690 nm 650–680 nm
NIR 770–890 nm 785–900 nm

Over the past few decades, many investigations have been conducted to produce
harmonized data from multiple sensors. These works can be generally divided into two
categories: bandpass alignment [13–17] and spatio-temporal fusion [18–20]. Since there
usually exists disparity in spatial resolution between different sensors, these two categories
of methods generate synergies in different application scenarios. The former is only
required to temporally align the radiometric characteristics of multi-source imagery, where
sensor-to-sensor variations are required to be minimized. Furthermore, the latter is also
expected to achieve image super-resolution, which improves the spatial resolution of the
coarser input to a finer spatial resolution. For example, the NASA Harmonized Landsat
and Sentinel-2 (HLS) project combines the visible bands of the Landsat-8 OLI (30 m) and
Sentinel-2 MSI (10 m) to produce more frequent reflectance products at 30 m [1]. Based on
this, researchers have attempted to bridge the spatial resolution gap between Landsat-8 and
Sentinel-2 to yield a 10 m harmonized dataset [19]. In this study, we focus on producing
denser GF1-ARD products with the aid of Sentinel-2 to promote the temporal resolution of
GF1-ARD. Hence, the required spatial resolution of the output products is 16 m and the
first category of methods is taken into account.

The goal of multi-sensor bandpass alignment is to promote the consistency of se-
quential observations across various sensors. Furthermore, temporally consistency can be
defined as data collected in a short period of time with similar values [21]. Reflectance in-
consistencies in multi-temporal and multi-sensor data may be introduced by factors such as,
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misregistration, different viewing geometry [22–24], atmospheric and cloud contamination,
sensor degradation and calibration variations [25], distinct spectral bandpass and spatial
resolution [1,26], and other processing problems [13]. As a result, bandpass alignment is
inevitably implemented in order to produce harmonized data from multiple sensors.

Bandpass alignment can be decomposed into two processes, including making the
time sequence of a single sensor consistent and coordinating the radiometric characteristics
consistent across different sensors. In this study, we assume the first consistency has been
guaranteed, concentrating on the second process. As a result, the bandpass alignment is
converted into the transformation from S2 imagery to GF1-ARD-like data. The majority of
current studies focus on the alignment between Landsat and S2, but few have investigated
the combination of GF1-ARD and data from other sensors. At the same time, most of the
work involving GF1 data is limited to a small region, and the temporal consistency is not
systematically studied [27,28]. Therefore, it is worthwhile to conduct a global investigation
into the bandpass alignment of GF1-ARD products and data from other platforms.

Most of the current models are built on the linear model, which is ineffective for
aligning S2 to GF1-ARD. Although S2 and GF1 have similar sensor characteristics, their re-
lationships become complicated when each sensor goes through its own series of processing
steps from digital numbers to SR. Meanwhile, the linear model is unsatisfactory when gen-
eralizing to a global scale. As a result, researchers have developed local-derived bandpass
alignment, such as in permafrost regions [3], Australia [14], and arctic–boreal regions [15].
These experiments demonstrate that locally derived bandpass alignment is superior to
globally harmonized products. Since the modelling capability of the linear model is con-
strained due to the limited globally shared parameters, more powerful regional-adaptive
models are therefore desired to achieve the alignment from S2 to GF1-ARD.

Taking advantages of the fast development of deep learning techniques [29], it is be-
coming increasingly popular to train deep neural networks for image enhancement [30–34].
The bandpass alignment can be viewed as a special case of image enhancement tasks in
computer vision, with the goal of adjusting the input closer to the GF1-ARD products
rather than better visualization results. However, the backbone of these models is the deep
convolutional neural network (CNN), composed of the local operations of convolution
and pooling [35,36]. These stacked local operations will result in large receptive fields
and therefore inevitably produce an unacceptably blurry output. Without the guidance of
global knowledge, these models will make erroneous local decisions that lead to artefacts
in uniform areas [31]. In addition, the transformation parameters should be shared in
relatively large areas since the differences between GF1-ARD and Sentinel-2 L2A products
are sensor-related. In summary, the favoured model should achieve a nearly pixel-wise
transformation in a relatively larger area.

Guided by the above principles, we propose to learn tile-adaptive lookup tables (LUTs)
with a U-shaped network (UNet) to produce fast and robust bandpass alignment. Inspired
by the research of [30,33], the LUTs are used to enhance the linear model. The primary
difference between our model and the preceding models is how the LUTs are learned. Our
model generates the LUTs from the histogram of a tile, while these models are developed
by images. As previously mentioned, the bandpass alignment can be regarded as an
image enhancement task, and histogram matching is one of the most widely used methods.
Histogram matching can be viewed as a process of finding LUTs based on the histograms
of the input image pair. However, this is not applicable in our task since only the source S2
imagery is provided for the inference while the target GF1-ARD imagery is not. Motivated
by the basic principles of histogram matching, we believe the expected LUTs are highly
correlated with the input radiance distribution. Yet, it is challenging to learn a good
mapping function from a histogram to LUTs. This issue can be effectively resolved by
a deep learning model, which has strong non-linear and generalization abilities due to
its deep structure. Therefore, we innovatively propose to learn tile-wise LUTs from the
histograms of bands based on UNet. Furthermore, we add a single CNN layer with a 3× 3
kernel to lessen the burden of the registration error between S2 and GF1-ARD. Furthermore,
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such a small kernel hardly blurs the final output because the spatial resolution of the S2
input is inherently higher.

To validate the effectiveness of the proposed model, experiments have been conducted
across two years at three diverse study sites. The radiance distribution and true colour
images after the transformation are comprehensively visualized. Moreover, the normalized
difference vegetation index (NDVI) is employed to demonstrate the excellent consistency of
the temporally aligned data. The temporal frequency of data is further assessed to illustrate
the giant promotion of the time series’ frequency after combining S2.

2. Materials and Methods

In this section, the basic configuration parameters of the GF1 data and processing
of the L2A GF1-ARD products is introduced. Based on this, the procedure for dataset
preparation for bandpass alignment is described. Finally, the architecture of the proposed
model and training details are presented.

2.1. GF1-ARD Production

The GF1 satellite contains six CCD sensors, which take ground observations with
three resolutions: 2 m (panchromatic band, PAN), 8 m (multispectral band, MS), and 16 m
(WFV MS). The MS and WFV MS have the same spectral distribution, including visible
and near-infrared bands as seen in Table 1. Specifically, two of the six sensors constitute
an observation network producing PAN and MS imagery, while the other four CCDs
produce WFV MS observations. In this paper, the archived level 1A GF1-WFV data with
four multispectral bands (red, green, blue, and near-infrared) at 16 m spatial resolution
and an 800 km swath width is selected to generate GF1-ARD. The level 1A GF1-WFV data
only provide top-of-atmosphere (TOA) reflectance after systematic geometric processing.
Howeverm problems prohibit the application of the GF1 data, including geometric offset,
radiometric inconsistency, and atmospheric effects [37].

Figure 1 describes the procedure for processing the GF1-WFV L1A data into L2A prod-
ucts, designed to address the previously mentioned issues. Meanwhile, their distribution is
shown in Figure 2. Firstly, radiometric calibration is carried out with the corresponding
radiometric coefficients and then the atmospheric correction is implemented to remove
atmospheric effects. The global mosaic Landsat-TM data (14.25 m) is then selected as the
reference image to achieve the relative geometric precision correction due to the Landsat
data’s sub-pixel geometric accuracy. Next, the quality assessment is conducted to label
the land, water, cloud, cloud shadow, and snow pixels. In the end, the processed data is
projected and tiled to the MGRS, consistent with S2.

Figure 1. The whole processing procedure of our dataset, including three components: GF1-ARD
producing, data filtering, and data processing.
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Figure 2. The spatial distribution and division of our dataset over the MODIS-derived global green
vegetation map. There are three study sites A, B, and C in our dataset, located in China, Brazil,
and France, respectively. All these tiles are randomly divided into training–validation and test sets.
The detailed division result is shown in the corresponding zoomed-in views. The yellow dot grid
represents a tile containing both training and validation samples, while the green dot grid indicates a
tile consisting of pure test samples. The samples in the yellow dot are then split into training and
validation samples at a nearly 1:1 ratio.

2.2. Dataset

We developed a bandpass alignment dataset with three research regions located
throughout the world, as depicted in Figure 2. These three regions are located in completely
distinct environments, and the significant disparities in their spatial positions lead to
variations in their landscape patterns and the corresponding reflectance characteristics.
Consequently, we believe that the universality of our dataset and the generalization of the
evaluated model can be guaranteed.

In order to minimize the impact of various factors brought by different observation
conditions, the S2 L2A products are selected and the level 1A GF1-WFV data are processed
to level 2A GF1-ARD since both have been corrected to SR. Furthermore, as shown in
Figure 1, we have performed multiple rounds of filtering to assure the diversity and quality
of our dataset. First, all the GF1–S2 pairs are observed on the same day. The same day
acquisitions can assure that there is no change on the ground surface between the S2- and
GF1-identified observations. Meanwhile, little variation is assumed in the Sun zenith,
atmospheric conditions, or solar azimuth angles. As a result, any variations between the S2
and GF1 same-day collections are therefore exclusively regarded as differences in sensor
responses [15]. These same-day pairs are then screened by cloud cover and overlapped
area, and those with excessive cloud cover or insufficient overlapped area are excluded.
Finally, a pair of GF1–S2 pairs is identified on a tile, with the guidance of distributing
the data as evenly as possible across twelve months. Notably, for intersecting grids, we
select data from as many different months as possible to increase data diversity and avoid
subsequent data leakage issues. For example, on the 49TGE and 50TKK tiles, we select data
from September to December, respectively.

After the same-day pairs are determined, the tile images are further processed to
samples to be fed into the proposed network. The four multispectral bands with a spatial
resolution of 10 m are firstly extracted. These bands are then resampled to 16 m with cubic
convolution interpolation due to the mismatch between the spatial resolution of the S2 and
GF1-ARD products. Following this, a mask is created to eliminate clouds, cloud shadows,
and edge pixels with no data. The mask is created using the quality assessment bands
and are eventually manually corrected. A tile imagery is then cropped into patches of
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512× 512 pixels guided by the previously created mask, with patches with an effective
pixel ratio of less than 0.8 being abandoned. Finally, these legal patches are randomly
divided into training, validation, and test dataset with a ratio of nearly 1:1:2. The detailed
sample distribution is detailed in Table 2. Meanwhile, the time distribution of training,
validation, and test datasets are described in Figure 3.

Table 2. Basic information of the dataset, including the location, date, and involved tile number of
three study sites. Patch numbers are also provided for the training, validation, and test datasets.

Region Location Year Tile Training Validation Test

A China 2020 69 1511 1360 2875
B Brazil 2019 32 450 439 841
C France 2020 92 2381 2273 4785

Sum - - 193 4341 4072 8501

Figure 3. Distribution of the training, validation, and test datasets over twelve months.

2.3. Model Architecture

Figure 4 shows an overview of the proposed bandpass alignment framework. The en-
tire network can be decomposed into two steps. First, we develop a UNet to generate
band-wise LUTs to implement intensity transforms. Then, a small CNN is employed to
supplement spatial details, performing local geometric correction. Subsequently, each
component is described as follows.

Figure 4. The architecture of the proposed model. It is composed of two components: 1D LUTs
generation based on the U-shaped network (UNet) and a simple CNN module.
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2.3.1. LUTs

As previously mentioned, a rough pixel-wise transformation is anticipated because
spatial details will be barely lost. Since the capability of the linear model is not satisfactory,
a more powerful pixel-wise method is desired. A three-dimensional (3D) LUT is a tradi-
tional, efficient and popular technique for image enhancement [30]. It is exploited to adjust
the hue, saturation, exposure, colour and tone of photos [38]. However, using a 3D LUT
to remote sense multispectral imagery is impractical. For instance, the S2 MSI contains
twelve bands and correspondingly requires a 12D LUT. The 3D grid defined by a 3D LUT
consist of M3 parameters, where M indicates the number of bins in each channel. Thus, it
is a impossible to determine M12 parameters of a 12D LUT. Meanwhile, it is unnecessary to
consider the cross-channel interactions in SR imagery because there are no intersections
between the band distributions. Therefore, multiple 1D LUTs are adopted, which solely
consist of 12M elements. It is worth mentioning that 1D LUTs will degrade to a linear
model when the values of LUTs are linearly corresponded with the input.

The bandpass alignment in LUTs is performed by two basic operations: lookup and
bilinear interpolation. An input vector I(p) = [In(p), n = 1, . . . , N] denotes the reflectance
values of N bands located in a pixel p. Furthermore, Let W ∈ RN×M represent LUTs,
whose element wn,m maps the reflectance m in the n-th band to reflectance wn,m. A lookup
manipulation is to find its location (x1, . . . , xN) in multiple LUTs:

xn =
In(p)

s
, n ∈ [1, N] (1)

where s = Cn
max/M with Cn

max denoting the maximum reflectance value in the n-th band.
After this, the interpolated values are calculated by bilinear interpolation. The transformed
output intensity vector I′(p) is determined as follows:

I′(p) = [(1− dxn)× wn,x + dxn × wn,x+1, n = 1, . . . , N] (2)

where x = bxnc, dxn = xn − x, and b·c is the floor operation. This bilinear interpolation is
differentiable, and thus the pixel-wise operation can be optimized in parallel by GPU.

2.3.2. Learning LUTs

Ideally, globally shared LUTs are the best solution. However, due to various factors
brought by diverse observation conditions, global LUTs are not applicable to numerous
scenes. Since we have observed a high correlation between the input intensity distribu-
tion and the expected LUTs, we propose to generate LUTs from the histogram of a tile
(6863× 6863 pixels). In contrast, current models are developed by an image patch (such
as 512× 512 pixels). On the one hand, the tile-wise LUTs are on a relatively larger scale
compared to the image-adaptive LUTs. On the other hand, it is impractical to feed an
entire imagery tile into a deep CNN because this will exceed the maximum memory of the
machine, and it is completely unnecessary.

In particular, we model LUTs from histograms using a 1D UNet, an adaptation of the
popular UNet [39]. The architecture of the 1D UNet is modified to the 1D signal processing
scenario. As presented in Figure 5, it has a fully convolutional encoder–decoder type archi-
tecture. The encoder is composed of a repeated configuration of double 3× 3 convolutions
with a stride of 1, each followed by a batch normalization (BN) [40] layer and a rectified
linear unit (ReLU) [41], and a 2× 2 max pooling layer. At each contracting step in the en-
coder, the channels of the feature map are doubled while its size is halved. The upsampling
step in the decoder step begins with a 2× 2 up-convolution, which halves the feature map
channel. Furthermore, a concatenation operation with the corresponding feature map from
the contracting path, and two 3× 3 convolutions with a stride of 1, each followed by a BN
layer and an ReLU, are stacked. Finally, a 3× 3 convolutions with a stride of 1 is employed
to output the transformed results.



Remote Sens. 2023, 15, 2563 8 of 22

8 8 I

16 16 I/
2

32 32 I/
4

64 64 I/
8

128 128 I/
16

128 128 I/
8

64 64 I/
4

32 32 I/
2

16 16 I 4 I
Conv+BN+ReLU Pool Up-conv Conv Concat

Figure 5. The architecture of the 1D UNet. It is an encoder–decoder network with four layers in both
the encoder and decoder. The initial input feature number is four, and the feature channel is doubled
while the feature size is halved after passing one layer of the encoder. In contrast, after passing one
layer of the decoder, the feature channel is halved while the feature size is doubled. Meanwhile,
a concatenation operation is employed to merge features from different scales. Finally, a convolutional
layer is applied to produce the outputs with the same channel number as the inputs.

Specifically, these LUTs are trained by the UNet together, and the input channels are
therefore set to the band number N. It is worth noting that the tile number is limited.
For example, there are only approx. one hundred tiles involved in France, far from enough
for deep learning. In practice, we adopt different strategies in training and inference
processes. The image-wise histograms are exploited in training, while tile-wise histograms
are exploited in the inference process.

2.3.3. Supplementing Spatial Details

As mentioned previously, there exists a geometric registration error between the S2
L2A and GF1-ARD products even though S2 imagery is downsampled from 10 m to 16 m.
Meanwhile, the reflectance transformation with the LUTs is pixel-by-pixel after the LUTs
are acquired by the UNet. This pixel-level registration error is unacceptable for pixel-wise
transformation. The issue can be alleviated by a convolutional operation with a receptive
field greater than 1. However, the output of this convolution layer will be inevitably more
fuzzy because the output value can be regarded as a kind of average value of pixels in
the receptive field. For a good trade-off between spatial details and alignment, we thus
add a 3× 3 convolutional layer with four kernels, followed by a BN layer and an ReLU.
Specifically, the output of the LUT transformation is feed into the single layer CNN, and the
results are the pixel-wise addition of them.

2.4. Criterion

Similar to [30], the proposed model is trained with mean-squared-error (MSE) loss
and two regularization terms. Since the LUTs only learned with MSE loss are unsmooth,
the abrupt value changes in neighbouring elements in the LUTs may lead to inconsistencies.
The smooth regularization term Rs and monotonicity regularization term Rm are introduced
to make the learned LUTs more stable and robust:

1. MSE loss. Suppose there are K training samples {xi, yi}k=1,2,...K, where xk denotes the
k-th S2 patch and yk indicates the k-th GF1-ARD patch. The MSE loss is expressed
as follows:

LMSE =
1
K

K

∑
k=1
||ŷk − yk||2 (3)

where the ŷk is the prediction of our model with xk as the input.
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2. Smooth regularization term. In order to stably transform the S2 bands into the GF1-
like bands, the values in the LUTs should be locally smooth. In other words, it is
expected that the learnt LUTs will vary slightly over a small range of input radiance.
The smooth LUTs are define as follows:

Rs =
N

∑
n=1

M−1

∑
x=1
||(wn,x+1 − wn,x)||2 (4)

where n is the band index, N denotes the band number, x is calculated by Equation (1)
and the floor operation, M is the number of bins in each band, and wn,x indicates
the corresponding values in the LUTs. Meanwhile, the L2 distance is employed for
smoother regularization rather than the L1 distance.

3. Monotonicity regularization term. In addition to being smooth, LUTs should also be
monotonic for two purposes. First, the relative reflectance value can be maintained,
which is beneficial for ensuring the consistency before and after the transformation.
Moreover, there might be insufficient training examples available in practice to cover
the entire space of the LUTs, especially the two sides of the LUTs. Specifically, only a
tiny portion of pixels in cloudless and snowless regions have reflectance values close
to 1. Therefore, the generalization capability of the LUTs can be promoted when the
monotonicity is ensured. The monotonicity regularization on the LUTs is formulated
as follows:

Rm =
N

∑
n=1

M−1

∑
x=1

max(0, wn,x+1 − wn,x) (5)

Finally, the joint criterion L can be expressed as:

L = LMSE + λsRs + λmRm (6)

where λs and λm are the weight coefficients used to balance the effects of the smooth and
monotonicity regularization terms, respectively.

We use the Adam optimizer [42] with a constant learning rate of 0.001 to train the
proposed model for 200 epochs, with four examples per mini-batch. The M, λs, and λm
are set to 256, 0.01, and 0.01, respectively. All hyperparameters are determined by the
performance in the validation dataset with the early stopping strategy [43], and the same
hyperparameter configuration is used for both the quantitative and qualitative results.
Our code (code is available at https://github.com/Liuzhizhiooo/Bandpass-Alignment-
UNet-LUT) is implemented with Python 3.8 and PyTorch 1.10.0 and will be accessible on
1 October 2023.

3. Results

In the following experiments, the proposed model is evaluated on our dataset. The lin-
ear model learned by ordinary least squares (OLS) is compared to illustrate the competitive
performance of our model. The ablation study and visualization results are shown to
demonstrate the effectiveness of this model. Moreover, the temporal frequency of the data
is assessed after the bandpass alignment. Finally, the temporal consistency of the combined
time sequence is measured.

3.1. Performance Comparison

The coefficient of determination (R2) is adopted to quantify the goodness of fit of the
model. In this regression task, the R2 is a statistical measure of how well the transformed
S2 bands approximate the GF1-ARD bands. An R2 of 1 indicates that the regression
predictions perfectly fit the data. In addition, we calculate the root-mean-squared error
(RMSE) to measure the absolute difference between the prediction results and the ground
truth. The smaller the difference between these the values pairs, the closer the relationship.

https://github.com/Liuzhizhiooo/Bandpass-Alignment-UNet-LUT
https://github.com/Liuzhizhiooo/Bandpass-Alignment-UNet-LUT
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Moreover, the OLS regression is derived between equivalent bands from the S2 and GF1-
ARD, and the fitting model is formulated as follows:

y = slope× x + intercept (7)

where y is the GF1-ARD product and x is the prediction result, which can be the output of
the linear model or our model.

Table 3 presents a quantitative comparison between the linear and proposed models
in the test dataset. We observed that the linear correlation between S2 and GF1-ARD,
especially in the blue band, is not significant enough. The R2 values in blue, red, and NIR
bands are less than 0.8, and those in the blue band are even less than 0.5. In contrast,
the linear correlation between the GF1-ARD and the prediction of our model is greatly
improved. The R2 values of all bands are close to or greater than 0.8. In addition, the RMSE
values are considerably lower than those of the linear model, especially the RMSE in the
blue band, which is almost reduced by a factor of 2.

Table 3. Quantitative comparison between the linear and proposed models in the blue, red, green,
and NIR bands.

Model Band Slope Intercept R2 RMSE

Linear model

blue 0.487 0.097 0.473 0.022
green 0.546 0.071 0.586 0.019

red 0.640 0.048 0.795 0.022
NIR 0.718 0.056 0.623 0.032

Ours

blue 1.117 −0.013 0.784 0.012
green 1.026 −0.002 0.828 0.012

red 1.061 −0.005 0.904 0.014
NIR 1.053 −0.014 0.860 0.032

Figure 6 further displays the scatter plots between the GF1-ARD and different vari-
ables, including the initial S2 data and the prediction of the linear model and the output of
our model. The parameters of the linear and proposed models are determined by samples
in the training dataset. It is worth noting that the red solid line in Figure 6a is learned using
OLS regression with the S2 and GF1-ARD representing the x and y in Equation (7), consis-
tent with Table 3. Since the OLS is a linear transformation, the line fitted by the S2 after OLS
transformation and GF1-ARD is y = x. Meanwhile, the red line in Figure 6c is learned with
the prediction of our model and the GF1-ARD. As seen in Figure 6a, the scatters are not
well located around the red solid line calculated by OLS regression, indicating a low linear
correlation between S2 and GF1-ARD. In contrast, the scatters of our model are distributed
more tightly, consistent with the previous quantitative results.

However, there still exists scatters that fall far apart and cannot be transformed well
by our model. The remaining differences are caused by several factors, including misreg-
istration, different viewing geometry, and mixed pixels. Despite the fact that our model
employs a CNN module, the registration error cannot be fully addressed because a 3× 3
local operation cannot perfectly align the S2–GF1 pair spatially. Meanwhile, the viewing
geometry differs even though the S2–GF1 pairs are observed on the same day. Correspond-
ingly, the reflectance may vary greatly due to the terrain, particularly in mountain shadow
regions. Moreover, the effects of mixed pixels vary because of the difference in spatial
resolution. We downsampled S2 from 16 m to 30 m in the data processing, whereas the
mixed pixels in the downsampled S2 are still less than those in the 30 m GF1-ARD. As a
result, even if our model is powerful, the bandpass alignment will never be perfect because
the observation conditions cannot be strictly identical.
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(a) Initial distribution (b) Linear model (c) Our model

Figure 6. (a) Comparison of the surface reflectance (SR) from Sentinel-2 and GF1-ARD. (b) Com-
parison of the predicted SR by OLS and the GF1-ARD. (c) Comparison of the predicted SR by our
model and the GF1-ARD. All of the above sub-graphs are drawn using data from the test set. The
colour bar on the right is used to render the scatters, and the more red the points, the denser they
are. The red solid line represents the line fitted by ordinary least squares (OLS). The accuracy indices
root-mean-squared error (RMSE) and the coefficient of determination (R2) of the linear model are
shown in the upper left corner.

Furthermore, since the NDVI is one of the most simple yet effective vegetation indices,
we extends the quantitative comparison to the NDVI. The NDVI is calculated using two
bands by the following formula:

NDVI =
ρNIR − ρR
ρNIR + ρR

(8)

where ρNIR and ρR stand for the reflectance in the near-infrared (NIR) and red bands,
respectively. An NDVI value near one indicates a high level of green plant cover, while a
value near zero denotes a lack of vegetation, possibly in urban areas. Water, clouds, or snow
are the primary causes of negative NDVI values. The quantitative and qualitative results
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are shown in Table 4 and Figure 7, respectively. Even when R2 for the red and NIR bands
is less than 0.8, the linear model’s NDVI R2 can reach 0.9, which can be attributed to two
factors. First, the red and NIR bands have a relatively stronger linear correlation. Second,
normalization enables the NDVI to be a successful descriptor of vegetation variations
in the presence of atmospheric effects, sensor calibration degradation, and radiometric
degradation in the red and NIR bands (reviewed by [44]). Our model increases the NDVI
R2 even higher to 0.93 while decreasing the RMSE from 0.073 to 0.059. Accordingly,
the scattering points in Figure 7b are more centred around the red fitting line. Additionally,
we find that the fitting is worse in areas with reflectance values lower than 0, which should
be the area devoid of vegetation. As a result, the NDVI R2 can be further promoted in
practical applications, and we believe that the data that our model transforms is acceptable
for qualitative and quantitative vegetation cover analysis.

Table 4. Quantitative comparison between the linear and proposed models in the NDVI.

Model Band Slope Intercept R2 RMSE

Linear model NDVI 1.213 −0.089 0.903 0.073
Ours NDVI 1.052 −0.032 0.930 0.059

(a) Linear model (b) Our model
Figure 7. (a) Comparison of the normalized difference vegetation index (NDVI) from the adjusted
Sentinel-2 by the linear model and GF1-ARD. (b) Comparison of the NDVI from the transformed
Sentinel-2 by our model and GF1-ARD.

3.2. Ablation Study

The improvement in the performance of our model can be attributed to two designs:
the histogram-based LUTs and the CNN module. The following experiments are extended
to illustrate the validity of these factors. It is worth noting that hyperparameters in the
ablation experiments remain unchanged unless otherwise specified, and the early stopping
strategy is adopted to select the best model. To better explore these two factors, we design
several comparable models based on the proposed model. The “GlobalLUTs” refers to a
global shared LUT model that has no relation to the tile histograms, whereas “TileLUTs”
indicates a model that is based on the tile histograms. Moreover, a CNN module is added
when the model name is suffixed with “-Conv”. All these comparisons are shown in Table 5.

Table 5 presents the quantitative results of the comparable models, and we find
that both factors are important. Since R2 can better describe the differences in model
performance, we focus more on it in the following analyses. Histogram-based LUTs are far
more powerful than global LUTs, which boost the R2 of GlobalLUTs and GlobalLUTs-Conv
by nearly 0.3 and 0.2, respectively, in the blue band. The tile-adaptive transformation can
adjust the LUTs in different scenes, allowing it to succeed in the blue band with low linear
correlation. At the same time, we discover that the improvement in the other three bands is
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less obvious, because their linear correlations prior to transformation are higher than that
of the blue band. In addition, the CNN module also plays an important role in our model.
The CNN model benefits both the GlobalLUTs and TileLUTs, increasing the R2 in the NIR
band by nearly 0.07 and 0.05, respectively. Since the kernel size of the CNN module is
only three, this finding demonstrates that even the pixel-level registration error matters
in the bandpass alignment task. The positive effects of the CNN module are illustrated in
Section 3.3.4.

Table 5. Quantitative comparison of the ablation models.

Model Histogram CNN Band R2 RMSE

GlobalLUTs % %

blue 0.467 0.018
green 0.701 0.015

red 0.836 0.019
NIR 0.788 0.040

GlobalLUTs-Conv % !

blue 0.563 0.017
green 0.769 0.013

red 0.893 0.015
NIR 0.853 0.033

TileLUTs ! %

blue 0.772 0.012
green 0.785 0.013

red 0.865 0.017
NIR 0.811 0.038

TileLUTs-Conv (ours) ! !

blue 0.784 0.012
green 0.828 0.012

red 0.904 0.014
NIR 0.860 0.032

3.3. Visualization Results
3.3.1. True Colour Combination

To better visualize the transformed imagery, we exhibit the true colour combination
of tiles. Notably, the reflectance products are multiplied by 10,000 before being saved
as UInt16 data. Hence, a mapping function is required to display the images. However,
the dynamic stretching methods based on histogram statistics are not desirable in this case.
Under different stretching parameters, the relative values of pixels cannot be maintained.
As a result, this makes it impractical to evaluate the similarity between the transformed
image and the target image. Therefore, the fixed-parameter stretching shown in Table 6
is adopted to present the imagery. The table records a three-stage stretching in which the
values in the last three columns of UInt16 are mapped to the corresponding values of Byte.

Table 6. The detail configuration of the fixed-parameter stretching.

Data Type Band Background Linear Stretch Saturate

UInt16
red 0–400 401–2000 >2000

green 0–600 601–2000 >2000
blue 0–800 801–2000 >2000

Byte 0 1–254 255

Figure 8 displays the stretched results of three tiles, which are spread across three
study sites over different months. As can be seen, there exists significant variations between
S2 and GF1-ARD after the fixed stretching. This implies that their reflectances vary greatly,
consistent with the scatter distribution in Figure 6a. The transformed S2 images are much
closer to the GF1-ARD after bandpass alignment, demonstrating the necessity of it before
combining multiple sensors. In addition, the overall colour of our model’s prediction is
more realistic and closer to the target, whereas the linear model’s tends to whiter.
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Figure 8. Visualization results of the different methods. Three tiles of test dataset distributed at
different study sites over several months are provided for comparison, identified at the left and
labelled using the “tile-date” nomenclature. The first column is the GF1-ARD images, the second
indicates the Sentinel-2 imagery, the third lists the prediction of the linear model, and the last column
exhibits the transformed images of our model. All these images are shown with the fixed-parameter
stretching in Table 6.

3.3.2. Batch Visualization

The ultimate goal of our model is to automatically batch transform the S2 imagery into
GF1-ARD products. The key processes of the proposed model are a lookup operation and a
single 3× 3 convolution, both of which require little time and computation. Meanwhile,
the tile-adaptive LUTs are created using a UNet with only 0.17 M parameters. As a result,
our model supports batch conversion of large amounts of data. To exemplify this, we use
the trained model to transform all involved tiles in our dataset and then count the time it
takes. In the inferring phase, the conversion and thumbnail creation of these 119 tiles take
a total of 785 s, with one tile taking an average of 4.1 s. Our experiments are carried out
on a NVIDIA RTX A6000. In addition, thirty tiles are selected from each of the three study
sites, and their true colour images are depicted in Figure 9.
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Figure 9. Tile thumbnails of our model’s prediction. Thirty tiles are selected from three study sites,
including China (A), Brazil (B), and France (C), and the outputs of our model are shown as thumbnails
in three rows. All these images are shown with the fixed-parameter stretching in Table 6.

3.3.3. Visualization of LUTs

The LUTs of the previous three tiles are further displayed in Figure 10. The learned
LUTs can describe a more complicated transformation function that the linear model cannot.
For example, as the input increases, the LUTs of “21KYB-201909” tend to rise monotonically.
The rising rate, however, varies in stages, with the rising rate at the beginning and end
being gentler than in the middle. Meanwhile, we find that the LUTs of “49SGV-202004”
approach linear transformation, consistent with the similar visualization results of the last
row in Figure 8. Due to powerful capabilities of LUTs, the quantitative and qualitative
results outperform the linear model. In addition, since most of the scatters are distributed
in the former part of the space, we truncate the blue, green, red, and NIR bands with 0.3,
0.3, 0.4, and 0.6, respectively. Therefore, the length of the curve varies across the bands.
As a result, the fixed-length LUT can be effectively exploited, and the degrees of fineness
can be adaptively adjusted according to the distribution range of each band. Moreover, all
the blue curves have a higher intercept value, which matches the scatter distribution of the
blue band in Figure 6a.



Remote Sens. 2023, 15, 2563 16 of 22

(a) 21KYB-201909 (b) 32TMQ-202007 (c) 49SGV-202004

Figure 10. The calculated LUTs of the three tiles. The first three bands are represented by correspond-
ing colours, and the near-infrared band is rendered by a purple line. In addition, these bands are
truncated by different values given the scatters.

3.3.4. Spatial Misregistration

We select a local region in “21KYB-201909” as an example to present the spatial details
of images in Figure 11. The first row shows the true colour combination of the selected
local region. As previously mentioned, even though S2 is downsampled to 30 m, it still has
more spatial details and sharper edges than GF1-ARD. The output of the linear model is as
detailed as S2 because it is a pixel-wise transformation. In contrast, our model’s prediction
is slightly blurrier than S2 since one 3× 3 convolutional operation is employed. However,
the minor loss of spatial details makes it closer to the target GF1-ARD. In addition, we
display zoomed-in views of the red cross point in the second row to illustrate the spatial
misregistration between S2 and GF1-ARD. We find that there is one pixel offset in the
row direction. Thus, the offset is preserved in the prediction of the linear model. In
comparison, our model modifies the spatial location and approaches the target GF1-ARD,
demonstrating the effectiveness of the simple CNN module. Meanwhile, we observe that
there is still complex spatial distortion except for the pixel-level offset. This distortion is
hard to eliminate and prevents further improvement of the bandpass alignment.

Figure 11. The comparison of spatial details. The first row shows the true colour combination of the
selected local region in “21KYB-201909”. The second row displays the zoomed-in views of the red
cross point in the first row, where all crosses share the same geometric position.

3.4. Temporal Frequency Assessment

We assess the volume of the S2 L2A and GF1-ARD images available at study site A
(69 tiles in total) in 2020. Specifically, we investigate the amount at different valid data levels
in Figure 12, where valid data refers to the pixels after removing no data and cloud regions.
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We find that the total number of GF1-ARD data is large, while the expected data with
a valid data rate greater than 80% are much lower. Meanwhile, the amount of valid data
varies by month, and the volume decreases in summer and winter due to increased cloud
cover, rain, and snow. For instance, in June, only seventeen images have a valid coverage
ratio greater than 80%. Fortunately, the S2 to GF1-ARD ratio in these seasons is significantly
higher than in others. After merging the S2 data, the temporal frequency of th eGF1-ARD
data is significantly increased, which is critical in months when little data is available.
Meanwhile, we find that the number of available data is drastically increased, even at the
first levels, which greatly benefits the time series analysis.

Figure 12. The amount of S2 L2A and GF1-ARD imagery available at study site A in 2020. The detailed
number of images under various valid data levels and months are displayed. The green, blue,
and yellow bars represent the data with a valid data rate greater than 90, 80 50, and 0%, respectively.
Meanwhile, the extended red bar refers to the corresponding S2 data, and the number at the top
represents the ratio of S2 to GF1-ARD.

Furthermore, to better illustrate the combined effectiveness of merging the S2 data,
we give an example of tile “49SGA” from November 2020 to December 2020 in Figure 13.
To imitate the circumstances of practical application, the GF1-ARD with a valid data
rate greater than 80% is filtered out, and there are only three images in two months.
After combining the S2 data, the frequency of the collection is twice as dense as before.
The distributions of the S2 and GF1-ARD are complementary, where the S2 has more data
in November and the GF1 has more data in December. As a result, combining the data
provides a much denser sequence with less cloud contamination.

Figure 13. An illustration of combining S2 and GF1-ARD. The yellow dot represents the GF1-ARD,
and the orange dot refers to the S2 data. Meanwhile, the images are organized according to the time
line below, with the days between images labelled above.
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4. Discussion
4.1. Variations between Adjacent Tiles

Since the key design of our model is the adaptive generation of LUTs, it is natural to
explore the smoothness of the transition between adjacent tiles. The tile-adaptive LUTs
are calculated using the input tile’s histogram. As a result, the learned LUTs vary across
different tiles because their histograms are not identical, even when the tiles are adjacent
and taken for the same day. As previously stated, the “GlobalLUTs” model avoids this
problem by sharing the same LUTs on a global scale, but it is not flexible enough to fit
various scenes or yield satisfactory results. Our model is therefore proposed to adaptively
generalize distinct regions. Consequently, the differences between overlapping areas should
be evaluated before transforming the S2 imagery in batches over large areas and producing
seamless imagery. For each of the three study sites, we find four neighbouring tiles on the
same day to visualize the variations in Figure 14. In addition, we carefully select four local
regions located in the overlapping area and present their zoomed-in views.

Overall, the colour transition in the overlapped area is soft and smooth, and the
mosaic results show almost no visible mosaic gap. The homogeneous mosaic results
demonstrate our model’s reliable performance without any additional post-processing,
such as feathering. Furthermore, at the bottom of Figure 14, we show zoomed-in views
of various scenarios, including fields, rivers, the sea, buildings, and mountains. These
views illustrate the high consistency of our results. The high similarity of histograms from
adjacent tiles on the same day contributes to this result. Meanwhile, the slight difference in
their histograms can be appropriately modelled by the powerful UNet. However, the high
similarity between them cannot always be guaranteed, resulting in a relatively larger
variation between the “50SKH” and “49SGB” tiles in the “A-20200412” mosaic. In the
corresponding third zoomed-in view, the top half of the view tends to whiter. In addition,
the one-pixel-width black edges caused by padding in the 3× 3 convolution operation can
be resolved by replacing them with corresponding pixels in the neighbouring tiles.

4.2. Spatial Coverage of Histogram

Since the input histograms are patch-wise in the training phase, investigating the
impact of the input histogram’s spatial coverage is required. We practically use patch-
(512× 512 pixels) and tile-wise (6863× 6863 pixels) histograms in the training and inference
phases due to limited tiles. Meanwhile, the patch size is also restricted to the maximum
memory of the machine, which is a trade-off between performance and memory. Exper-
iments are designed to investigate the influence of the exploited histograms in Table 7.
We have assessed the performance of the models trained with patches of different sizes.
Except for the patch size, the model configuration, training strategy, and dataset division are
all preserved in these experiments. As previously stated, the R2 will be primarily compared.

Table 7. Quantitative comparison among histograms with different spatial coverages.

Patch Size 128 256 512 (Ours)

Band R2 RMSE R2 RMSE R2 RMSE

Blue 0.763 0.012 0.766 0.012 0.784 0.012
Green 0.815 0.012 0.824 0.012 0.828 0.012
Red 0.893 0.015 0.898 0.015 0.904 0.014
NIR 0.847 0.034 0.857 0.033 0.860 0.032

We find that the performance increases as the patch size grows because larger patches
can better simulate the histograms when inferring. However, we discover that the im-
provement over patch size is marginal, where the R2 of the four bands increase by 0.018,
0.004, 0.006, and 0.003, respectively, when the patch size grow from 256 to 512. On the one
hand, the input histograms have been normalized, which minimizes the adverse impact of
dimensional disagreement. On the other hand, various histogram patterns are basically
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covered due to a larger amount of samples. As a result, the mismatch between the patch-
and tile-wise histograms is reduced to a relatively minor level. Consequently, 512 is selected
considering the machine memory and sample size.

Figure 14. Visualization of the variations between adjacent tiles. For each study site, four neighbour-
ing tiles observed on the same day are selected to finish the image mosaic without any additional
post-processing. Additionally, a mosaic is identified at the top and labelled using the “site-date”
nomenclature. Meanwhile, the bottom of each mosaic presents four carefully chosen zoomed-in
views in the overlapped regions, with the red boxes and corresponding number indicating where
they are in the corresponding tile. All these images are shown with fixed-parameter stretching in
Table 6.

4.3. Numerical Closeness versus Distributional Closeness

Although the learned model can maintain numerical similarity between predictions
and targets, the distribution similarity is not explicitly guaranteed because the training
criterion is MSE loss. The goal of our model is to make the transformed S2 imagery as close
as possible to the target GF1-ARD, where the distance is defined as the Euclidean distance
between pixels in all bands. Therefore, driven by the MSE loss, the optimizer tends to
learn a transformation function that can ensure the numerical approximation. However,
the histogram distributions of the predicted and target imagery are not guaranteed to be
approximate. In order to demonstrate the histogram distribution variation, we select a
widely used histogram-based stretching method: 2% clip stretching. The visualization
results are shown in Figure 15. In addition, the linear model’s outputs are similar to the
S2 because the global linear transform does not change the distribution, and thus are
not shown.

The colour distortion between the predicted S2 and target GF1-ARD is more notable
than between the input S2 and target GF1-ARD, especially in the “49SGV-202004”. Because
the numerical differences between the images can be reduced after adaptive adjustments,
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S2 imagery approaches GF1-ARD more closely even with larger numerical differences. This
discovery confirms the previous analysis that the MSE loss does not ensure distribution ap-
proximation. However, optimizing the model to achieve both numerical and distributional
approximation is a difficult task. This issue will be further researched in the future.

Figure 15. Visualization results of the tiles in Figure 8 with 2% clip stretching.

5. Conclusions

In this paper, we proposed a UNet-based model to perform bandpass alignment, trans-
forming S2 to GF1-ARD with tile-adaptive LUTs to generate higher-temporal-frequency
continuous collections. In contrast to the linear model employed in prior work, LUTs are
introduced to better describe the alignment function between sensors. With the assistance
of tile histograms and a CNN module, the proposed model achieves approximately 0.31,
0.24, 0.11, and 0.23 improvements over the linear model in four spectral bands, respectively.
In addition, we comprehensively conduct ablation experiments and numerous visualiza-
tions to evaluate the effectiveness of our model. We further discuss the key settings and
analyse the underlying causes of the corresponding phenomena. In future work, we will
consider employing other medium-resolution sensor data to further improve the temporal
resolution of GF1-ARD, such as Landsat-8 OLI.
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