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Abstract: PSI data are extremely useful for monitoring on-ground displacements. In many cases,
clustering algorithms are adopted to highlight the presence of homogeneous patterns; however,
clustering algorithms can fail to consider spatial constraints and be poorly specific in revealing
patterns at lower scales or possible anomalies. Hence, we proposed a novel framework which
combines a spatially-constrained clustering algorithm (SKATER) with a hypothesis testing procedure
which evaluates and establishes the presence of significant local spatial correlations, namely the
LISA method. The designed workflow ensures the retrieval of homogeneous clusters and a reliable
anomaly detection; to validate this workflow, we collected Sentinel-1 time series from the Sibari and
Metaponto coastal plains in Italy, ranging from 2015 to 2021. This particular study area is interesting
due to the presence of important industrial and agricultural settlements. The proposed workflow
effectively outlines the presence of both subsidence and uplifting that deserve to be focused and
continuous monitoring, both for environmental and infrastructural purposes.

Keywords: environmental monitoring; ground displacements; persistent scatterers; SKATER; LISA

1. Introduction

Since its foundations, Persistent Scatter Interferometry (PSI) has shown great potential
for several applications [1,2]; in particular, its contribution to monitoring geophysical phe-
nomena such as subsidence and uplift (driven by environmental forces or human activities)
is of paramount importance [3]. The advantages of PSI are manifest as, just to mention a
few, it allows fast and easy access to the observation of wide areas and provides measure-
ments with high spatial density based on satellite-borne Synthetic Aperture Radar (SAR).
Accordingly, in recent years, a consistent number of studies have proposed and investigated
its use. In particular, studies addressing urban subsidence [4–7], mine subsidence [8,9],
industrial-related processes [10–12], and coastal monitoring [13–16] can be mentioned.

PSI relies on a single working principle, the presence of stable reflectors, i.e., persistent
scatterers, which can be used to achieve highly accurate differential measurements [17].
Several different techniques have been proposed [18–22]. In particular, PSI techniques
are extremely helpful when dealing with slow-occurring phenomena such as subsidence,
tectonic uplifts, and ground deformation processes in civil engineering structures [23].
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Here, the SPINUA (Stable Point Interferometry over Unurbanized Areas) algorithm [24]
was used to process Sentinel-1 data and highlight occurring displacements along the line
of sight.

The main goal of PSI analyses is providing displacement maps which can be suitably
used to identify ground displacements. However, in many cases, further evaluations are
needed to identify the presence of anomalous patterns or outlier phenomena. A common
choice is to use clustering algorithms [25–28], whose underlying assumption (widely ac-
cepted by the scientific community) is that the more PS show a coherent displacement,
the more reliable the observed effect is. A popular choice for the remote sensing commu-
nity is the DBSCAN algorithm (Density-Based Spatial Clustering of Applications with
Noise) [29–31], especially for its efficiency in retrieving clusters with arbitrary shape and its
computational efficiency. Nevertheless, as DBSCAN operates in the feature space, it can ne-
glect important constraints provided by spatial proximity, which can, in principle, improve
clustering results. Hence, other strategies, which, directly or indirectly, take into account
spatial proximity have been proposed [32–35]. Among them, we proposed the adoption of
the SKATER clustering algorithm (Spatial ’K’luster Analysis by Tree Edge Removal) [36]
for two main reasons: (i) SKATER is easy to tune, as it fundamentally depends only on one
hyper-parameter, the number of classes, and (ii) it is computationally efficient. In fact, it is
based on recursive partitioning of a minimal spanning tree, which transforms an np-hard
problem in a quasi-linear one [37]; this allows the processing of data of medium–large
sample size, including ∼105 observations, faster than other algorithms [38].

However, given the wide heterogeneity of the phenomena affecting the ground surface
and the already mentioned high variability of displacements, it is not uncommon to observe
clusters that are poorly specific, often grouping together pixels which should be considered
apart. Of course, this issue is a direct consequence of clustering inherent “ill-posedness” [39].
Nevertheless, remote sensing applications have an advantage, in that spatial proximity
is not only a constraint which can be useful to support clusters’ partition, but it can be
also useful to identify anomalous behaviors. Accordingly, we proposed a procedure which
combines the SKATER clustering with a following analysis of spatial association based on
the Moran’s index, namely the Local Indicators of Spatial Association (LISA) algorithm [40].
Thus, statistics based on spatial proximity were embedded in a processing pipeline to
ensure clusters’ homogeneity at all scales and highlight the presence of possible anomalies.

The aim of this work was to demonstrate that a procedure combining both the SKATER
and LISA algorithms can effectively detect relevant surface phenomena that may need
further investigations when performing exploratory analyses on a regional scale. To test
and validate this pipeline, we considered the coastal plains of a region in Southern Italy,
namely the Sibari and Metaponto plains, which have already been studied in the recent
past, for the occurrence of several features of interest, such as the presence of important
industrial and agricultural infrastructures, archaeological remains of ancient Magna Graecia
settlements, and a not-trivial geological environment including alluvial fans and several
marine terraces [41,42]. Additionally, the presence of significant anthropogenic pressure [43]
and possible interactions of subsidence with seismic or tectonic activity [44–47] make the
continuous monitoring of this region extremely challenging and interesting.

2. Mapping the Sibari and Metaponto Coastal Plains
2.1. Geography of the Region of Interest

In this work, we considered an area of interest including the Sibari and the Metaponto
coastal plains; this area is located in Southern Italy across the Basilicata and Calabria regions.
In particular, we focused on the central-northern part of the Sibari plain, including the
coastal areas Sibari and Trebisacce-Villapiana, and the southern portion of the Metaponto
plain, including the coastal area of Policoro. The region is located in the northern Calabrian
arc. It extends for 500 square kilometers and it is confined to the west by the Calabrian
Apennines, to the north and to the south by the Pollino and Sila massifs, respectively;
finally, the region is delimited to the east by the Ionian Sea.
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Subsidence plains are mainly caused by sediment compaction under the pressure of
overlying sediments; this can also be worsened by anthropogenic pressure on the seaside
localities and groundwater withdrawal in the industrial and urban areas [48]. The region is
crossed by multiple rivers which contribute to increasing the hydro-geological risk of the
area and expose the area to floods, although embankments have considerably reduced this
risk [49]. The region also includes capable faults which were identified and georeferenced
by the ITHACA project (ITaly HAzards from CApable faulting) [50].

Concerning the Sibari plain, in the northern sector, the main geomorphological ele-
ments are the alluvial fans of Raganello River, Satanasso Fiumara, and Saraceno Fiumara.
The Metaponto floodplain, located east of the Bradanic Trough, is mainly derived from the
expansions of several rivers: Basento, Bradano, Agri, Sinni, and Cavone; it is a wide sedi-
mentary basin of Plio-Pleistocene followed by Holocene and recent alluvial deposits [51,52].
The elements of interest along with the tectonic setting of the area, capable faults and
subduction lines, are reported in Figure 1.

Figure 1. Map of the lithological units, active faults, and subduction contours of the areas of concerns.

In the north, the Lauropoli-Trebisacce fault in the SW–NE direction (visible on the
map between Villapiana and Trebisacce) is worth mentioning. According to ITHACA,
the active faults of Crati (along the river Crati) and of Timparelle, which continue in
the SW–NE direction crossing the archaeological area of the old Sybaris, can also be
observed. Despite this consolidated knowledge of the area of interest, it is worth noting
how some elements are still debated, such as for example the contributions of the faults
and subduction lines to the evolution of the Sibari coastal plain [53]. The Metaponto plain
presents an interesting diversity in terms of geological elements; four distinct regions can be
recognized: Subappennine Clays, marine terraces, alluvial deposits, and the actual coastal
region. This peculiar morphology makes the region particularly subjected to seawater
intrusion risks [54]. Hence, a continuous monitoring of the region can play a relevant role
for both environmental monitoring and management purposes.
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2.2. The SPINUA Algorithm for Ground Displacement Evaluations

We used Sentinel-1 C-band images (central frequency 5.4 GHz and wavelength 5.6 cm).
The Sentinel-1 constellation were composed of two twin satellites (Sentinel-1A and Sentinel-
1B, respectively); the first one has been active from October 2014 while the second one
stopped its activity in December 2021 after a permanent failure of the Sentinel-1B payload.
The two satellites observe the Earth from an altitude of about 693 km, at a nominal ground
resolution of about 5× 20 m2 (range × azimuth) and with a revisit time of 6 days at the
equator. The study area is covered along three satellite tracks; for this study the ascending
geometry was used. The properties of the data sets of collected ground displacements are
outlined in Table 1.

Table 1. PSInSAR datasets used for the present study.

ROI Orbit No. of Images No. of PSs Time Span

Sibari Asc 248 38,386 2 January 2017 to 22 February 2021
Trebisacce-Villapiana Asc 190 24,574 1 April 2015 to 15 February 2019

Policoro Asc 204 38,265 1 April 2015 to 5 March 2019

Each dataset consisted of a number of 2.0 ∼ 4.0× 104 persistent scatterers. We used
the SPINUA processing chain to evaluate terrain displacements. For each PS, additional
information about height, latitude and longitude, coherence, head angle, and incident angle
were also available. A fundamental issue for PSI analyses concerns data coherence. In
fact, as ground movements are derived by phase-shift differences, incoherent measures can
yield noisy and unreliable results; accordingly, for the present analyses, we selected the
time series whose phase coherence exceeded the 0.7 threshold value [55], which ensures in
this case a root mean square error (RMSE) below 4 mm for each displacement measurement.
Additionally, we removed from the analyses the points laying in uninhabited areas or
exceeding the altitude of 50 m, which exceeded the coastal plains. Hence, approximately
50% of the time series were held for subsequent analyses.

Finally, we computed the average velocity along the line-of-sight (LOS) of the remain-
ing observations. These LOS velocities along with the coordinates of the related PSs were
used to characterize ground displacements within the region of interest, identify specific
homogeneous patterns (such as those caused by subsidence phenomena, debris flows along
alluvial fans or seismically-induced uplifts), and provide an overall monitoring service of
the region.

3. Assessment of Homogeneous and Anomalous Ground Displacements
3.1. Methodological Overview

In this work, we presented a workflow to enforce the identification of homogeneous
PSI clusters and highlighted the presence, within these clusters, of local patterns and
possible anomalies; to this aim, we designed a two-step procedure based on the spatially
constrained clustering algorithm SKATER and the outlier/hotspot detection performed by
LISA. A schematic overview is presented in Figure 2.

PSI data were used to reconstruct time series of on-ground displacements; these data
were then used to feed the SKATER clustering. SKATER exploits spatial constraints to
retrieve homogeneous clusters; nevertheless, some clusters can include local patterns which
could deserve an independent description or anomalies can remain concealed and, in any
case, a statistical assessment of the retrieved clusters is needed; therefore, the LISA method
was finally adopted to evaluate the clusters’ spatial coherence and highlight the presence of
possible anomalies. The SKATER and LISA methods are available in the R package rgeoda
v0.0.10-2 [56].
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Figure 2. PSI analyses are carried out to reconstruct time series of on-ground displacements (a); time
series undergo then the SKATER spatially constrained cluster analysis (b); finally, the LISA method is
considered to highlight within each clusters coherent local patterns or possible anomalies as depicted
in red (c).

3.2. Spatially-Constrained Clustering Algorithm (SKATER)

One of the main aspects of the present work was the adoption of a spatially-constrained
clustering algorithm, namely the SKATER algorithm, in order to group PSs related to the
same phenomena by taking into account their spatial proximity. SKATER’s basic idea
consists in measuring the pairwise distances between all available PS locations so that a
symmetric matrix of distances is obtained: in graph theory, this matrix is usually called
an adjacency matrix and it can be used to define a connectivity graph. Let N be the set of
PS locations, also called nodes of the graph, then the weighted adjacency matrix element
wij represents the proximity between node i and j (usually the distance reciprocal or a
normalized version are considered). The matrix is symmetric as, of course, wij = wji.

Once the graph is defined, a minimum spanning tree (MST) can be determined. By
definition, an MST is a subset of the edges of the original graph allowing to reach all the
nodes, i.e., PSs in this specific case, with a minimum number of edges. Accordingly, in
this representation, there are no isolated nodes and if further edges are removed, two or
more sub-graphs or sub-trees Ti are obtained. These sub-trees can be naturally adopted to
reveal spatial clusters. Of course, removing different edges leads to different partitions of
the graph. The SKATER algorithm searches for the set of links that, if pruned, generates
a partition of sub-trees as homogeneous as possible. For each partition Π = T1, . . . , TK,
the homogeneity is measured by minimizing the sum of the intracluster square deviations
Q(Π):

Q(Π) =
K

∑
i=1

SDDi =
K

∑
i=1

(
Ni

∑
j=1

(vj − v̄)2

)
, (1)

where K is the cardinality of the partition Π and SDDi is referred to as the intracluster sum
of square deviations computed for the sub-tree Ti.

According to this procedure, the main parameter on which SKATER relies is the
cardinality K, i.e., the number of desired clusters. In fact, if K clusters are desired, K− 1
edges must be removed. Initially, all nodes belong to a single class: removing the first edge
yields two sub-trees, then removing another edge separates one of these sub-trees in two;
the procedure can be iterated until the number of desired spatial clusters is obtained. The
edges to remove are those maximizing the partition homogeneity.

It is worth noting that the exhaustive investigation of all possible partitions easily
involve extreme computational burdens. This is why SKATER adopts an heuristic approach
for fast tree pruning. For each sub-tree, a central node Vc is defined and, then, the cost
function C related to cutting each sub-tree starting from the links that connects Vc to its
neighbours is computed. Finally, SKATER searches for the optimum cut of each sub-tree
in the direction in which C increases and the search ends when the best possible solution
is achieved.
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Regarding the optimal number clusters K∗, the ratio between the between-clusters sum-
of-squares BSS and the total-sum-of-squares TSS is computed for each partition obtained
by varying the number K of clusters. While BSS measures the squared average distance
between all centroids, TSS evaluates the average distance of all points from their overall
Euclidean mean; accordingly, their ratio is a measure of clusters’ dispersion ranging from 0
(complete overlap of clusters—worst scenario) to 1 (perfect separation—best scenario). For
each dataset, we found the optimal number of cluster K∗ with the elbow method, i.e., by
visually inspecting the BSS/TSS versus K plot and, therefore, selecting the K∗ value for
which, when increasing the number of clusters, no significant improvement in the overall
quality was observed.

3.3. LISA Outlier Detection

Within a cluster, it is not uncommon to find smaller regions, even composed of few
observations, which seem to not be homogeneous with the surroundings. The reasons are
manifold. For example, especially when considering large clusters, the large dimensions
can conceal phenomena occurring at lower scales; another confounding situation can occur
at clusters’ borders where it is probable that points accounting for different phenomena
(e.g, moving upwards and downwards) can be spatially close. Hence, we adopted the LISA
method to examine the Moran’s statistics for spatial auto-correlation of the LOS velocities
measured through PSI. Moran’s statistics exploits the adjacency matrix wij previously
defined; first of all, the matrix is binarized so that matrix elements are set to 0 if their
distance exceeds a threshold, 1 otherwise. In the present study, we set a distance threshold
of 30 meters in order to obtain a sparse adjacency matrix. Sparsity is in fact an essential
condition in order to decrease the computational burden and, more importantly, to relate
this measure with a spatially limited region.

Each adjacency matrix element wij is related to a PS with (xi, yi) coordinates and
velocity vi; considering its surroundings, it is possible to introduce the the spatial lagged
velocity vi,lag:

vlag =
∑j wi,jvj

∑j wi,j
, (2)

which can be interpreted as the weighted average of LOS velocity of the neighbouring
points of the ith observation. According to this definition, the vi,lag of an (xi, yi) point
depends on the number of considered neighbor points; thus, the sparsity condition ensures
that the sum includes few terms.

Examining the scatter plot of the actual velocities and the lagged ones, important
considerations can arise; for example, if velocities are described by homogeneous patterns,
vlag and v must align and the slope of the straight line should be close to one; points that lie
far from this line are spatial outliers. Additionally, the straight line extremities define the
so-called “coldspots”, at low v and vlag values and “hotspots”, at high v and vlag values,
of ground velocities. These points correspond to spatial associations of, respectively, low
and high values of LOS average velocities. Thanks to the Moran’s index I, a quantitative
evaluation can be carried out by means of a hypothesis test. The index I is the analogous of
the Pearson’s correlation in spatial terms and it is defined as follows:

I =
1

∑N
i=1 ∑N

j=1 wi,j

∑N
i=1 ∑N

j=1 wi,j(vi − v̄)(vj − v̄)

∑N
l=1(vl − v̄)2

, (3)

where N and v̄ indicate, respectively, the total number of spatial observations and their
average velocity. The index I ranges from −1 and +1, with +1 representing the maximum
spatial correlation and−1 anti-correlation: in the first case, the neighbor points are perfectly
homogeneous and can be clusterized; in the second case, each point is different from
its neighbors.
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The index I provides a global spatial statistics, which can suitably outline the presence
of spatial patterns or anomalies. The LISA approach effectively outlines and localizes these
situations by adopting the local Moran’s index Ii of the ith observation:

Ii = (vi − v̄)
N

∑N
i=1 ∑N

j=1 wi,j

∑N
j=1 wi,j(vj − v̄)

∑l=1N(vl−v̄)2
, (4)

with the N numerator ensuring that < Ii >= I.
After computing the local Moran’s indexes Ii, the hypothesis testing can be performed

to determine whether spatial (anti-)correlations occur. The testing is performed by com-
paring the experimental values Ii with the Moran’s index values expected with a random
spatial distribution. In particular, the PSs whose local Moran’s index exceeds the average
by two standard deviations are considered homogeneous and belonging to the same cluster
while the others are spatial outliers.

4. Results
4.1. Revealing Homogeneous On-Ground Displacements with SKATER

First of all, we examined the presence of homogeneous patterns in the regions of
interest by varying the number of expected clusters and computing the corresponding
BSS/TSS metrics. By visual inspection, considerations based on the elbow method suggest,
for each region, that the optimal number of classes is two or three, see Figure 3.

Figure 3. Plots comparing the quality of the partition against the number of clusters in terms of the
BSS/TSS ratio.

The BSS/TSS ratio shows, manifestly, two distinct phases: a first steepen increase is
followed by a much slower incremental behavior (more evident for Sibari and Trebisacce-
Villapiana). The number of spatially constrained communities is two for Trebisacce-
Villapiana and three for Sibari and Policoro. The areas of Sibari and Trebisacce-Villapiana
show a good quality clustering in terms of the BSS/TSS ratio, which reaches values ∼0.8.
Conversely, the clustering obtained for the Policoro area seems to be unreliable (BSS/TSS
∼0.4). The partitions returned by SKATER for Trebisacce-Villapiana and Policoro, with the
three optimal clusters, are shown in Figure 4.
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Figure 4. On the top: SKATER optimal clustering for Sibari (a), Trebisacce-Villapiana (b) and Policoro
area (c); the violin plots on the bottom show the velocity distributions of each optimal cluster. The
color code links each spatial cluster to its velocity distribution (d–f).

Both Sibari and Trebisacce-Villapiana coastal plains are best characterized by three
clusters; violin plots allow to appreciate how stable are the clusters, in that LOS velocities
appear in general closely distributed to the average values. Nevertheless, more extreme
values are present as shown by the violins’ long tails. This result suggests the need for
a further and localized inspection of the SKATER clusters. Analogously, Policoro can be
separated in three clusters whose velocities are well separated, but the overall clustering
quality remains poor because of the limited size of the observed clusters, related only to a
bridge and a small fraction of Policoro.

Finally, for validating the clustering results by visual inspection, Figure 5 shows the
velocity distributions in the region of interest as retrieved by SPINUA.

Figure 5. SPINUA measured velocities for Sibari (a), Trebisacce-Villapiana (b) and Policoro area (c).
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It is worth noting that, choosing suitable colour maps and velocity ranges, the velocity
LOS distributions emphasise the presence of three clusters both in Sibari and Trebisacce-
Villapiana coastal plains (as suggested by SKATER), while Policoro clusterization remains
elusive. Further details about the specific patterns retrieved within each region of interest
will be provided in the following sections.

4.2. Sibari

To highlight the presence of local patterns or anomalies within the SKATER clusteri-
zation of Sibari, further analyses were carried by means of the LISA approach. Figure 6
shows LISA results for this region.

Figure 6. LISA analyses of Sibari: coldspots (red) and hotspots (green) are shown (a). SKATER
optimal clustering is shown in panel (b); the spatial distribution of the LOS velocities retrieved by the
SPINUA algorithm is shown in panel (c).

Green points are related to areas where a significant spatial aggregation of positive
LOS velocity occurs. Red points are used in the same situation but with negative LOS
velocities. Finally, points not exhibiting a significant spatial auto-correlation are white.
Within the Sibari region, while the vast majority of points were stable, some interesting
coldspots were also present, for example near Corigliano Calabro and the Sibari lakes area,
see Figure 7.

Interestingly, concerning, Corigliano Calabro, the subsidence region is located within
its industrial area; it is worth noting that the geometric center of this coldspot corresponds
to the known coordinates of a water well. Additionally, a few kilometers towards the coast,
it is possible to detect another community of coherent subsidence, corresponding to the
Selicetti fraction; in particular, this subsidence (1 ∼ 2 cm per year) occurs near the coast
where several resorts are present. Another interesting subsidence area (1 cm per year) is
the one located around the Sibari lakes. This area hosts several residential complexes and
an important port.



Remote Sens. 2023, 15, 2560 10 of 16

Figure 7. The industrial area of Corigliano Calabro (a) and the Sibari lakes (b) are shown. These areas
are two examples of coldspots in the Sibari region.

4.3. Trebisacce-Villapiana

We considered the clusterization of Trebisacce-Villapiana and, even in this case, we
investigated the presence of possible sub-clusters or patterns missed by SKATER. Results
are presented in Figure 8.

Figure 8. LISA analyses of Trebisacce-Villapiana: coldspots (red) and hotspots (green) are shown (a);
interestingly, near the Saraceno river, debris movements are detected. SKATER optimal clustering is
shown in panel (b); the spatial distribution of the LOS velocities retrieved by the SPINUA algorithm
is shown in panel (c).
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In the Trebisacce-Villapiana coastal plain, both hotspots and coldspots were detected.
For example, particular mentions deserve the subsidence (coldspot) area inherent in the
Villapiana shore and the uplifting (hotspot) area of Trebisacce. A magnified view of these
areas is presented in Figure 9.

Figure 9. Two areas of interest in the Trebisacce-Villapiana region: the mouth of river Saraceno near
Trebisacce (a) and the Villapiana shore subsidence (b).

The figure shows two elements of interest. The mouth of the river Saraceno near
Trebisacce-Villapiana. The river shows the presence of extremely heterogeneous LOS
velocities, ranging from −10 mm to 10 mm per year, probably corresponding to superficial
debris movements. Trebisacce shows a relevant uplifting movement along the LOS. Finally,
for what concerns the shore of Villapiana, a significant subsidence (3 mm per year) is
detected. Maximum values of around 7 ∼ 13 mm per year are also observed.

4.4. Policoro

The Policoro coastal plain was considered as a unique cluster because the BSS/TSS
ratio examination suggested that the clusterization was not reliable in this case. Then,
LISA analysis was performed over the whole region; even in this case, some hotspots and
coldpots were detected. Some particular uplifting areas were found along the Cardonna,
Canna and San Nicola torrents; interestingly, portions of the SS 106 Jonica highway were
both affected by hotspots and coldspots: results are shown in Figure 10.

In particular, two elements of interest deserve further investigation: the SS 106 Jonica
highway bridge near Nova Siri Scalo beach and Policoro Lido shore, see Figure 11.

In particular, along this bridge, extremely heterogeneous LOS velocities were detected;
these regions, outlined in yellow dashed circles, showed velocities ranging from−15 mm to
15 per year. More specifically, this phenomenon occurs in proximity of a bridge. Policolouro
Lido showed a small but relevant subsidence hotspot with LOS velocities of about −16 mm
per year. Maximum values of velocities along the LOS (∼13 mm per year) were observed.
Moreover, coastal subsidence was also observed along the shorelines ([−6,−10] mm/year).
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Figure 10. LISA analyses of Policoro dataset: coldspots (red) and hotspots (green) are shown (a); the
analysis reveals three major areas of concerns, namely, two portions of the SS 106 Jonica highway and
a subsidence coldspot in Policoro Lido. SKATER optimal clustering is shown in panel (b); the spatial
distribution of the LOS velocities retrieved by the SPINUA algorithm is shown in panel (c).

Figure 11. Subsidence phenomena in the Policoro area: the SS 106 Jonica highway (a) and the Policoro
Lido settlement (b). For what concerns the highway, traits with extremely varying velocities, ranging
from −15 mm to 15 per year are highlighted (dotted circles).

5. Discussion

Here, we presented a novel workflow that combines a powerful and computationally
efficient clustering algorithm such as SKATER with a local analysis outlining homogeneous
patterns characterized by lesser scales than SKATER clusters or local anomalies. The
main feature offered by SKATER is that it is a spatially constrained algorithm, a decisive
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feature when dealing with geographical analyses. An immediate consequence is that
SKATER clusters do not yield extremely parcelled segmentations but tend to cover more
extended areas.

For example, in the Sibari region, only three clusters were detected; one includ-
ing the majority of points characterized by stable LOS velocities, the other two clusters
characterized by subsidence. Analogously, three clusters were found by SKATER in the
Trebisacce-Villapiana area; one for subsidence in the south, one uplifting region in the
north, and a stable region in the middle. Finally, according to SKATER, the whole Policoro
area was considered as a unique homogeneous cluster. However, it is reasonable to assume
that by further inspection, a more detailed characterization of local phenomena could arise.
This is where LISA analyses become useful.

In fact, LISA analysis allows us to distinguish within the Sibari region some spe-
cific subsidence areas which would have been grouped together if considering only the
SKATER results. In particular, our findings outlined the subsidence affecting the Sibari
lakes surroundings, which is particularly interesting if considering the residential areas
in the surroundings and the fact that it is located 2.5 m above the sea level. Additionally,
the subsidence affecting Corigliano Calabro was highlighted: on the one hand, we found a
subsidence induced by anthropic pressure in the industrial area, probably related to the
continuous water supply for industrial needs affecting the water well beneath; on the other
hand, the analyses revealed the subsidence of Salicetti, a coastal fraction of Corigliano
Calabro. In fact, subsidence of coastal regions, such as that of Salicetti or the Sibari port (an-
other point of interest for subsidence) should be carefully monitored, especially considering
the combined action of subsidence and sea-level increment due to climate change.

Further details were provided by LISA for Trebisacce-Villapiana, too. The mouth of
the Saraceno river showed an interesting behavior with extremely heterogeneous LOS
velocities; it is reasonable to assume this is due to debris, moreover it is a region far
from inhabited areas, nevertheless these movements need to be monitored. The uplifting
movement of Trebisacce is already known [57]; this can be considered an indirect validation
of the robustness of these findings.

Analogous considerations arise looking at the Policoro region where a general coastal
subsidence was observed. Again, this finding is confirmed by previous studies [58,59], thus
validating the proposed procedure. This general subsidence is expected to involve a coastal
loss of 1 m per year, hence suggesting a continuous monitoring. Additionally, the SS106
Jonica highway deserves a particular mention; specifically, the trait near Nova Siri (lat
40.135, lon 16.625) showed LOS velocities ranging from −15 mm to 15 mm per year. Finally,
a significant subsidence (−16 mm per year) cluster was observed within the Policoro Lido
fraction. To the best of our knowledge, this phenomenon has not been previously observed
and deserves further investigations.

It is worth mentioning that LISA analyses also revealed local anomalies; less than
1% of examined PSs consisted of isolated points. In these cases, we chose to neglect
such anomalies because we were unable to ensure their statistical robustness or to verify
with on ground observations if they were related to interesting phenomena. Accordingly,
future work could refine the proposed approach. Nevertheless, the presented findings
suggest unanimously that this pipeline can be suitably adopted for environmental and
infrastructural monitoring.

6. Conclusions

In this work, we presented a novel workflow for PSI analyses; specifically, we adopted
SKATER and LISA methods to perform spatially constrained clusterization and a sub-
sequent investigation of local patterns or anomalies. We demonstrated how SKATER
clustering represents a suitable tool for PSI in that the clusters it yields are a faithful rep-
resentation of the ground deformations returned by PSI when performing regional-scale
analyses. Nevertheless, the large clusters returned by SKATER include local patterns
that, without the subsequent LISA analysis, would be inevitably missed. In particular,
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we showed the presence of significant local subsidence and uplifting phenomena in the
examined regions. These phenomena being due to anthropic pressure such as industrial
or touristic areas, as well as being due to natural causes, it is of paramount importance
to have accurate tools with which to monitor them. This is of particular interest for both
environmental and infrastructural monitoring. To this aim, it is also worth mentioning that
the National Recovery and Resilience Plan presented by Italy, as part of the the Next Gener-
ation EU programme, has explicitly allocated huge resources for computing infrastructures
deputed to environmental monitoring; hence, the development of novel strategies and
approaches which exploit the massive informative content provided by Earth observation
is not only useful but encouraged.
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