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Abstract: Urban impervious surface (UIS) is a key parameter in climate change, environmental
change, and sustainability. UIS extraction has been evolving rapidly in the past decades. However,
high-resolution impervious surface mapping is a long-term need. There is an urgent requirement for
impervious surface mapping from high-resolution remote sensing imagery. In this paper, we compare
current extraction methods in terms of extraction units and extraction models and summarize their
strengths and limitations. We discuss the challenges in impervious surface estimation from high
spatial resolution remote sensing imagery in terms of selection of spatial resolution, spectral band,
and extraction method. The uncertainties caused by clouds and snow, shadows, and vegetation
occlusion are also analyzed. Automated sample labeling and remote sensing domain knowledge are
the main directions in impervious surface extraction using deep learning methods. We should also
focus on using continuous time series of high-resolution imagery and multi-source satellite imagery
for dynamic monitoring of impervious surfaces.

Keywords: impervious surface estimation; urban mapping issues; remote sensing

1. Introduction

Urbanization contributes to changes in urban spatial structures and land surface
properties [1]. These changes are primarily a process of conversion from natural land
surfaces to urban impervious surfaces (UISs). UIS, a key environmental indicator in
climate change, environmental change, and sustainability studies, has become a current
research hot topic. UIS refers to a land surface paved with impervious or low permeability
materials within the urban development boundary. UIS generally consists of materials
such as tile, impervious asphalt, and impervious concrete. It typically includes buildings,
structures, impervious roads, plazas, parking lots, etc. [2,3]. In the past few decades, many
people have poured into cities [4], accelerating the urbanization process and leading to
the rapid expansion of UIS. The high density of UIS has caused many urban problems,
e.g., urban heat islands [5], urban waterlogging [6], soil erosion [7], and air pollution [8].
Therefore, the mapping UIS can be used to monitor urban expansion, population change,
and environmental change [8,9].

To accurately analyze the current status of impervious surfaces research, we use the
two groups of keywords, “impervious surface(s)” and “impervious surface(s) + high reso-
lution”, to analyze the number of articles in the Web of Science Core Collection from 2000
to 2022, with a total number of 757 and 109, respectively (see Figure 1). Figure 1 depicts
the number of articles per year for keywords “impervious surface(s)” and “impervious
surface(s) + high resolution”, respectively, and plots the proportion of “impervious sur-
face(s) + high resolution” articles to “impervious surface(s)” articles each year. We find that
the number of impervious surface publications is showing an increasing trend, with a flat
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trend between 2019 and 2022. Despite the presence of annual publications on impervious
surfaces, studies on high-resolution remote sensing images are still rare.
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the two groups of keywords, “impervious surface(s)” and “impervious surface(s) + high resolution”,
from 2000 to 2022 in the Web of Science Core Collection, acquiring a total of 757 publications and 109
publications, respectively.

Due to the free and open data policy, advanced cloud computing platforms (e.g.,
Google Earth Engine (GEE), Pixel Information Expert Engine (PIE-Engine)) provide pow-
erful computational capabilities and large amounts of online data for global-scale and
regional-scale impervious surface studies. As a result, the number of publications on
impervious surfaces has increased in recent years. With the improvement of the basic theo-
retical framework and the deepening of scientific research, low- and medium-resolution
impervious surfaces can no longer meet the scientific problems at fine scales. It is urgent to
extract high-resolution impervious surfaces quickly and accurately to explore and study
key scientific questions at fine scales.

Although high-resolution optical remote sensing imagery and low- and medium-
resolution optical remote sensing imagery have similar spectral characteristics, the differ-
ences in geometric and textural characteristics are enormous. As the spatial resolution
increases, the data volume of high-resolution remote sensing imagery increases geometri-
cally, requiring more parallel computing capabilities for impervious surface mapping. At
the same time, the spectral differences between the same objects increases the difficulty of
fine-grained impervious surface extraction. Some excellent reviews on impervious surfaces
have been published [9–13], but there is a lack of reviews on impervious surfaces that focus
only on high-resolution remote sensing imagery. Therefore, we discuss and analyze the
requirements, methods, issues, and extraction strategies for the extraction of impervious
surfaces from high-resolution remote sensing imagery in detail.

The content of this paper is structured in the following order. Section 2 elaborates on
the requirements for mapping urban impervious surfaces using high-resolution remote
sensing images. Section 3 analyzes various existing methods for extracting urban impervi-
ous surfaces from high-resolution remote sensing images. Section 4 discusses impervious
surface extraction from high-resolution remote sensing images in terms of spatial resolution
selection, spectral band selection, extraction method selection, and uncertainty. Finally,
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Section 5 provides recommendations to improve our understanding of impervious surface
monitoring, both its theoretical and practical aspects.

2. Requirement on Mapping Urban Impervious Surfaces Using High-Resolution
Remote Sensing Images
2.1. Urban Surface Energy Balance

In the context of rapid urbanization, a higher proportion of impervious surfaces alters
the heat capacity, albedo, and local climate conditions, affecting surface energy absorption,
storage, and emittance [14–16]. Thus, the rapid growth of impervious surfaces changes the
mode of surface energy exchange [17]. Due to high heat capacity and heat conductivity,
urban land surfaces tend to absorb a large amount of solar radiation energy, leading to an
increase in urban surface temperature, an acceleration of the hydrological cycle, and more
extreme rainstorm events.

The change in the spatial structure of impervious surfaces is likely to impact surface
heat distribution and aggravate thermal environment issues. In order to study the impact
of urban change on the urban thermal environment, we can take impervious surfaces as
the representation of urban change, build a theoretical framework between impervious
surfaces and the urban thermal environment, and put forward reasonable suggestions to
mitigate the urban heat problem.

Urbanization has a significant impact on the urban hydrological cycle mechanism.
Impervious surface, as the most prominent feature of urbanization, leads to a massive and
comprehensive change in the hydrological system across different spatial scales [18,19].
Due to the impermeability, an increase in impervious surfaces is likely to lessen evapo-
transpiration and infiltration, leading to increased stormwater runoff. With the decrease
in infiltration, there is a direct reduction in vertical infiltration recharge to groundwater,
leading to a decrease in groundwater levels. We argue that accurate, high-resolution map-
ping of impervious surfaces is conducive to the analysis of the urban hydrological cycle
mechanism.

2.2. Sustainable Urban Development

At current population growth rates, 60% of the world’s population will live in cities
by 2030 and 68% will do so by 2050 [4] As the population migrates to cities, the amount of
impervious surfaces (e.g., urban built-up lands) increases dramatically. We acknowledge
the contradictions among the population, built-up lands, and ecology posing challenges to
the sustainable development of cities. Therefore, better management of urban expansion
and population growth paves the way for urban sustainability.

Among the 17 Sustainable Development Goals (SDGs) proposed by the United Nations
in 2015 [20], the SDG11.3.1 indicator, which refers to the Ratio of Land Consumption Rate
to Population Growth Rate (LCRPGR), can be used to quantify the coordination between
urban land expansion and population growth. Studies have indicated that the impervious
surfaces extracted from remote sensing images can accurately represent urban surface infor-
mation [21,22]. High-resolution impervious surfaces can better present the urban internal
structure and accurately map the spatial differences of urban sustainable development [23].
Therefore, it is urgent to obtain large-scale and high-resolution urban impervious surfaces
spatial distribution information to monitor sustainable urban development.

2.3. Old City Reconstruction and New Urban Construction

Rebuilding the underground pipeline network for drainage is difficult and can lead to
traffic congestion and extra excavation costs. Thus, it has caused a major demand to increase
the permeability of surface features, such as turning impervious surfaces into permeable
surfaces. The old city reconstruction and the new urban construction are expected to have
an important influence on urban development. However, a series of challenges (e.g., urban
waterlogging) are likely to be introduced.
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In recent years, there has been a growing interest in investigating inland inundation
using different models. Ecological models are currently being used to analyze urban
waterlogging problems. The underlying principle of these models is that the amount of rain
exceeds the discharge capacity of the urban drainage system due to the high percentage of
impervious surface. Therefore, accurate information about urban impervious surfaces can
lead to new solutions for urban waterlogging.

The extraction of urban impervious surfaces from remote sensing technology is bene-
ficial for the old city reconstruction and new urban formulation, allowing us to create a
“breathing” city, with the permeability of urban areas through the cavernous transformation
of the old urban area. As for the formulation of the new urban areas, the permeability
should also be considered, as the amount and distribution of impervious urban areas
closely correlate with land use.

3. Methods

Traditional impervious surfaces are mainly characterized by spectral information
from low spatial resolution satellite imagery rather than texture and local features. With
the improvement of satellite sensors, high-spatial-resolution remote sensing images have
become dominant. Clear boundaries, spatial structures, and texture features can be derived
from high-resolution imagery to extract fine urban impervious surfaces. Various existing
methods can be classified based on extraction units or involved models (see Figure 2).
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3.1. Methods Classified by Extraction Units
3.1.1. Sub-Pixel-Based Methods

At present, satellite remote sensing data at low/medium spatial resolution, such as
that obtained via Landsat TM/ETM (Thematic Mapper/Enhanced Thematic Mapper),
MODIS (Moderate-Resolution Imaging Spectroradiometer), Hyperion, AVHRR (Advanced
Very High Resolution Radiometer), and DMSP/OLS (Defense Meteorological Satellite
Program-Operational Linescan System) [24–32], have been mainly used to quantify sub-
pixel impervious surfaces at global and regional scales [33,34]. The classification methods
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mainly include the sub-pixel classifier, machine learning algorithm, and spectral mixture
analysis [35–39]. The mixed pixel issue has been greatly reduced with the advent of high
spatial resolution remote sensing images since the 1990s, e.g., IKONOS (launched 1999)
and Quick Bird (2001). However, mixed pixels are still present at the edge of the land
cover. Mohapatra and Wu [40] utilized Artificial Neural Networks (ANN) to extract sup-
pixel impervious surfaces from high-resolution satellite imagery and showcased the great
potential of sub-pixel methods in impervious surface extraction. Wu [41] explored the
applicability of spectral mixture analysis (SMA) for impervious surface estimation using
IKONOS imagery. This study shows that IKONOS imagery contained 40–50% of mixed
urban pixels for the study area, and the within-class variability is a severe problem for
the spectral analysis. However, extraction of impervious surfaces from high-resolution
remote sensing images tends to ignore the mixed pixel problem. Therefore, few studies
have been conducted to extract the sub-pixel impervious surfaces from high-resolution
remote sensing images [42].

3.1.2. Pixel-Based Methods

Pixel-based methods are equivalent to a binary classification of features and mainly
depend on traditional supervised and unsupervised classification methods, where high-
resolution remote sensing images are often the suitable data resources. Popular pixel-
based methods include ISODATA and maximum likelihood classification [43,44]. Hu and
Weng [45] used IKONOS images to extract impervious surfaces for Indianapolis. Xu [46]
developed a rule-based method to extract impervious surfaces with high-resolution imagery
from IKONOS, ALOS, and SPOT-5 in three cities. The designed rules effectively distinguish
impervious surface features from the land use types such as soil and water. Although
pixel-based classification methods retain the details of the original image at the pixel level,
classification results can be easily disturbed by various factors, such as solar radiation angle
and soil moisture, leading to salt-and-pepper noises.

3.1.3. Object-Based Methods

Object-based methods have received increasing attention in urban impervious surface
extraction from high-resolution remote sensing imagery [47–51]. For object-based methods,
various features can serve as the model input, such as spectral information, texture features,
spatial information of objects, shape features, and characteristics of proximity relationships.
Furthermore, fuzzy logic rules are often introduced in object-based methods to reduce
confusion among different surface features, thereby improving the accuracy of impervious
surface extraction [52].

Lu et al. [53] compared pixel-based, segmentation-based, and hybrid methods for
mapping impervious surfaces using high spatial resolution data in Brazil’s urban land-
scapes. The hybrid method provides the best performance with reduced “salt-and-pepper”
issues. However, it requires considerable time and labor, involving manual editing and
refining impervious surfaces. Berger et al. [54] employed the object-based image analy-
sis (OBIA) approach to estimate impervious surfaces from high-resolution multi-spectral
optical imagery and LiDAR data. Based on prior knowledge and a weighted minimum
distance strategy, Zhang et al. [50] proposed a pixel- and object-based hybrid analysis
(POHA) method, which could provide accurate impervious surface mapping with limited
human–computer interactions. Jebur et al. [55] used three types of classifiers (i.e., Support
Vector Machine (SVM) pixel-based, SVM object-based, and Decision Tree (DT) pixel-based
classification) for mapping impervious surfaces. Their study reveals that object-based SVM
is better than pixel-based SVM, both superior to the DT model. Image segmentation is vital
to the object-oriented classification method. Nonetheless, there are difficulties in selecting
the best segmentation parameters and methods that pose challenges. In addition, image
segmentation is affected by factors such as light, noise, and shadow [56].

The mixed pixel issue often occurs in medium- and low-resolution satellite images.
High-resolution remote sensing imagery can greatly mitigate this issue. However, many
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problems deserve our attention, such as topographical variation and shadows cast by tall
buildings and canopies. At the same time, due to the limited spectral bands onboard
the high-resolution remote sensing sensor, the phenomenon of “different things having
the same spectrum” is common, greatly limiting the sensors’ capability in differentiating
impervious surfaces from other land cover types from a spectral perspective. To deal with
this problem, we have two options, one is to add additional data sources [57], and the other
is to extract more complex features. Without additional data sources, spectral confusion
can be reduced by more comprehensive features (combined with spectral, spatial, and
texture features) [11,58]. Table 1 provides a summary of the strengths and limitations of
these extraction units, with the relevant literature.

Table 1. Summary of the strengths and limitations for these extraction units.

Extraction Units Advantages Disadvantages

Sub-pixel-based physical meaning; proportion
of endmember

uncertain endmember number;
large differences between pure

pixels of the same object
Pixel-based data parallel; fast computation fragmented classification results

Object-based
geometric and spatial features;

non-fragmented
classification results

slow segmentation

3.2. Methods Classified by Extraction Models
3.2.1. Regression Models

A regression model is a mathematical tool to quantitatively describe the statistical
relationship which aims to seek the feature variable(s) that highly correlate with impervious
surfaces. The classification and regression tree (CRAT) is sensitive to noise and training
sample error [59]. Compared to the single CART algorithm, the integrated CART often
presents better stability and robustness. Jiang et al. [60] used the CART algorithm to char-
acterize impervious surfaces in Hong Kong by integrating the SPOT-5 multispectral image
and ERS-2 SAR data. Jiang et al. [60] used regression analysis to extract urban impervious
surfaces by fusing the SPOT data with InSAR data. It is easy to derive impervious surfaces
using regression analysis in a short span of time [61,62]. However, such a method is likely
to over/underestimate impervious surfaces due to seasonal variations [63].

3.2.2. Machine Learning Models

Due to the complexity of urban terrain, the assumption of the normal distribution of
land use and land cover cannot be achieved. As a result, some machine learning-based
classifiers, such as Artificial Neural Networks (ANN), Support Vector Machine (SVM),
and Random Forest (RF) [59,64–66], are considered more suitable for impervious surface
estimation. These models can extract impervious surfaces from high-resolution remote
sensing images at the pixel level and low spatial resolution remote sensing images at the
object level. In some studies, these models can be combined with sub-pixel classification
methods to retrieve fine-grained impervious surfaces [32,65].

(1) Artificial Neural Networks

Commonly used ANN classifiers include MLP (Multi-Layer Perceptron), Hopfield
Neural Network, ARTMAP, and SOM (Self-Organizing Map). MLP and SOM are the
most widely used for mapping impervious surfaces. Compared with traditional classifiers,
ANN is a nonparametric classifier that requires only a small number of samples to handle
the nonlinear patterns without normality assumption, which can fuse auxiliary data and
prior knowledge at a high fault tolerance [67,68]. Im et al. [59] proposed artificial immune
networks and decision/regression trees in quantifying impervious surfaces by integrating
the high spatial resolution WorldView-2 image with the LiDAR data.
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The ANN classifier is highly dependent on the quantity and quality of the learning
samples and tends to have a slow convergence speed and poor stability. For example, in
MLP models, it is difficult to determine the number of hidden layers and the number of
nodes in each hidden layer. In comparison, the classification accuracy of the SOM depends
on the number of features. Too many (or too few) neurons are likely to affect impervious
surface identification [69,70].

(2) Support Vector Machine

Different from those traditional algorithms based on the empirical risk minimization
rule, SVM is based on the structural risk minimization rule. Thus, it can achieve a great
balance between empirical risk and classifier capacity. Jebur et al. [55] used three types
of classifiers (SVM pixel-based, SVM object-based, and Decision Tree (DT) pixel-based
classification) in characterizing impervious surfaces from SPOT 5 images. Their study
shows that the object-based SVM is better than the pixel-based SVM, both superior to the
DT in quantifying impervious surfaces. Leinenkugel et al. [71] mapped the impervious
surfaces using SVM based on the object-oriented model that combined the TerraSAR-X
and SPOT-5 images. Foody et al. [72] compared SVM, DT, and MLP methods in mapping
impervious surfaces and concluded that the SVM technique is better than the DT and
MLP ones. The SVM method can achieve satisfactory performance with a small number of
training samples, but these samples are difficult to locate.

(3) Random Forest

The Random Forest technique is originally proposed based on the Decision Tree
classification model by Breiman [73]. Random Forest (RF) has been widely used in remote
sensing image classification due to its ability to mitigate overfitting and deal with noise and
high dimensionality in the dataset [74–78]. Shao et al. [79] used RF to generate an accurate
urban impervious surfaces map from GaoFen-1 (GF-1) and Sentinel-1A imagery. Multi-
source and multi-sensor remote sensing datasets are combined to estimate impervious
surfaces [64]. The built-in out-of-bag (OOB) error is insufficient for accuracy assessment
and additional reference data is required for quantifying impervious surfaces [80]. The RF
method is easy to parallelize and insensitive to the spatial resolution and sensor type.

3.2.3. Deep Learning Models

Due to the complexity of urban surfaces in high-resolution remote sensing images, the
utilization of shallow machine learning methods (e.g., CART, ANN, SVM, and RF) with
limited samples may fail to present satisfactory results [81]. Another issue is that models
trained by the shallow machine learning method often fail to be transferred to other study
areas. In comparison, convolution neural networks (CNNs) have the capability to auto-
matically learn features from massive remote sensing images, with strong generalization
capability.

Since CNNs achieve excellent results in the ImageNet Large Scale Visual Recognition
Challenge 2012 (ILSVRC2012) [82], they have been widely used in remote sensing image
classification [83–87]. The CNN method achieves higher accuracy in the extraction of urban
impervious surfaces than the traditional method [81]. Although CNNs have been adopted
for feature extraction, many land covers cannot be correctly identified with limited spectral
bands. Therefore, multi-source remote sensing data fusion has been explored by numerous
scholars to further improve classification accuracy.

The workflow, depicted in Figure 3, consists of two complementary parts. In the first
part, a remote sensing image is fed into a deep convolution network with de-convolution
layers for discriminative feature learning. Then, a softmax classifier is used to predict the
class probability for each pixel. In the second part, the remote sensing image is regarded as
a graph, and a conditional random field (CRF) model with spatial consistency constraints
is implemented for global label optimization.
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(1) Class probability prediction using the deep convolution network

The deep convolution network for impervious extraction is shown in Figure 4. The
network architecture consists of two main parts: a feature learning part and a classification
part. The feature learning part is composed of standard convolutional neural networks
(CNNs) with convolution layers and pooling layers. The classification part is composed of
deconvolution layers and a softmax classifier. The output of the network is the predicted
class probability for each pixel of the input image.
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(2) Global label optimization using the CRF

The predicted class probability at the pixel level is inevitably influenced by the data
noise, and the spatial consistency is hardly considered. To address this issue, a conditional
random field model with spatial consistency is used to globally optimize the label of the
whole image.

The input image is regarded as a graph G(V, E) with vertex v ∈ V and edge e ∈ E.
Each vertex is associated with a pixel, and edges are added between the pixel and its
K-nearest neighbors. The CRF energy function is typically composed of a unary term
enforcing the variable l to take values close to the predictions p̂ and a pairwise term
enforcing regularity or local consistency of l. The data cost term ϕ( p̂i, li) is used to penalize
the disagreement between a point and its assigned label. The initial data cost of each point
is calculated with its predicted probability.

ϕ( p̂i,k, li) = exp(− p̂i,k)1(li 6= k), (1)

where p̂i,k corresponds to the probability that a pixel i belongs to class k.
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The label inconsistency between neighboring points is penalized by the smooth cost
term ψ

(
li, lj

)
. The neighboring points are encouraged to have similar labels. The smooth

cost is calculated according to the gradient of the image, i.e.,

ψ
(
li, lj

)
= exp(−‖∇I‖i)1

(
li 6= lj

)
, (2)

where ∇I is the gradient of the input image I. The smooth cost constrains the regularity
and consistency of label l.

(3) Experimental result

The high-resolution image that covers a small part of Wuhan is used to extract im-
pervious surfaces. The size of the image is 862 × 837 pixels. The image is first classified
into six land cover types, including building, road, water, vegetation, shadow, and bare.
Figure 5b shows the spatial distributions of impervious surfaces. There are still misclassifi-
cations between water and shadow in Figure 5c. A specific network for water and shadow
classification facilitates highly accurate impervious surface extraction. Various types of
buildings make it difficult for extracting buildings accurately. Pixel-wise extraction and
global optimization can hardly guarantee the geometric shape of objects. Table 2 provides
a summary of the strengths and limitations of these extraction models, with the relevant
literature.
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Figure 5. The impervious surface extraction by the CNN method. (a) The original image; (b) The
impervious surface; (c) Land cover patterns.

Table 2. Summary of the strengths and limitations for these extraction models.

Method Advantages Disadvantages

Regression models simple; rule-based modeling sensitive to noises and training sample errors;
over/underestimate impervious surfaces

Machine learning models data parallel (RF); easy to work; simple parameters dependent on data features

Deep learning models self-learning; high-level semantic feature; data
parallel; fast computation; easy-to-use GPU

black-box working method; need a large
number of samples; difficulty in model training

4. Discussion on Extraction Strategies

With the advent of high spatial resolution images, the spatial information of objects
has been gradually introduced into impervious surface extraction. Lu et al. [56] discussed
the scale issues and the section of data source for impervious surface extraction. According
to their findings, high spatial resolution remote sensing images are suitable for extracting
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texture features for mapping impervious surfaces. However, the limited spectral bands and
the complex land cover pose great challenges to accurately extracting impervious surfaces.
This also places higher demands on the method of impervious surface extraction.

4.1. Spatial Resolution Selection

High-resolution images can capture details and spatial relationships among different
objects, gradually becoming an important data source for fine-grained urban impervious
surface extraction. However, due to the complex urban settings, high spatial resolution
images bring other issues. Taking the object-oriented method as an example, the spatial
resolution of satellite images directly affects the image segmentation scale and the efficiency
of segmentation. A higher spatial resolution may result in finer segmentation objects but a
lower efficiency of the segmentation algorithm. A lower spatial resolution image may not
be able to capture road details and some sparse objects. It was determined that images at
2 m spatial resolution (e.g., from GF-1, ZY-3, and TH) are appropriate for extracting urban
impervious surfaces using the object-oriented method (see Figures 6 and 7). The results
of image segmentation and accuracy of extraction become unsatisfactory when the image
spatial resolution is at 4–8 m. When the spatial resolution of an image is less than 2 m, the
rich spatial detail makes it more challenging to identify land cover types. As shown in
Figure 6, the differences in objects on remote sensing images at different resolutions are
dramatic, so it is necessary to choose an appropriate spatial resolution to meet the accuracy
requirements and reduce the complexity of extracting impervious surfaces.
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4.2. Spectral Band Selection

Accurately extracting impervious surfaces from high-resolution remote sensing im-
agery with only three visible bands remains challenging. As shown in Figure 8, water,
vegetation and other land covers can be further identified by introducing the near-infrared
(NIR) band and various indices, e.g., NDVI and NDWI. The near-infrared band can greatly
improve the classification accuracy of water, vegetation, and shadow. The construction
of a sponge city increases the number of low-impact development facilities, which turns
the previous UIS into a permeable surface. Therefore, identifying the land cover for this
area requires the use of high-resolution hyperspectral imagery. However, the correlation
between adjacent bands of hyperspectral imagery becomes relatively high, leading to the
issue of spectral redundancy. Band selection is particularly important to reduce spectral
redundancy and accelerate image processing and classification.
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4.3. Extraction Method Selection

One of the challenges of high-resolution remote sensing imagery is the very large
amount of data. The training and inference of the model need to support data parallelization
and computation parallelization. With the support of cloud computing platforms such as
GEE and PIE-Engine, storage resources and computational resources can be guaranteed.
At the same time, we need algorithms that support parallelization, such as DT, RF, and
CNNs, to accelerate model training and inference. RF is the most widely used method in
global impervious surface product mapping [10]. However, CNNs are self-learning and
can learn high-level semantic features, which have great potential. The disadvantage is that
CNNs require a large amount of sample data. Therefore, we should choose the appropriate
method according to the difficulty of sample collection.

4.4. Uncertainty

High-resolution multispectral remote sensing imagery is the primary data source
for extracting high-resolution urban impervious surfaces. The complex urban land cover
brings a huge uncertainty. Many remote sensing images suffer from three problems due to
sensor limitations: cloud and snow contamination, shadows, and vegetation cover. The
easiest way to address these issues is to introduce homogeneous data for data fusion.
However, considering the difficulty of data acquisition, heterogeneous data are often used
as a supplementary data source for decision-level fusion.

4.4.1. Cloud and Snow Contaminations

Optical images are inevitably contaminated by clouds, snow, cloud shadow, and other
poor atmospheric conditions. For the very same surface object, spectral reflectance can
present variance under clear-sky and haze/thin-cloud conditions. In most cases, it is
still difficult to distinguish certain land types covered by snow and ice. Thus, additional
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information is required to improve the mapping accuracy of impervious surfaces. SAR
data can provide complementary information for optical images due to its all-day and
all-weather capabilities at high spatial resolution and low cost [88–90]. Zhang et al. [80]
combined multi-source and multi-sensor remote sensing datasets (i.e., Landsat ETM+,
SPOT-5 and ASAR and ALOS PALSAR, SPOT-5, and TerraSAR-X) to estimate impervious
surfaces in Pearl River Delta. Their research shows that combining SAR and optical images
improves impervious surface recognition by reducing the misclassification from asphalt,
bare soil, shadow, and water.

4.4.2. Shadow

High-resolution remote sensing images can provide clear boundaries and abundant
information for extracting fine urban impervious surfaces. It is hard to identify land cover
in the shadow areas due to the low digital number (DN) value. Challenges still remain
when detecting land cover types in shadow areas. LiDAR, as an important remote sensing
data source, can capture ground surface elevation values and rich geometric features. Im
et al. [59] proposed a method to quantify the impervious surface using artificial immune
networks and decision/regression trees by integrating high spatial resolution WorldView-2
imagery with LiDAR data. Hodgson et al. [91] employed different algorithms, such as
maximum likelihood, ISODATA, and rule-based algorithms, to extract impervious surfaces
from the natural color aerial photography and LiDAR data. The involvement of LiDAR
data significantly improves the estimation accuracy of impervious surfaces [92–94]. For
shadow areas cast by vertical urban structures, a possible solution is to use the unmanned
aerial vehicle (UAV) and street view to assist in extracting impervious surfaces.

4.4.3. Vegetation Cover

Impervious surfaces covered by tall tree crowns in the urban area (e.g., the vegeta-
tion on both sides of the road) cannot be identified from high-resolution remote sensing
images. One of the possible solutions is to take advantage of the low-altitude UAV and
street view data or OpenStreetMap (OSM). A spatio-temporal-spectral-angular observation
model [95] is proposed, which integrates observations from UAV and mobile mapping ve-
hicle platforms to identify precise impervious surface boundaries. The OSM road network
can be matched and corrected with the street trees in the high-resolution remote sensing
imagery, e.g., morphological feature-oriented algorithm [96], which successfully eliminates
the obscuring effects and mitigates the underestimation of impervious surfaces. As shown
in Figure 9, the location of impervious surfaces identified by OSM is not very accurate in
some areas. We should pay more attention to the direct registration of OSM and image.
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4.5. Future Prospects

Deep learning models have great potential for high accuracy and automated mapping.
Now, semantic segmentation network is developing towards the direction of weak super-
vision, light weight, and semantic reasoning [97,98]. To mitigate the issue of inaccurate
boundary in prediction results, a semi-supervised semantic segmentation method based
on boundary awareness [99] and a deep relearning method are proposed [100]. To over-
come the problem of insufficient samples, Generative Adversarial Network (GAN) [101]
and unsupervised convolution feature fusion network [102] are proposed. Graph neural
networks are also proposed to deal with causal reasoning [103,104]. Thus, two main direc-
tions including automated sample labeling and the introduction of remote sensing domain
knowledge should be emphasized.

5. Conclusions

Accurate identification of urban impervious surfaces is essential for a variety of ap-
plications, including hydrology, water quality, local climate, and biodiversity. Dynamic
monitoring of impervious surfaces is an emerging perspective that can help us to under-
stand urban land use/land cover dynamics and changes in urban ecological environments.

This study summarizes recent advances in urban impervious surface extraction us-
ing high-resolution remote sensing imagery. New algorithms, e.g., sub-pixel unmixing
and fuzzy logic rules, have been developed to improve the identification of fine-grained
impervious surfaces. However, the challenges associated with high-resolution imagery,
such as shadows and noise, need to be mitigated and addressed. In the recent literature,
high-resolution imagery has been widely used to map urban impervious surfaces, resulting
in a number of unresolved issues. We provide the following recommendations to improve
our understanding of impervious surface monitoring from both theoretical and practical
aspects.

(1) Dynamic monitoring of impervious surfaces using continuous time series of high-
resolution images

There are many studies on the long-term identification of impervious surfaces, most of
which focus on coarse scales. Challenges remain in dealing with mixed pixel issues, training
sample selection, and classification assessment using low- or medium-resolution imagery.
Moreover, heterogeneity within urban regions must be considered to properly manage the
impacts of urbanization, such as stormwater mitigation and temperature regulation. High-
resolution imagery provides spatial detail that captures the fine-scale heterogeneity within
a metropolitan area and reduces the effects of mixed pixels. Therefore, we encourage more
research on long-term monitoring of impervious surface dynamics using high-resolution
imagery. However, it should be noted that higher-resolution data do not necessarily lead to
a more accurate estimation. A synthetic view needs to be conducted considering the scale
variations. In addition, the issues of identifying impervious surfaces covered by shadows
and vegetation should be addressed in future research.

(2) Dynamic monitoring of impervious surfaces using multi-source satellite images

Data fusion (or integration) of multi-sensor or multi-resolution data takes advantage
of different data sources which potentially improves visual interpretation and quantitative
analysis. The use of appropriate data fusion techniques is recommended to enhance the
distinction between impervious surfaces and other land covers. The fusion of high- and
medium-resolution data is an important research direction. For example, the regression
relationship between predictive variables obtained from high-resolution data and feature
variables extracted from medium-resolution multispectral data can be developed, followed
by impervious surface identification using methods such as CART, ANN, and CNN. In-
tegrating LiDAR-derived height information and high spatial resolution optical imagery
is another important research aspect to improve the performance of impervious surface
mapping. The combination of optical data, such as Landsat TM imagery and RADAR, is
also beneficial for impervious surface mapping. For instance, both the texture and spectral
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features of optical and SAR imagery can be combined to better distinguish impervious
surfaces from other land covers. Coarse spatial resolution images, such as MODIS and
Landsat, are available for large-scale time-series data and thus have become the primary
data source for global impervious surface mapping. Therefore, more studies are needed to
explore the possibility of integrating multi-scale and multi-sensor images.

Author Contributions: Conceptualization, T.C., H.F. and Z.S.; investigation, T.C.; writing—original
draft preparation, T.C. and H.F.; writing—review and editing, T.C., D.L. and X.H.; visualization, T.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the National Natural Science Foundation of
China under Grants 42090012, in part by the Guangxi science and technology program (Guangxi
key R & D plan, GuiKe 2021AB30019); 03 special research and 5G project of Jiangxi Province
in China (20212ABC03A09); Zhuhai industry university research cooperation project of China
(ZH22017001210098PWC); Sichuan Science and Technology Program (2022YFN0031); Hubei key R &
D plan (2022BAA048); Zhizhuo Research Fund on Spatial-Temporal Artificial Intelligence (Grant No.
ZZJJ202202); and Guangzhou Basic and Applied Basic Research Project (202102020380).

Data Availability Statement: Not applicable.

Acknowledgments: We are grateful to those who participated in the manuscript revisions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhu, Z.; Qiu, S.; Ye, S. Remote Sensing of Land Change: A Multifaceted Perspective. Remote Sens. Environ. 2022, 282, 113266.

[CrossRef]
2. Arnold, C.L.; Gibbons, C.J. Impervious Surface Coverage: The Emergence of a Key Environmental Indicator. J. Am. Plan. Assoc.

1996, 62, 243–258. [CrossRef]
3. Cai, B.; Shao, Z.; Fang, S.; Huang, X.; Tang, Y.; Zheng, M.; Zhang, H. The Evolution of Urban Agglomerations in China and How

It Deviates from Zipf’s Law. Geo-Spat. Inf. Sci. 2022, 1–11. [CrossRef]
4. UN DESA. World Urbanization Prospects: The 2018 Revision. 2018; Volume 12. Available online: https://www.un-ilibrary.org/

content/books/9789210043144 (accessed on 11 May 2023).
5. Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafò, M. Surface Urban Heat Islands in Italian Metropolitan

Cities: Tree Cover and Impervious Surface Influences. Sci. Total Environ. 2021, 751, 142334. [CrossRef]
6. Xiao, S.; Zou, L.; Xia, J.; Dong, Y.; Yang, Z.; Yao, T. Assessment of the Urban Waterlogging Resilience and Identification of Its

Driving Factors: A Case Study of Wuhan City, China. Sci. Total Environ. 2023, 866, 161321. [CrossRef]
7. Yu, W.; Zhao, L.; Fang, Q.; Hou, R. Contributions of Runoff from Paved Farm Roads to Soil Erosion in Karst Uplands under

Simulated Rainfall Conditions. Catena 2021, 196, 104887. [CrossRef]
8. Hou, Y.; Ding, W.; Liu, C.; Li, K.; Cui, H.; Liu, B.; Chen, W. Influences of Impervious Surfaces on Ecological Risks and Controlling

Strategies in Rapidly Urbanizing Regions. Sci. Total Environ. 2022, 825, 153823. [CrossRef]
9. Sun, Z.; Du, W.; Jiang, H.; Weng, Q.; Guo, H.; Han, Y.; Xing, Q.; Ma, Y. Global 10-m Impervious Surface Area Mapping: A Big

Earth Data Based Extraction and Updating Approach. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102800. [CrossRef]
10. Ren, H.; Liu, Y.; Chang, X.; Yang, J.; Xiao, X.; Huang, X. Mapping High-Resolution Global Impervious Surface Area: Status and

Trends. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2022, 15, 7288–7307. [CrossRef]
11. Wang, Y.; Li, M. Urban Impervious Surface Detection From Remote Sensing Images: A Review of the Methods and Challenges.

IEEE Geosci. Remote Sens. Mag. 2019, 7, 64–93. [CrossRef]
12. Lu, D.; Li, G.; Kuang, W.; Moran, E. Methods to Extract Impervious Surface Areas from Satellite Images. Int. J. Digit. Earth 2014, 7,

93–112. [CrossRef]
13. Weng, Q. Remote Sensing of Impervious Surfaces in the Urban Areas: Requirements, Methods, and Trends. Remote Sens. Environ.

2012, 117, 34–49. [CrossRef]
14. Firozjaei, M.K.; Weng, Q.; Zhao, C.; Kiavarz, M.; Lu, L.; Alavipanah, S.K. Surface Anthropogenic Heat Islands in Six Megacities:

An Assessment Based on a Triple-Source Surface Energy Balance Model. Remote Sens. Environ. 2020, 242, 111751. [CrossRef]
15. Li, H.; Zhou, Y.; Wang, X.; Zhou, X.; Zhang Huiwen and Sodoudi, S. Quantifying Urban Heat Island Intensity and Its Physical

Mechanism Using/UCM. Sci. Total Environ. 2019, 650, 3110–3119. [CrossRef]
16. Firozjaei, M.K.; Fathololoumi, S.; Mijani Naeim and Kiavarz, M.; Qureshi, S.; Homaee, M.; Alavipanah, S.K. Evaluating the

Spectral Indices Efficiency to Quantify Daytime Surface Heat Island Intensity: An Intercontinental Methodology. Remote Sens.
2020, 12, 2854. [CrossRef]

17. Meng, C.; Huang, C.; Dou, J.; Li, H.; Cheng, C. Key Parameters in Urban Surface Radiation Budget and Energy Balance Modeling.
Urban Clim. 2021, 39, 100940. [CrossRef]

https://doi.org/10.1016/j.rse.2022.113266
https://doi.org/10.1080/01944369608975688
https://doi.org/10.1080/10095020.2022.2083527
https://www.un-ilibrary.org/content/books/9789210043144
https://www.un-ilibrary.org/content/books/9789210043144
https://doi.org/10.1016/j.scitotenv.2020.142334
https://doi.org/10.1016/j.scitotenv.2022.161321
https://doi.org/10.1016/j.catena.2020.104887
https://doi.org/10.1016/j.scitotenv.2022.153823
https://doi.org/10.1016/j.jag.2022.102800
https://doi.org/10.1109/JSTARS.2022.3201380
https://doi.org/10.1109/MGRS.2019.2927260
https://doi.org/10.1080/17538947.2013.866173
https://doi.org/10.1016/j.rse.2011.02.030
https://doi.org/10.1016/j.rse.2020.111751
https://doi.org/10.1016/j.scitotenv.2018.10.025
https://doi.org/10.3390/rs12172854
https://doi.org/10.1016/j.uclim.2021.100940


Remote Sens. 2023, 15, 2562 16 of 19

18. Shao, Z.; Fu, H.; Li, D.; Altan, O.; Cheng, T. Remote Sensing Monitoring of Multi-Scale Watersheds Impermeability for Urban
Hydrological Evaluation. Remote Sens. Environ. 2019, 232, 111338. [CrossRef]

19. Meng, X. Understanding the Effects of Site-Scale Water-Sensitive Urban Design (WSUD) in the Urban Water Cycle: A Review.
Blue-Green Syst. 2022, 4, 45–57. [CrossRef]

20. United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: San Francisco, CA, USA,
2015.

21. Zhang, H.; Lin, H.; Wang, Y. A New Scheme for Urban Impervious Surface Classification from SAR Images. ISPRS J. Photogramm.
Remote Sens. 2018, 139, 103–118. [CrossRef]

22. Liu, C.; Zhang, Q.; Luo, H.; Qi, S.; Tao, S.; Xu, H.; Yao, Y. An Efficient Approach to Capture Continuous Impervious Surface
Dynamics Using Spatial-Temporal Rules and Dense Landsat Time Series Stacks. Remote Sens. Environ. 2019, 229, 114–132.
[CrossRef]

23. Zhang, T.; Huang, X. Monitoring of Urban Impervious Surfaces Using Time Series of High-Resolution Remote Sensing Images
in Rapidly Urbanized Areas: A Case Study of Shenzhen. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2018, 11, 2692–2708.
[CrossRef]

24. Chen, Y.; Yu, S. Assessment of Urban Growth in Guangzhou Using Multi-Temporal, Multi-Sensor Landsat Data to Quantify and
Map Impervious Surfaces. Int. J. Remote Sens. 2016, 37, 5936–5952. [CrossRef]

25. Deng, C.; Wu, C. The Use of Single-Date MODIS Imagery for Estimating Large-Scale Urban Impervious Surface Fraction with
Spectral Mixture Analysis and Machine Learning Techniques. ISPRS J. Photogramm. Remote Sens. 2013, 86, 100–110. [CrossRef]

26. Deng, Y.; Fan, F.; Chen, R. Extraction and Analysis of Impervious Surfaces Based on a Spectral Un-Mixing Method Using Pearl
River Delta of China Landsat Tm/Etm+ Imagery from 1998 to 2008. Sensors 2012, 12, 1846–1862. [CrossRef]

27. Fan, F.; Deng, Y. Enhancing Endmember Selection in Multiple Endmember Spectral Mixture Analysis (MESMA) for Urban
Impervious Surface Area Mapping Using Spectral Angle and Spectral Distance Parameters. Int. J. Appl. Earth Obs. Geoinf. 2014,
33, 290–301. [CrossRef]

28. Shao, Z.; Liu, C. The Integrated Use of DMSP-OLS Nighttime Light and MODIS Data for Monitoring Large-Scale Impervious
Surface Dynamics: A Case Study in the Yangtze River Delta. Remote Sens. 2014, 6, 9359–9378. [CrossRef]

29. Weng, F.; Pu, R. Mapping and Assessing of Urban Impervious Areas Using Multiple Endmember Spectral Mixture Analysis: A
Case Study in the City of Tampa, Florida. Geocarto. Int. 2013, 28, 594–615. [CrossRef]

30. Yang, F.; Matsushita, B.; Fukushima, T.; Yang, W. Temporal Mixture Analysis for Estimating Impervious Surface Area from
Multi-Temporal MODIS NDVI Data in Japan. ISPRS J. Photogramm. Remote Sens. 2012, 72, 90–98. [CrossRef]

31. Zhang, X.; Pan, D.; Chen, J.; Zhan, Y.; Mao, Z. Using Long Time Series of Landsat Data to Monitor Impervious Surface Dynamics:
A Case Study in the Zhoushan Islands. J. Appl. Remote Sens. 2013, 7, 073515. [CrossRef]

32. Zhang, Y.; Balzter, H.; Liu, B.; Chen, Y. Analyzing the Impacts of Urbanization and Seasonal Variation on Land Temperature
Based on Subpixel Fractional Covers Using Landsat. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2017, 10, 1344–1356. [CrossRef]

33. Wang, J.; Zhao, Y.; Li, C.; Yu, L.; Liu, D.; Gong, P. Mapping Global Land Cover in 2001 and 2010 with Spatial-Temporal Consistency
at 250m Resolution. ISPRS J. Photogramm. Remote Sens. 2015, 103, 38–47. [CrossRef]

34. Zhang, L.; Weng, Q. Annual Dynamics of Impervious Surface in the Pearl River Delta, China, from 1988 to 2013, Using Time
Series Landsat Imagery. ISPRS J. Photogramm. Remote Sens. 2016, 113, 86–96. [CrossRef]

35. Deng, C.; Wu, C. A Spatially Adaptive Spectral Mixture Analysis for Mapping Subpixel Urban Impervious Surface Distribution.
Remote Sens. Environ. 2013, 133, 62–70. [CrossRef]

36. Yang, F.; Matsushita, B.; Fukushima, T. A Pre-Screened and Normalized Multiple Endmember Spectral Mixture Analysis for
Mapping Impervious Surface Area in Lake Kasumigaura Basin, Japan. ISPRS J. Photogramm. Remote Sens. 2010, 65, 479–490.
[CrossRef]

37. Xu, F.; Somers, B. Unmixing-Based Sentinel-2 Downscaling for Urban Land Cover Mapping. ISPRS J. Photogramm. Remote Sens.
2021, 171, 133–154. [CrossRef]

38. Wang, J.; Zhao, Y.; Fu, Y.; Xia, L.; Chen, J. Improving LSMA for Impervious Surface Estimation in an Urban Area. Eur. J. Remote
Sens. 2022, 55, 37–51. [CrossRef]

39. Shao, Z.; Zhang, Y.; Zhang, C.; Huang, X.; Cheng, T. Mapping Impervious Surfaces with a Hierarchical Spectral Mixture Analysis
Incorporating Endmember Spatial Distribution. Geo-Spat. Inf. Sci. 2022, 25, 550–567. [CrossRef]

40. Mohapatra, R.P.; Wu, C. Subpixel Imperviousness Estimation with IKONOS Imagery: An Artificial Neural Network Approach.
Remote Sens. Impervious Surf. 2008, 2000, 21–35.

41. Wu, C. Quantifying High-resolution Impervious Surfaces Using Spectral Mixture Analysis. Int. J. Remote Sens. 2009, 30, 2915–2932.
[CrossRef]

42. Yang, J.; He, Y. Automated Mapping of Impervious Surfaces in Urban and Suburban Areas: Linear Spectral Unmixing of High
Spatial Resolution Imagery. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 53–64. [CrossRef]

43. Hester, D.B.; Nelson, S.A.C.; Cakir, H.I.; Khorram, S.; Cheshire, H. High-Resolution Land Cover Change Detection Based on
Fuzzy Uncertainty Analysis and Change Reasoning. Int. J. Remote Sens. 2010, 31, 455–475. [CrossRef]

44. Parece, T.E.; Campbell, J.B. Comparing Urban Impervious Surface Identification Using Landsat and High Resolution Aerial
Photography. Remote Sens. 2013, 5, 4942–4960. [CrossRef]

https://doi.org/10.1016/j.rse.2019.111338
https://doi.org/10.2166/bgs.2022.026
https://doi.org/10.1016/j.isprsjprs.2018.03.007
https://doi.org/10.1016/j.rse.2019.04.025
https://doi.org/10.1109/JSTARS.2018.2804440
https://doi.org/10.1080/01431161.2016.1252473
https://doi.org/10.1016/j.isprsjprs.2013.09.010
https://doi.org/10.3390/s120201846
https://doi.org/10.1016/j.jag.2014.06.011
https://doi.org/10.3390/rs6109359
https://doi.org/10.1080/10106049.2013.764355
https://doi.org/10.1016/j.isprsjprs.2012.05.016
https://doi.org/10.1117/1.JRS.7.073515
https://doi.org/10.1109/JSTARS.2016.2608390
https://doi.org/10.1016/j.isprsjprs.2014.03.007
https://doi.org/10.1016/j.isprsjprs.2016.01.003
https://doi.org/10.1016/j.rse.2013.02.005
https://doi.org/10.1016/j.isprsjprs.2010.06.004
https://doi.org/10.1016/j.isprsjprs.2020.11.009
https://doi.org/10.1080/22797254.2021.2018666
https://doi.org/10.1080/10095020.2022.2028535
https://doi.org/10.1080/01431160802558634
https://doi.org/10.1016/j.jag.2016.09.006
https://doi.org/10.1080/01431160902893493
https://doi.org/10.3390/rs5104942


Remote Sens. 2023, 15, 2562 17 of 19

45. Hu, X.; Weng, Q. Impervious Surface Area Extraction from IKONOS Imagery Using an Object-Based Fuzzy Method. Geocarto. Int.
2011, 26, 3–20. [CrossRef]

46. Xu, H.Q. Rule-Based Impervious Surface Mapping Using High Spatial Resolution Imagery. Int. J. Remote Sens. 2013, 34, 27–44.
[CrossRef]

47. Li, P.; Guo, J.; Song, B.; Xiao, X. A Multilevel Hierarchical Image Segmentation Method for Urban Impervious Surface Mapping
Using Very High Resolution Imagery. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2011, 4, 103–116. [CrossRef]

48. Sugg, Z.P.; Finke, T.; Goodrich, D.C.; Moran, M.S.; Yool, S.R. Mapping Impervious Surfaces Using Object-Oriented Classification
in a Semiarid Urban Region. Photogramm. Eng. Remote Sens. 2014, 80, 343–352. [CrossRef]

49. Yu, X.; Shen, Z.; Cheng, X.; Xia, L.; Luo, J. Impervious Surface Extraction Using Coupled Spectral–Spatial Features. J. Appl. Remote
Sens. 2016, 10, 035013. [CrossRef]

50. Zhang, X.; Xiao, P.; Feng, X. Impervious Surface Extraction from High-Resolution Satellite Image Using Pixel- and Object-Based
Hybrid Analysis. Int. J. Remote Sens. 2013, 34, 4449–4465. [CrossRef]

51. Iabchoon, S.; Wongsai, S.; Chankon, K. Mapping Urban Impervious Surface Using Object-Based Image Analysis with WorldView-3
Satellite Imagery. J. Appl. Remote Sens. 2017, 11, 1. [CrossRef]

52. Liu, X.; Li, X.; Zhang, X. Determining Class Proportions within a Pixel Using a New Mixed-Label Analysis Method. Geosci. Remote
Sens. 2010, 48, 1882–1891.

53. Lu, D.; Hetrick, S.; Moran, E. Impervious Surface Mapping with Quickbird Imagery. Int. J. Remote Sens. 2011, 32, 2519–2533.
[CrossRef]

54. Berger, C.; Voltersen, M.; Hese, O.; Walde, I.; Schmullius, C. Robust Extraction of Urban Land Cover Information from HSR
Multi-Spectral and LiDAR Data. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2013, 6, 1–16. [CrossRef]

55. Jebur, M.N.; Mohd Shafri, H.Z.; Pradhan, B.; Tehrany, M.S. Per-Pixel and Object-Oriented Classification Methods for Mapping
Urban Land Cover Extraction Using SPOT 5 Imagery. Geocarto. Int. 2013, 29, 792–806. [CrossRef]

56. Bai, T.; Wang, L.; Yin, D.; Sun, K.; Chen, Y.; Li, W.; Li, D. Deep Learning for Change Detection in Remote Sensing: A Review.
Geo-Spat. Inf. Sci. 2022, 1–27. [CrossRef]

57. Fan, W.; Wu, C.; Wang, J. Improving Impervious Surface Estimation by Using Remote Sensed Imagery With Open Street Map
Points-of-Interest (POI) Data. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2019, 12, 4265–4274. [CrossRef]

58. Wang, W.; Jiang, Y.; Wang, G.; Guo, F.; Li, Z.; Liu, B. Multi-Scale LBP Texture Feature Learning Network for Remote Sensing
Interpretation of Land Desertification. Remote Sens. 2022, 14, 3486. [CrossRef]

59. Im, J.; Lu, Z.; Rhee, J.; Quackenbush, L.J. Impervious Surface Quantification Using a Synthesis of Artificial Immune Networks
and Decision/Regression Trees from Multi-Sensor Data. Remote Sens. Environ. 2012, 117, 102–113. [CrossRef]

60. Jiang, L.; Liao, M.; Lin, H.; Yang, L. Synergistic Use of Optical and InSAR Data for Urban Impervious Surface Mapping: A Case
Study in Hong Kong. Int. J. Remote Sens. 2009, 30, 2781–2796. [CrossRef]

61. Kuang, W.; Liu, J.; Zhang, Z.; Lu, D.; Xiang, B. Spatiotemporal Dynamics of Impervious Surface Areas across China during the
Early 21st Century. Chin. Sci. Bull. 2013, 58, 1691–1701. [CrossRef]

62. Sexton, J.O.; Song, X.P.; Huang, C.; Channan, S.; Baker, M.E.; Townshend, J.R. Urban Growth of the Washington, D.C.-Baltimore,
MD Metropolitan Region from 1984 to 2010 by Annual, Landsat-Based Estimates of Impervious Cover. Remote Sens. Environ.
2013, 129, 42–53. [CrossRef]

63. Bauer, M.E.; Loffelholz, B.; Wilson, B. Estimating and Mapping Impervious Surface Area by Regression Analysis of Landsat
Imagery. Remote Sens. Impervious Surf. 2008, 612–625. [CrossRef]

64. Shrestha, B.; Stephen, H.; Ahmad, S. Impervious Surfaces Mapping at City Scale by Fusion of Radar and Optical through a
Random Forest Classifier. Remote Sens. 2021, 13, 3040. [CrossRef]

65. Liu, J.; Liu, C.; Feng, Q.; Ma, Y. Subpixel Impervious Surface Estimation in the Nansi Lake Basin Using Forest Regression
Combined with GF-5 Hyperspectral Data. J. Appl. Remote Sens. 2020, 14, 034515. [CrossRef]

66. Lin, Y.; Zhang, H.; Lin, H.; Gamba, P.E.; Liu, X. Incorporating Synthetic Aperture Radar and Optical Images to investigate the
Annual Dynamics of Anthropogenic Impervious Surface at Large Scale. Remote Sens. Environ. 2020, 242, 111757. [CrossRef]

67. Atkinson, P.M.; Tatnall, A.R.L. Introduction Neural Networks in Remote Sensing. Int. J. Remote Sens. 1997, 18, 699–709. [CrossRef]
68. Paola, J.D.; Schowengerdt, R.A. A Review and Analysis of Backpropagation Neural Networks for Classification of Remotely-

Sensed Multi-Spectral Imagery. Int. J. Remote Sens. 1995, 16, 3033–3058. [CrossRef]
69. Ji, C.Y. Land-Use Classification of Remotely Sensed Data Using Kohnonen Self-Organizing Feature Map Neural Networks.

Photogramm. Eng. Remote Sens. 2000, 66, 1451–1460.
70. Li, R.; Zheng, S.; Duan, C.; Wang, L.; Zhang, C. Land Cover Classification from Remote Sensing Images Based on Multi-Scale

Fully Convolutional Network. Geo-Spat. Inf. Sci. 2022, 25, 278–294. [CrossRef]
71. Leinenkugel, P.; Esch, T.; Kuenzer, C. Settlement Detection and Impervious Surface Estimation in the Mekong Delta Using Optical

and SAR Remote Sensing Data. Remote Sens. Environ. 2011, 115, 3007–3019. [CrossRef]
72. Foody, G.M.; Mathur, A. A Relative Evaluation of Multiclass Image Classification by Support Vector Machines. IEEE Trans. Geosci.

Remote Sens. 2004, 42, 1335–1343. [CrossRef]
73. Breiman, L.E.O. Random Forests. Mach. Learn 2001, 45, 5–32. [CrossRef]
74. Eisavi, V.; Homayouni, S.; Yazdi, A.M.; Alimohammadi, A. Land Cover Mapping Based on Random Forest Classification of

Multitemporal Spectral and Thermal Images. Environ. Monit. Assess 2015, 187, 291. [CrossRef]

https://doi.org/10.1080/10106049.2010.535616
https://doi.org/10.1080/01431161.2012.703343
https://doi.org/10.1109/JSTARS.2010.2074186
https://doi.org/10.14358/PERS.80.4.343
https://doi.org/10.1117/1.JRS.10.035013
https://doi.org/10.1080/01431161.2013.779044
https://doi.org/10.1117/1.JRS.11.046015
https://doi.org/10.1080/01431161003698393
https://doi.org/10.1109/JSTARS.2013.2252329
https://doi.org/10.1080/10106049.2013.848944
https://doi.org/10.1080/10095020.2022.2085633
https://doi.org/10.1109/JSTARS.2019.2911525
https://doi.org/10.3390/rs14143486
https://doi.org/10.1016/j.rse.2011.06.024
https://doi.org/10.1080/01431160802555838
https://doi.org/10.1007/s11434-012-5568-2
https://doi.org/10.1016/j.rse.2012.10.025
https://doi.org/10.1201/9781420043754.pt1
https://doi.org/10.3390/rs13153040
https://doi.org/10.1117/1.JRS.14.034515
https://doi.org/10.1016/j.rse.2020.111757
https://doi.org/10.1080/014311697218700
https://doi.org/10.1080/01431169508954607
https://doi.org/10.1080/10095020.2021.2017237
https://doi.org/10.1016/j.rse.2011.06.004
https://doi.org/10.1109/TGRS.2004.827257
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s10661-015-4489-3


Remote Sens. 2023, 15, 2562 18 of 19

75. Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer Resolution Observation
and Monitoring of Global Land Cover: First Mapping Results with Landsat TM and ETM+ Data. Int. J. Remote Sens. 2013, 34,
2607–2654. [CrossRef]

76. Hayes, M.M.; Miller, S.N.; Murphy, M.A. High-Resolution Landcover Classification Using Random Forest. Remote Sens. Lett.
2014, 5, 112–121. [CrossRef]

77. Wang, C.; Zhang, X.; Shi, T.; Zhang, C.; Li, M. Classification of Medicinal Plants Astragalus Mongholicus Bunge and Sophora
Flavescens Aiton Using GaoFen-6 and Multitemporal Sentinel-2 Data. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

78. Chen, Q.; Cao, W.; Shang, J.; Liu, J.; Liu, X. Superpixel-Based Cropland Classification of SAR Image with Statistical Texture and
Polarization Features. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

79. Shao, Z.; Fu, H.; Fu, P.; Yin, L. Mapping Urban Impervious Surface by Fusing Optical and SAR Data at the Decision Level. Remote
Sens. 2016, 8, 945. [CrossRef]

80. Zhang, Y.; Zhang, H.; Lin, H. Improving the Impervious Surface Estimation with Combined Use of Optical and SAR Remote
Sensing Images. Remote Sens. Environ. 2014, 141, 155–167. [CrossRef]

81. Huang, F.; Yu, Y.; Feng, T. Automatic Extraction of Impervious Surfaces from High Resolution Remote Sensing Images Based on
Deep Learning. J. Vis. Commun. Image Represent 2019, 58, 453–461. [CrossRef]

82. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. In Advances in
Neural Information. Adv. Neural Inf. Process Syst. 2012. [CrossRef]

83. Yu, D.; Guo, H.; Xu, Q.; Lu, J.; Zhao, C.; Lin, Y. Hierarchical Attention and Bilinear Fusion for Remote Sensing Image Scene
Classification. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2020, 13, 6372–6383. [CrossRef]

84. Rezaee, M.; Mahdianpari, M.; Zhang, Y.; Salehi, B. Deep Convolutional Neural Network for Complex Wetland Classification
Using Optical Remote Sensing Imagery. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2018, 11, 3030–3039. [CrossRef]

85. Liang, J.; Deng, Y.; Zeng, D. A Deep Neural Network Combined CNN and GCN for Remote Sensing Scene Classification. IEEE J.
Sel. Top Appl. Earth Obs. Remote Sens. 2020, 13, 4325–4338. [CrossRef]

86. Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D-2-D CNN Feature Hierarchy for Hyperspectral
Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 277–281. [CrossRef]

87. Shi, C.; Lv, Z.; Shen, H.; Fang, L.; You, Z. Improved Metric Learning with the CNN for Very-High-Resolution Remote Sensing
Image Classification. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2021, 14, 631–644. [CrossRef]

88. Wu, W.; Guo, S.; Cheng, Q. Fusing Optical and Synthetic Aperture Radar Images Based on Shearlet Transform to Improve Urban
Impervious Surface Extraction. J. Appl. Remote Sens. 2020, 14, 024506. [CrossRef]

89. Sun, G.; Cheng, J.; Zhang, A.; Jia, X.; Yao, Y.; Jiao, Z. Hierarchical Fusion of Optical and Dual-Polarized SAR on Impervious
Surface Mapping at City Scale. ISPRS J. Photogramm. Remote Sens. 2022, 184, 264–278. [CrossRef]

90. Liang, X.; Lin, Y.; Zhang, H. Mapping Urban Impervious Surface with an Unsupervised Approach Using Interferometric
Coherence of SAR Images. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2022, 15, 2734–2744. [CrossRef]

91. Hodgson, M.E.; Jensen, J.R.; Tullis, J.A.; Riordan, K.D.; Archer, C.M. Synergistic Use of Lidar and Color Aerial Photography for
Mapping Urban Parcel Imperviousness. Photogramm. Eng. Remote Sens. 2003, 69, 973–980. [CrossRef]

92. Wu, M.; Zhao, X.; Sun, Z.; Guo, H. A Hierarchical Multiscale Super-Pixel-Based Classification Method for Extracting Urban
Impervious Surface Using Deep Residual Network from WorldView-2 and LiDAR Data. IEEE J. Sel. Top Appl. Earth Obs. Remote
Sens. 2019, 12, 210–222. [CrossRef]

93. Sun, Z.; Zhao, X.; Wu, M.; Wang, C. Extracting Urban Impervious Surface from WorldView-2 and Airborne LiDAR Data Using 3D
Convolutional Neural Networks. J. Indian Soc. Remote Sens. 2019, 47, 401–412. [CrossRef]

94. Luo, H.; Wang, L.; Wu, C.; Zhang, L. An Improved Method for Impervious Surface Mapping Incorporating LiDAR Data and
High-Resolution Imagery at Different Acquisition Times. Remote Sens. 2018, 10, 1349. [CrossRef]

95. Shao, Z.; Cheng, G.; Li, D.; Huang, X.; Lu, Z.; Liu, J. Spatio-Temporal-Spectral-Angular Observation Model That Integrates
Observations from UAV and Mobile Mapping Vehicle for Better Urban Mapping. Geo-Spat. Inf. Sci. 2021, 24, 615–629. [CrossRef]

96. Mao, T.M.; Fan, Y.W.; Zhi, S.; Tang, J.S. A Morphological Feature-Oriented Algorithm for Extracting Impervious Surface Areas
Obscured by Vegetation in Collaboration with OSM Road Networks in Urban Areas. Remote Sens. 2022, 14, 2493. [CrossRef]

97. Cheng, G.; Xie, X.; Han, J.; Guo, L.; Xia, G.S. Remote Sensing Image Scene Classification Meets Deep Learning: Challenges,
Methods, Benchmarks, and Opportunities. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2020, 13, 3735–3756. [CrossRef]

98. Wang, J.; Zhong, Y.; Zheng, Z.; Ma, A.; Zhang, L. RSNet: The Search for Remote Sensing Deep Neural Networks in Recognition
Tasks. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2520–2534. [CrossRef]

99. Sun, X.; Shi, A.; Huang, H.; Mayer, H. BAS Net: Boundary-Aware Semi-Supervised Semantic Segmentation Network for Very
High Resolution Remote Sensing Images. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2020, 13, 5398–5413. [CrossRef]

100. Li, J.; Huang, X.; Gong, J. Deep Neural Network for Remote-Sensing Image Interpretation: Status and Perspectives. Natl. Sci. Rev.
2019, 6, 1082–1086. [CrossRef]

101. Lin, D.; Fu, K.; Wang, Y.; Xu, G.; Sun, X. MARTA GANs: Unsupervised Representation Learning for Remote Sensing Image
Classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2092–2096. [CrossRef]

102. Yu, Y.; Gong, Z.; Wang, C.; Zhong, P. An Unsupervised Convolutional Feature Fusion Network for Deep Representation of
Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2018, 15, 23–27. [CrossRef]

https://doi.org/10.1080/01431161.2012.748992
https://doi.org/10.1080/2150704X.2014.882526
https://doi.org/10.1109/LGRS.2021.3120125
https://doi.org/10.1109/LGRS.2021.3139103
https://doi.org/10.3390/rs8110945
https://doi.org/10.1016/j.rse.2013.10.028
https://doi.org/10.1016/j.jvcir.2018.11.041
https://doi.org/10.1145/3065386
https://doi.org/10.1109/JSTARS.2020.3030257
https://doi.org/10.1109/JSTARS.2018.2846178
https://doi.org/10.1109/JSTARS.2020.3011333
https://doi.org/10.1109/LGRS.2019.2918719
https://doi.org/10.1109/JSTARS.2020.3033944
https://doi.org/10.1117/1.JRS.14.024506
https://doi.org/10.1016/j.isprsjprs.2021.12.008
https://doi.org/10.1109/JSTARS.2022.3149813
https://doi.org/10.14358/PERS.69.9.973
https://doi.org/10.1109/JSTARS.2018.2886288
https://doi.org/10.1007/s12524-018-0917-5
https://doi.org/10.3390/rs10091349
https://doi.org/10.1080/10095020.2021.1961567
https://doi.org/10.3390/rs14102493
https://doi.org/10.1109/JSTARS.2020.3005403
https://doi.org/10.1109/TGRS.2020.3001401
https://doi.org/10.1109/JSTARS.2020.3021098
https://doi.org/10.1093/nsr/nwz058
https://doi.org/10.1109/LGRS.2017.2752750
https://doi.org/10.1109/LGRS.2017.2767626


Remote Sens. 2023, 15, 2562 19 of 19

103. Ma, F.; Gao, F.; Sun, J.; Zhou, H.; Hussain, A. Attention Graph Convolution Network for Image Segmentation in Big SAR Imagery
Data. Remote Sens. 2019, 11, 2586. [CrossRef]

104. Yan, X.; Ai, T.; Yang, M.; Yin, H. A Graph Convolutional Neural Network for Classification of Building Patterns Using Spatial
Vector Data. ISPRS J. Photogramm. Remote Sens. 2019, 150, 259–273. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs11212586
https://doi.org/10.1016/j.isprsjprs.2019.02.010

	Introduction 
	Requirement on Mapping Urban Impervious Surfaces Using High-Resolution Remote Sensing Images 
	Urban Surface Energy Balance 
	Sustainable Urban Development 
	Old City Reconstruction and New Urban Construction 

	Methods 
	Methods Classified by Extraction Units 
	Sub-Pixel-Based Methods 
	Pixel-Based Methods 
	Object-Based Methods 

	Methods Classified by Extraction Models 
	Regression Models 
	Machine Learning Models 
	Deep Learning Models 


	Discussion on Extraction Strategies 
	Spatial Resolution Selection 
	Spectral Band Selection 
	Extraction Method Selection 
	Uncertainty 
	Cloud and Snow Contaminations 
	Shadow 
	Vegetation Cover 

	Future Prospects 

	Conclusions 
	References

