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Abstract: Deep learning-based label noise learning methods provide promising solutions for hyper-
spectral image (HSI) classification with noisy labels. Currently, label noise learning methods based
on deep learning improve their performance by modifying one aspect, such as designing a robust
loss function, revamping the network structure, or adding a noise adaptation layer. However, these
methods face difficulties in coping with relatively high noise situations. To address this issue, this
paper proposes a unified label noise learning framework with a dual-network structure. The goal
is to enhance the model’s robustness to label noise by utilizing two networks to guide each other.
Specifically, to avoid the degeneration of the dual-network training into self-training, the “disagree-
ment” strategy is incorporated with co-learning. Then, the “agreement” strategy is introduced into
the model to ensure that the model iterates in the right direction under high noise conditions. To
this end, an agreement and disagreement-based co-learning (ADCL) framework is proposed for HSI
classification with noisy labels. In addition, a joint loss function consisting of a supervision loss of
two networks and a relative loss between two networks is designed for the dual-network structure.
Extensive experiments are conducted on three public HSI datasets to demonstrate the robustness of
the proposed method to label noise. Specifically, our method obtains the highest overall accuracy of
98.62%, 90.89%, and 99.02% on the three datasets, respectively, which represents an improvement of
2.58%, 2.27%, and 0.86% compared to the second-best method. In future research, the authors suggest
using more networks as backbones to implement the ADCL framework.

Keywords: hyperspectral image; co-learning; label noise learning; classification

1. Introduction

With the development of spectral imaging technology, hyperspectral image (HSI)
has been widely used in various fields such as agricultural monitoring [1], food quality
inspection [2], urban ground object recognition and classification [3], post-disaster change
detection [4], and soil heavy metal detection [5]. The classification task is essential for
these hyperspectral remote sensing applications. In the past few years, traditional machine
learning methods such as support vector machine [6], random forests [7], extreme learning
machine [8], and sparse representation classifier [9] have played an important role in HSI
classification. Recently, deep learning has brought new prosperity to HSI classification with
its powerful representation learning ability [10,11]. In general, both traditional and deep
learning-based methods use a certain number of accurately labeled samples to train reliable
models. However, in real situations, the training sets that are available for training usually
contain mislabeled or wrong samples, which is called the label noise problem. Label noise
is not conducive to training effective models.
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Many attempts have been made to address the label noise problem in HSI classification.
Representative works of traditional methods include the following. Given that noisy
labels are usually located in low-density regions, Refs. [12–14] investigated a series of
density peak-based noisy label detection methods. To increase the detection accuracy of
noisy labels, Ref. [15] proposed a random label propagation algorithm (RLPA) to detect
label noise. The main idea of RLPA is to randomly divide the data and perform label
propagation several times, and then ensemble the outcomes of multiple label propagations
for noisy label detection. To overcome the shortcoming that RLPA is sensitive to superpixel
segmentation scale, a multi-scale superpixel segmentation method and a new similarity
graph construction approach were proposed [16]. In order to overcome the influence of
random noise and edge noise on label information, the spectral–spatial sparse graph was
introduced into RLPA to construct an adaptive label propagation algorithm [17]. Since
ensemble learning can enhance the robustness of the model, Ref. [18] proposed an adapted
random forest that can consider mislabeled training labels.

Compared to traditional label noise learning methods, deep learning-based label noise
learning methods have more advantages owing to the powerful discriminative feature
representation learning abilities of deep neural networks. Recently, researchers have in-
vestigated deep learning methods for HSI classification in the presence of label noise. For
instance, an entropic optimal transport loss was designed for end-to-end style deep neural
networks to improve their robustness to label noise [19]. In order to enhance the robustness
of the classification model, Ref. [20] investigated a novel dual-channel network structure
and a noise-robust loss function. Ref. [21] designed a superpixel-guided sample network
framework with end-to-end training style for handling label noise, comprising two stages:
sample selection and sample correction. Ref. [22] proposed a lightweight heterogeneous
kernel convolution (HetConv3D) to improve the robustness of the network to label noise.
HetConv3D used two different types of convolutional kernels. Ref. [23] employed both
labeled and unlabeled data to build a unified deep learning network, which was shown
to be robust to noisy labels. To handle label noise and limited samples simultaneously,
Ref. [24] presented a novel dual-level deep spatial manifold representation (SMR) network
for HSI classification, embedding SMR-based feature extraction and classifier blocks into
one framework. Ref. [25] investigated the robustness of several loss functions to convolu-
tional neural networks and proposed an HSI pixel-to-image sampling method to prevent
overfitting on label noise. To address the inaccurate supervision caused by label noise,
selective complementary learning was introduced into convolutional neural networks for
HSI classification with noisy labels [26].

The above methods have made positive contributions to HSI classification in the
presence of label noise. Traditional methods typically detect and remove mislabeled
samples before constructing classification models, while deep learning-based methods do
not require this step. Instead, deep learning-based methods consider the effect of label
noise on model construction and design robust loss functions or specific network structures
to improve the learning ability of label noise. However, current deep learning-based
methods for HSI classification with noisy labels still have limitations. For example, they
often focus on improving one aspect, such as designing a robust loss function, revamping
the network structure, or adding a noise adaptation layer, which may not be sufficient to
handle relatively high noise rates. This issue deserves further study.

To address the above issue, we propose a unified label noise learning framework that
can be adapted to various deep neural networks. Inspired by collaborative learning, we
design a disagreement-based co-learning (DCL) framework with a dual-network struc-
ture, in which the “disagreement” strategy is incorporated with co-learning. In DCL, the
two networks attempt to cross-propagate their own losses to the peer network through
the “disagreement” strategy, which can avoid the dual-network training degenerating into
self-training. However, the “disagreement” strategy can only select a subset of training
samples, which are not guaranteed to have real labels especially with high label noise.
Therefore, we introduce the idea of “agreement” in co-training into DCL and propose an
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agreement and disagreement-based co-learning (ADCL) framework for HSI classification
with noisy labels. Additionally, a joint loss function is designed for our dual-network
framework. The designed loss consists of a supervision loss of two networks and a relative
loss between two networks.

The remainder of this paper is organized as follows. Related work and contributions
are described in Section 2. The detailed description of ADCL is shown in Section 3. Experi-
mental results and analysis are reported in Section 4. Section 5 shows the discussion. The
conclusions of this work are shown in Section 6.

2. Related Work and Contributions
2.1. Label Noise Learning Based on Deep Learning

Deep learning-based label noise learning has been extensively studied in the fields
of machine learning and computer vision. Some surveys on this topic can be found
in [27–29]. Deep learning-based label noise learning approaches can be roughly divided
into five categories:

(1) Robust network architecture: Adding a noise adaptation layer [30] or designing
a specific architecture [31] to improve the reliability of estimating label transition
probabilities and to mimic the label transition behavior in deep network learning.
The goal of the specific architecture is to improve the reliability of estimating label
transition probabilities.

(2) Robust loss function: Developing a loss function that is robust to label noise [32,33].
Generally, robust loss functions attempt to achieve a small risk on the training set
with label noise. Current studies of robust loss function mainly rely on the basis of
mean absolute error loss and cross entropy loss.

(3) Robust regularization: Adding a regularization term into optimization objective
to alleviate the overfitting of deep learning on training samples with label noise.
Regularization techniques include explicit regularization (such as weight decay [34]
and dropout [35]) and implicit regularization (such as mini-batch stochastic gradient
descent [36] and data augmentation [37]).

(4) Loss adjustment: Adjusting the loss of all training samples to reduce the effects of label
noise. Unlike robust loss functions, loss adjustment adjusts update rules to minimize
the negative effects of label noise. Loss adjustment includes loss correction [38], loss
reweighting [39], and label refurbishment [40].

(5) Sample selection: Selecting true-labeled samples from the training set with noisy
labels. The aim of sample selection is to update deep neural networks for the selected
clean samples. Sample selection generally includes multi-network collaborative
learning [21,41], multi-round iterative learning [42], and the combination with other
learning paradigms [43].

2.2. Deep Neural Network-Based Label Noise Learning in Remote Sensing

In the remote sensing (RS) field, various deep neural network-based label noise
learning methods have been investigated, including:

(1) Specific network architecture [20,22–24,44–47]. For synthetic aperture radar images,
Ref. [44] designed a noise-tolerant network based on layer attention. The developed
layer attention module adaptively weights the features of different convolution layers.
To handle the noisy label data for building extraction, Ref. [46] proposed a general
deep neural network model that is adaptive to label noise, which consists of a base
network and an additional probability transition module. To suppress the impact
of label noise on the semantic segmentation of RS images, Ref. [47] constructed a
general network framework by combining an attention mechanism and a noise robust
loss function.

(2) Robust loss function [19,20,25,47–50]. Ref. [47] added two hyperparameters into the
symmetric cross-entropy loss function for label noise learning. Refs. [48,49] proposed
two novel loss functions for deep learning, the first being the robust normalized
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softmax loss used for the characterization of RS images based on deep metric learning,
and the second being the noise-tolerant deep neighborhood embedding, which accu-
rately encodes the semantic relationships among RS scenes. Ref. [50] constructed a
joint loss consisting of a cross-entropy loss with the updated label and a cross-entropy
loss with the original noisy label.

(3) Label correction [45,50–54]. For road extraction from RS images, Ref. [45] introduced
label probability sequence into sequence deep learning framework for correcting error
labels. Ref. [50] utilized the information entropy to measure the uncertainty of the
prediction, which served as a basis for label correction. Ref. [51] adopted unsupervised
clustering to recognize the sample’s label, and the network trained on augmented
samples with clean labels was used to correct noisy labels further. Similarly, for object
detection in aerial images, Ref. [52] designed a new noise filter named probability
differential to recognize and correct mislabeled labels. Ref. [53] used the initial pixel-
level labels to train an under-trained initial network that was treated as starting
training for network updating and initial label correction. In addition, Ref. [54]
proposed a novel adaptive multi-feature collaborative representation classifier to
correct the labels of uncertain samples.

(4) Hybrid approach [21,23,26,51,55–58]. Both [51] and [55] introduced unsupervised
method into label noise leaning. In [55], an unsupervised method was combined with
domain adaptation for HSI classification. In addition, complementary learning was
combined with deep learning for HSI classification [26] and RS scene classification [56].
Recently, Ref. [57] incorporated knowledge distillation with label noise learning
to improve building extraction. To obtain datasets containing less noise, Ref. [58]
introduced semisupervised learning into the objective learning framework to produce
a low-noise dataset.

2.3. Co-Training in Remote Sensing

Co-training, originally proposed by Blum and Mitchell [59], uses two sufficiently
redundant and conditionally independent views to improve the generalization performance
of the model. In the past few years, researchers have studied the theory of co-training
and developed various variations of co-training. Recently, some studies incorporated
co-training with deep learning for label noise learning [60–63].

In the study of the remote sensing field, the idea of co-training has been introduced
into several tasks such as land cover mapping, image segmentation, image classification
and recognition, and so on [64–69]. For example, Ref. [64] proposed an improved co-
training method for semisupervised HSI classification, which used spectral features and
two-dimensional Gabor features as two different views to train collaboratively. Similarly,
Ref. [65] implemented a co-training paradigm with the P-N learning method, in which the
P-expert assumes that adjacent pixels in space have the same class label, while the N-expert
believes that the pixels with similar spectra have the same class label. Then, co-training was
combined with a deep stacked autoencoder for semisupervised HSI classification [66]. In
the application of RS, Ref. [67] proposed conditional co-training method and applied it to
RS image segmentation in coastal areas. Refs. [68,69] proposed novel co-training methods
for land cover mapping and crop mapping, respectively.

2.4. Contributions

Compared to previous work, we improve the label noise robustness of the model by
addressing both network structure and loss function. Specifically, we construct a unified
dual-network structure that leverages the mutual information between the two networks
to guide each other. In addition, we design a more robust loss function for the specific
network structure. The main contributions of our work are as follows:

(1) A new framework incorporating “disagreement” strategy into co-learning, named
DCL, is proposed for HSI classification with noisy labels.
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(2) A stronger framework that introduces an “agreement” strategy into DCL, termed
ADCL, is designed.

(3) A joint loss function is proposed for the dual-network structure.
(4) Extensive experiments on public HSI data sets demonstrate the effectiveness of the

proposed method.

3. Proposed ADCL Method

The loss function is an essential component of deep neural networks, and a noise
robust loss function can significantly improve their performance. In the proposed ADCL
framework, two networks with the same structure are used, and a joint loss function is
designed to make the framework more robust. The loss function takes into account the
supervision information and the mutual guidance information between the two networks.

The main idea of ADCL is to have the two networks guide each other in learning. To
achieve this goal, in the training process of ADCL, two networks predict all samples, and
the samples with inconsistent predictions constitute the disagreement data. At the end of
forward propagation, each deep network selects data with small loss from disagreement
data to minimize the loss of the network. In the back propagation process, each network
uses the data with small loss from the peer network to update the weight parameters.
To make the model more powerful, in addition to selecting its own small loss data from
disagreement data, each network also adds the data with the same classification on two net-
works into the peer network for back propagation. This design makes full use of the mutual
information between the two networks, enhancing the noise tolerance of the model.

Taking CNN as the backbone for our ADCL, Figure 1 shows the overall framework
of ADCL. Firstly, the training data with noisy labels is fed into two CNNs: A and B.
Secondly, after training one mini-batch, disagreement and consistent data predictions will
be generated by the two networks. Thirdly, the two networks select their own small loss
data according to the designed loss. Fourthly, each network uses the small loss data from
the peer network and consistent data from two networks to update its own convolution
kernels. Finally, after multiple epochs of training and updating, the two trained networks
are combined to generate the classification map.
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Figure 1. The framework of ADCL. The data set with noisy labels is fed into two convolutional neural
networks A and B firstly. Then, each network uses the small loss data from the peer network and
consistent data from two networks to update its own parameters. At last, the trained networks A and
B are fused to classify the data.

In the next subsections, we will introduce the designed joint loss, then detail the
proposed ADCL framework, and finally show the formula analysis of the proposed method.

3.1. Joint Loss

In the case of the dual network, the most straightforward way to construct a loss
function is to apply independent regularization when training each individual network.
Although regularization can improve generalization performance by promoting consistency
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between two networks, it can still be influenced by the memory effect of label noise [35].
Therefore, we adopt a joint loss function based on regularization techniques in this work.

Let T = {xi, yi}N
i=1 be the training set with N samples, where xi represents the ith

sample, and its corresponding observation label is yi ∈ {1, . . . , C}. The joint loss function
is designed as

l(xi) = βlS(xi, yi) + (1− β)lR(xi), (1)

where lS represents the supervision loss under two networks, lR represents the relative loss,
and parameter β is utilized to balance the supervision loss and relative loss.

The symmetric cross-entropy (SCE) adds reverse cross-entropy (RCE) to cross-entropy
(CE), so as to have a certain robustness to label noise [70]. This paper adopts SCE to
construct supervision loss lS. Before introducing SCE, the relationship between CE and
Kullback–Leibler (KL) divergence is analyzed first, and then, the definition of SCE is
introduced. Based on SCE, the supervision loss lS is constructed.

For each sample xi, the class predictive distribution predicted by a classifier is denoted
as p(c|xi) , and q(c|xi) is used to represent the ground-truth distribution of the sample xi
on the observation label. The CE loss is defined as

lce = −∑C
c=1 q(c|xi) log p(c|xi) = H(q, p), (2)

when c = yi, q(c|xi) = 1; otherwise, q(c|xi) = 0. The relationship between cross-entropy
H(q, p) and KL divergence can be written as

KL(q||p) = H(q, p)− H(q), (3)

generally, H(q) is a constant for a given ground-truth distribution, so it can be omitted
from Formula (3) to obtain Formula (2). From the perspective of KL divergence, the essence
of classification is to learn a prediction distribution p(c|xi) that is close to the ground-truth
distribution q(c|xi), which minimizes the KL divergence between the two distributions.
In the case of label noise, q(c|xi) as the ground-truth distribution, it does not represent
a real class probability distribution. On the contrary, p(c|xi) to a certain extent reflects
the true distribution. Therefore, in addition to q(c|xi) as a ground truth, we also need to
consider the KL divergence in the other direction, namely KL(p||q) . Thus, the symmetric
KL divergence is written as

SKL = KL(q||p) + KL(p||q). (4)

According to the relationship between KL divergence and CE, the SCE and its corre-
sponding loss can be written as follows:

SCE = CE + RCE = H(q, p) + H(p, q). (5)

lsce(xi) = −∑C
c=1 q(c|xi) log p(c|xi)−∑C

c=1 p(c|xi) log q(c|xi). (6)

For the two networks A and B, the supervision loss lS constructed with SCE loss is
defined as

lS(xi) = lA
sce(xi) + lB

sce(xi). (7)

Generally speaking, the two networks can filter out the errors caused by noisy labels
due to their different learning abilities, enabling the model to iterate forward stably. As
can be seen from Formula (7), the supervision loss lS comes from the loss combinations
under two networks, and each individual network uses SCE loss with good noise resistance,
which enables lS to optimize the model in the right direction.

In addition to the supervision loss lS on the two networks allowing the model to be
more stable, the relative loss lR between the two networks is also useful in identifying noisy
labels. According to the principle of consistency maximization, different models will make
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an agreement on the correct labels for most samples, while it is unlikely to agree on the
wrong labels. Suppose the predictive distributions of sample xi on two networks A and
B are pA and pB, respectively; we use R-Drop [71] to regularize the model predictions by
minimizing the bidirectional KL divergence between these two predictive distributions for
the sample xi. The R-Drop-based relative loss is defined as

lR(xi) =
1
2
[DKL(pA ‖ pB) + DKL(pB ‖ pA)], (8)

where DKL(pA ‖ pB) = ∑C
c=1 pc

A(xi) log pc
A(xi)

pc
B(xi)

, DKL(pB ‖ pA) = ∑C
c=1 pc

B(xi) log pc
B(xi)

pc
A(xi)

. It
can be seen from Formula (8) that the relative loss between the two networks is paired, and
the relative loss is only related to the predictive distributions. The relative loss reflects the
degree of consistency discrimination of two networks for the same sample.

Through the above analysis, the supervision loss and relative loss are obtained by
Formulas (7) and (8), respectively. To this end, the joint loss induced by Formula (1) can be
written as

l(xi) = β
[
lA
sce(xi) + lB

sce(xi)
]
+

(1− β)

2
[DKL(pA ‖ pB) + DKL(pB ‖ pA)]. (9)

3.2. Agreement and Disagreement-Based Co-Learning Framework

Different learners utilize their own unique structures to learn decision boundaries and
thus enjoy distinct learning abilities. Therefore, they are desired to exhibit distinct abilities
to filter label noise when learning data with noisy labels. In this work, we propose an HSI
classification method based on co-learning with a dual network, so that two networks can
exchange and select samples with small losses, that is, update network A (corresponding to
B) with mini-batch data selected from B (corresponding to A). If the selected sample is not
completely “clean”, the two networks adapt to correct the peer-to-peer training errors. This
is similar to cross-validation; since errors from one network are not propagated directly
back to itself, it can be expected that the method based on co-learning with a dual network
can handle higher noise.

As the number of iterations increases, the two networks reach an agreement, and
the co-learning function decays into two self-training networks. To make the learning
more robust, we incorporate “disagreement” strategy into the co-learning and put forward
a more robust learning paradigm, namely, disagreement-based co-learning (DCL). The
training process of DCL includes two update steps: data update and parameter update.
First, in the data update stage, the two deep networks predict all samples in mini-batch
and retain the data with inconsistent prediction results of the two deep networks, which
maintains the divergence of two deep networks trained by the DCL. Then, in the parameter
update stage, each deep network chooses data with small loss from the disagreement data
to minimize the loss of the deep network and utilize the data with small loss from the
peer network to update its own weight parameters. However, the “disagreement” strategy
cannot guarantee real supervision information. Therefore, we leverage the “agreement”
strategy in co-training to improve the DCL and propose an agreement and disagreement-
based co-learning (ADCL) framework for HSI classification. During the parameter update
of ADCL, each network selects its own small loss data from the disagreement data and
adds the data with the same classification results of the two networks into the peer network
for back propagation.

Figure 2 shows detailed procedure of forward propagation and back propagation.
For the t-th mini-batch, the two networks A and B predict the mini-batch according to
the parameters wA and wB, respectively. The disagreement data D(t) are determined by
Formula (10), i.e., the samples with inconsistent predictions from the two networks.

D(t) =
{
((xi, yi)) : yA

i 6= yB
i

}
, (10)
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In the end of forward propagation, D(t)
A and D(t)

B are determined by Formula (11) so
that the losses of network A and B are minimized.D(t)

A = argminDA:|DA|≥λ(e)|D(t) |l(DA, wA)

D(t)
B = argminDB:|DB|≥λ(e)|D(t) |l(DB, wB)

, (11)

where λ(e) is used to control how much small loss data should be chosen in every epoch(e).
Because of the memory effect, the deep network will first match data without noise and then
gradually fit data with label noise. Formula (12) relates the noise rate r and the parameter
λ(e), which controls the amount of small loss data to be chosen in each epoch.

λ(e) = 1−
(

1 +
e− Ek

Emax − Ek

)
r, (12)

where Ek and Emax represent a constant and the biggest epoch value, respectively. As can be
seen from Formula (12), λ(e) is large at the beginning of the training phase, which would
maintain more data with small loss. As the epoch increase, less data with small loss are
retained in each mini-batch. The gradual decrease in λ(e) alleviates the overfitting on noisy
data of deep networks to a great extent.wA = wA − η∇l

(
D(t)

B + C(t), wA

)
wB = wB − η∇l

(
D(t)

A + C(t), wB

) , (13)

In back propagation, we use Formula (13) to update the network weight parameters,
which can ensure that there are real distributions playing a role in the training under the
condition of high noise rate. It can be seen that when updating the weight parameters of
networks A and B, not only the disagreement data are used, but also the consistent data
are added to calculate the loss. The consistent data C(t) in Formula (13) can be obtained
by Formula (14).

C(t) =
{
((xi, yi)) : yA

i = yi, yB
i = yi

}
. (14)

3.3. Formula Analysis

In this subsection, we use formulas to analyze the main procedure of the proposed
method. We use the 2D convolutional neural network as the backbone to describe the method.
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The symbols A and B represent two convolutional neural networks with initial convo-
lutional kernels wA and wB, l represents the l-th layer, and δ means the gradient. Suppose
that the data are divided into m mini-batch. For the i-th mini-batch data D, the training
process can be described as follows:

Forward Propagation:
1. Assign the input data x to the input neurons a1

A and a1
B, a1

A = x, a1
B = x.

2. For the second layer to the L− 1 layer, perform forward propagation calculations
according to the following three cases:

2.1. If the current layer is a convolutional layer, then we have al
A = σ

(
zl

A

)
= σ

(
wA ∗ al−1

A + bl
A

)
, al

B = σ
(

zl
B

)
= σ

(
wB ∗ al−1

B + bl
B

)
.

2.2. If the current layer is a pooling layer, then we have al
A = pooling

(
al−1

A

)
,

al
B = pooling

(
al−1

B

)
.

2.3. If the current layer is a fully connected layer, then we have al
A = σ

(
zl

A

)
= σ

(
wAal−1

A + bl
A

)
, al

B = σ
(

zl
B

)
= σ

(
wBal−1

B + bl
B

)
.

3. Output layer: aL
A = so f tmax

(
zL

A
)
= so f tmax

(
wAaL−1

A + bL
A

)
, aL

B = so f tmax
(
zL

B
)

= so f tmax
(

wBaL−1
B + bL

B

)
.

4. Obtain the small loss data DA and DB through Formula (11). Obtain the consistent
data C by Formula (14).

Back Propagation:
1. Compute the gradient of output layer δL

A(DB + C) and δL
B(DA + C).

2. For the L− 1 layer to the second layer, perform backward propagation according to
the following three cases:

2.1. If the current layer is a fully connected layer, then we have δl
A =(

wl+1
A

)T
δl+1

A (DB + C)⊕σ′
(

zl
A(DB + C)

)
, δl

B =
(

wl+1
B

)T
δl+1

B (DA + C)�σ′
(

zl
B(DA + C)

)
.

2.2. If the previous layer is a pooling layer, then we have δl
A =

upsampling
(

δl+1
A (DB + C)

)
, δl

B = upsampling
(

δl+1
B (DA + C)

)
.

2.3. If previous layer is a convolutional layer, then we have δl
A = δl+1

A ∗ rot180
(

wl+1
A

)
�

σ′
(

zl
A(DB + C)

)
, δl

B = δl+1
B ∗ rot180

(
wl+1

B

)
� σ′

(
zl

B(DA + C)
)

.
3. Then, we can update the model parameters:

3.1. If the current layer is a fully connected layer, we have wl
A = wl

A−
η
m ∑ δl

A

(
al−1

DB+C

)T
,

wl
B = wl

B −
η
m ∑ δl

B

(
al−1

DA+C

)T
.

3.2. If the current layer is the convolutional layer, we have wl
A = wl

A −
η
m

[
∑ δl

B ∗ rot90
(

al−1
DB+C, 2

)]
, wl

A = wl
A −

η
m

[
∑ δl

A ∗ rot90
(

al−1
DA+C, 2

)]
.

The above description is the main steps of the proposed method. It can be seen that
the dual-network structure uses the information of the peer network to guide each other in
the training process, and the network structure is easy to implement.

4. Experimental Results and Analysis
4.1. HSI Data Sets

To demonstrate the effectiveness of our proposed method, we conducted experiments
on three publicly available HSI data sets. The detailed descriptions of the three data sets
are provided below:

(1) Salinas Valley (SV) [72]: The SV data set was collected by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor over the agricultural area described as Salinas
Valley in California, USA, in 1998. The data set contains 512× 217 pixels characterized
by 224 spectral bands. A total of 204 bands were used for experiments after removing
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20 redundant ones. The spatial resolution of SV is 3.7 m per pixel, and the land cover
contains 16 classes. The three-band pseudocolor image of the SV and its corresponding
reference map are illustrated in Figure 3.
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(2) Houston (HOU) [73]: The HOU data set was obtained by the ITRES CASI-1500 sensor
and provided by the 2013 IEEE GRSS Data Fusion Competition. The data set contains
349 × 1905 pixels characterized by 144 spectral bands ranging from 364 to 1046 nm.
The spatial resolution of HOU is 2.5 m per pixel, and the land cover includes 15 classes.
The three-band pseudocolor image of the HOU and its corresponding reference map
are shown in Figure 4.
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Figure 4. Pseudocolor image and reference map of the HOU. (a) Three-band pseudocolor image.
The image is generated by using bands 70, 50 and 20 as the R, G, and B channels, respectively.
(b) Reference map. The number represents the class number, where 0 represents the background.

(3) Kennedy Space Center (KSC) [72]: The KSC data set was acquired by the AVIRIS
sensor over the KSC, Florida, on 23 March 1996. The data set contains 512 × 614 pixels
characterized by 224 spectral bands. A total of 176 bands were retained for our
experiment after removing water absorption bands and low signal-to-noise ratio
bands. The spatial resolution of KSC is 3.7 m per pixel, and the land cover includes
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13 classes. The three-band pseudocolor image of the KSC and its corresponding
reference map are illustrated in Figure 5.
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For each data set, we randomly selected 10% of the samples as the training set, and
the remaining 90% of the samples were treated as the testing set. Detailed descriptions of
the three HIS data sets are given in Tables 1–3.

Table 1. The class information and data partition of SV data set.

Class No. Class Name Train Test Total

1 Brocoli_green_weeds_1 201 1808 2009
2 Brocoli_green_weeds_2 373 3353 3726
3 Fallow 198 1778 1976
4 Fallow_rough_plow 139 1255 1394
5 Fallow_smooth 268 2410 2678
6 Stubble 396 3563 3959
7 Celery 358 3221 3579
8 Grapes_untrained 1127 10144 11271
9 Soil_vinyard_develop 620 5583 6203
10 Corn_senesced_green_weeds 328 2950 3278
11 Lettuce_romaine_4wk 107 961 1068
12 Lettuce_romaine_5wk 193 1734 1927
13 Lettuce_romaine_6wk 92 824 916
14 Lettuce_romaine_7wk 107 963 1070
15 Vinyard_untrained 727 6541 7268
16 Vinyard_vertical_trellis 181 1626 1807

Table 2. The class information and data partition of HOU data set.

Class No. Class Name Train Test Total

1 Healthy grass 125 1126 1251
2 Stressed grass 125 1129 1254
3 Stressed grass 70 627 697
4 Trees 124 1120 1244
5 Soil 124 1118 1242
6 Water 33 292 325
7 Residential 127 1141 1268
8 Commercial 124 1120 1244
9 Road 125 1127 1252
10 Highway 123 1104 1227
11 Railway 124 1111 1235
12 Parking Lot 1 123 1110 1233
13 Parking Lot 2 47 422 469
14 Tennis Court 43 385 428
15 Running Track 66 594 660
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Table 3. The class information and data partition of KSC data set.

Class No. Class Name Train Test Total

1 Scrub 76 685 761
2 Willow swamp 24 219 243

3 Cabbage palm
hammock 26 230 256

4
Cabbage

palm/oak
hammock

25 227 252

5 Slash pine 16 145 161
6 Oak/broadleafhammock 23 206 229

7 Hardwood
swamp 11 94 105

8 Graminoid
marsh 43 388 431

9 Spartina marsh 52 468 520
10 Cattail marsh 40 364 404
11 Salt marsh 42 377 419
12 Mud flats 50 453 503
13 Water 93 834 927

4.2. Experiment Settings

In our experiments, we used a 2D CNN as the backbone to implement our ADCL.
For simplicity, we denoted the 2D CNN-based ADCL as 2D-ADCL. In 2D-ADCL, the
Adam optimizer was adopted to dominate the training process. We set the learning rate to
0.001 with 150 epochs. We implemented 2D-ADCL in PyTorch 1.8.1, and a single NVIDIA
RTX 3070 GPU with CUDA 11.1 was used to boost the training process.

To generate training sets with different label noise levels, we randomly selected a
portion of samples from the training set and uniformly assigned any other class labels to
them. We set different noise ratios r to obtain training sets with different levels of label noise.
We used several metrics, including overall accuracy (OA), average accuracy (AA), and
Kappa coefficient (k), to evaluate the classification performance of the proposed method.
Detailed calculations of these metrics are given below.

The overall accuracy can be calculated by Formula (15).

OA =
∑C

i=1 Mi

M
, (15)

where C represents the number of class, and Mi represents the number of correctly classified
samples in the i-th class.

The calculation of average accuracy is shown in Formula (16).

AA =
∑C

i=1 UAi

C
, (16)

where UAi = Mii/ ∑C
j=1 Mij is the ratio of the number of correctly classified samples in the

i-th class to the total number of samples in the i-th class, and Mij represents the number of
samples of the i-th class that are classified as the j-th class.

The kappa coefficient can be obtained by Formula (17).

Kappa =
N ∑C

i=1 Mii −∑C
i=1

(
∑C

j=1 Mij ∑C
j=1 Mji

)
N2 −∑C

i=1

(
∑C

j=1 Mij ∑C
j=1 Mji

) , (17)
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4.3. Evaluation of the Joint Loss Function

To evaluate the performance of the designed joint loss function, we set the noise ratio
r to 0.3 for the experiments, i.e., 30% of training samples were randomly assigned with
wrong labels. The proposed joint loss function has a parameter β that is used to balance the
supervision loss and relative loss in the joint loss. We conducted experiments with different
values of β varying from 0.05 to 0.95 with a step of 0.05. The OA curves of 2D-ADCL on the
three HSI data sets were illustrated in Figure 6. As can be seen from Figure 6, a relatively
small β can obtain better performance than a large β, which means that the relative loss
should obtain more attention.
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Figure 6. Classification accuracies (%) of 2D-ADCL on three data sets under different values of β,
where β ranges from 0.05 to 0.95 with step size of 0.05.

The designed loss is related to CE loss, SCE loss, and R-Drop loss. We compared the
proposed joint loss with CE loss, SCE loss and R-Drop loss on three HSI data sets, where
β was set to 0.15 for the proposed joint loss. The classification accuracies of 2D-ADCL
with different loss functions on the three data sets are shown in Table 4. The results in
Table 4 demonstrate that the proposed joint loss obtains the best performance, R-Drop loss
achieves suboptimal performance, and the other two loss functions perform less well.

Table 4. Classification accuracy of different loss functions on three data sets. The comparison loss
functions include CE, SCE, and R-Drop. The Oas, Aas, and kappas of different methods are reported.

Data Sets SV HOU KSC

Loss CE SCE R-Drop Proposed CE SCE R-Drop Proposed CE SCE R-Drop Proposed

OA 93.21 95.26 95.38 98.62 84.75 86.35 87.11 90.89 95.58 97.28 97.45 99.02
AA 92.35 95.14 95.78 98.73 84.54 85.92 86.87 90.94 95.43 96.87 97.14 98.50

k × 100 91.95 95.08 95.46 98.47 84.39 86.11 86.94 90.11 95.17 97.05 97.23 98.91

4.4. Comparison with State-of-the-Art Methods

We compared 2D-ADCL with state-of-the-art methods to demonstrate its performance.
The comparison methods include RLPA [15], DPNLD [12], SALP [17], DCRN [20], and
S3Net [21]. The detailed settings for the above methods were consistent with their cor-
responding references. It should be noted that the SVM classifier was used as the base
classifier for RLPA, DPNLD, and SALP, while 2D-CNN was adopted as the backbone
network for S3Net. The noise rate r was set to 0.3. We repeated each algorithm ten times
to obtain the average results. Tables 5–7 show the OAs, Aas, kappa coefficients, and
class-specific accuracies of the comparison methods on the SV, HOU, and KSC data sets,
respectively. The best classification accuracies of different methods are highlighted in bold.
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The classification result maps of different methods on the SV, HOU, and KSC data sets are
illustrated in Figures 7–9, respectively.

Table 5. Classification accuracy (in %) including class-specific accuracy, OA, AA, and kappa on SV
data set. Classification accuracy obtained by RLPA, DPNLD, SALP, DCRN, S3Net, and 2D-ADCL
with 30% noisy labels in the training set.

Class RLPA [15] DPNLD [12] SALP [17] DCRN [20] S3Net [21] 2D-ADCL

1 97.75 98.48 99.83 99.70 99.50 99.99
2 99.14 99.75 99.80 99.78 99.35 99.86
3 96.56 97.07 99.55 92.73 98.31 99.78
4 89.88 99.69 99.53 99.64 99.64 98.86
5 94.28 96.84 96.61 88.23 96.73 97.18
6 97.47 98.74 97.83 98.94 94.54 97.19
7 98.11 99.20 99.44 99.78 99.80 99.80
8 72.88 79.39 78.50 88.45 94.06 98.20
9 97.35 99.02 98.79 95.32 94.28 99.43

10 78.91 87.22 92.60 96.33 93.28 97.19
11 90.94 91.84 96.81 96.03 95.35 98.34
12 97.43 99.62 99.02 94.62 91.53 99.89
13 97.32 97.43 98.33 97.46 98.88 98.52
14 93.17 94.95 94.17 93.30 96.11 97.36
15 74.99 69.92 77.71 91.76 96.69 98.03
16 94.15 98.30 98.59 99.98 99.39 100

OA 87.77 90.01 91.16 94.31 96.04 98.62
AA 91.90 94.22 94.58 95.76 96.72 98.73

k × 100 86.41 88.87 90.17 93.68 95.59 98.47

Table 6. Classification accuracy (in %) including class-specific accuracy, OA, AA, and kappa on HOU
data set. Classification accuracy obtained by RLPA, DPNLD, SALP, DCRN, S3Net, and 2D-ADCL
with 30% noisy labels in the training set.

Class RLPA [15] DPNLD [12] SALP [17] DCRN [20] S3Net [21] 2D-ADCL

1 90.21 93.47 90.66 95.09 95.16 98.05
2 96.99 98.53 91.78 98.54 97.68 98.83
3 92.67 88.42 97.77 98.02 97.24 97.69
4 91.72 92.46 91.80 96.27 96.85 97.16
5 93.76 95.80 95.40 96.53 98.09 98.12
6 83.65 94.44 92.47 95.29 91.59 98.59
7 82.92 76.63 80.75 84.47 85.50 92.22
8 68.36 63.92 68.68 78.68 82.20 86.47
9 73.19 79.95 77.81 77.19 84.87 83.25

10 71.76 78.33 74.35 87.71 85.29 89.84
11 68.79 58.30 70.19 78.18 84.74 81.70
12 27.79 45.45 58.08 71.90 81.59 79.11
13 25.88 23.16 38.30 44.73 36.57 66.27
14 92.05 96.10 89.37 97.62 98.13 98.35
15 82.76 95.16 97.60 96.85 95.55 98.32

OA 76.63 78.69 80.86 86.67 88.62 90.89
AA 76.17 78.68 81.00 86.47 87.40 90.94

k × 100 74.74 76.95 79.30 85.56 87.69 90.11

Several results can be observed from Tables 5–7 and Figures 7–9. Firstly, 2D-ADCL
achieves higher class-specific accuracy than other methods in most cases. Specifically,
2D-ADCL attains 13, 11, and 10 best class-specific accuracies on SV, BOT, and KSC data
sets, respectively. Secondly, 2D-ADCL achieves the best OAs, AAs, and kappa coefficients
on all data sets. The average OA of 2D-ADCL is more than two percentage points higher
than the second-place and more than 10 percentage points higher than the last place.
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Thirdly, the accuracies of deep learning-based methods (DCRN, S3Net, and 2D-ADCL)
are significantly higher than those of traditional methods (RLPA, DPNLD, and SALP).
Fourthly, the classification maps of different methods on the three data sets demonstrate
that 2D-ADCL achieves satisfactory classification results.

Table 7. Classification accuracy (%) including class-specific accuracy, OA, AA, and kappa on KSC
data set. Classification accuracy obtained by RLPA, DPNLD, SALP, DCRN, S3Net, and 2D-ADCL
with 30% noisy labels in the training set.

Class RLPA [15] DPNLD [12] SALP [17] DCRN [20] S3Net [21] 2D-ADCL

1 97.50 96.98 97.90 98.82 99.47 99.21
2 84.77 91.77 93.42 95.47 97.94 97.94
3 90.33 90.23 94.14 96.88 97.66 100
4 70.24 76.98 87.30 88.10 94.44 97.62
5 59.63 65.22 77.02 86.90 91.30 93.79
6 51.97 64.63 80.35 95.24 88.65 94.76
7 92.38 74.29 95.24 99.07 100 100
8 84.69 90.22 95.13 98.85 98.61 98.84
9 91.92 93.46 97.50 99.01 99.04 99.81

10 86.14 95.43 96.78 98.97 97.77 99.01
11 97.18 98.57 99.28 99.05 99.69 99.76
12 90.66 93.84 96.82 98.41 99.81 99.80
13 99.75 99.76 99.89 99.89 100 100

OA 89.20 91.86 95.53 97.35 98.16 99.02
AA 84.40 87.01 93.14 95.73 97.19 98.50

k × 100 87.95 90.93 95.02 97.05 97.95 98.91
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Figure 7. Classification maps for the SV image with 30% noisy labels in the training set. (a) RLPA:
OA = 87.75%. (b) DPNLD: OA = 90.03. (c) SALP: OA = 91.15%. (d) DCRN: OA = 94.33%. (e) S3Net:
OA = 96.04%. (f) 2D-ADCL: 98.63%.
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Figure 7. Classification maps for the SV image with 30% noisy labels in the training set. (a) RLPA: 
OA= 87.75%. (b) DPNLD: OA = 90.03. (c) SALP: OA = 91.15%. (d) DCRN: OA = 94.33%. (e) S3Net: 
OA = 96.04%. (f) 2D-ADCL: 98.63%. 
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Figure 8. Classification maps for the HOU image with 30% noisy labels in the training set. (a) RLPA:
OA = 76.65%. (b) DPNLD: OA = 78.68%. (c) SALP: OA = 80.86%. (d) DCRN: OA = 86.66%. (e) S3Net:
OA = 88.63%. (f) 2D-ADCL: OA = 90.88%.
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Figure 9. Classification maps for the KSC image with 30% noisy labels in the training set. (a) RLPA:
OA = 89.22%. (b) DPNLD: OA = 91.86%. (c) SALP: OA = 95.55%. (d) DCRN: OA = 97.36%. (e) S3Net:
OA = 98.16%. (f) 2D-ADCL: OA = 99.02%.

4.5. Performance Evaluation under Different Noise Rates

In order to study the effect of noise rate on classification performance, we set different
noise rates for experiments, in which the noise rate ranged from 0.1 to 0.7 with a step of
0.05. First, when the noise rate was equal to 0.1, the training set contained only 10% of
noisy samples. Then, the number of noisy samples in the training set increased gradually
with the increase in noise rate. Finally, when the noise rate was equal to 0.7, the number
of noisy samples in the training set reached 70%. We ran all methods ten times to obtain
average results. The OA curves of different methods on SV, HOU, and KSC data sets are
plotted in Figure 10.
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Figure 10. The influence of noise rate (r) on the classification accuracy. The horizontal axis represents
the noise rate ranging from 0.1 to 0.7, and the vertical axis represents the OA changes of RLPA,
DPNLD, SALP, DCRN, S3Net, and 2D-ADCL. (a) SV. (b) HOU. (c) KSC.
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As seen from Figure 10, for each data set, the classification result of 2D-ADCL is
consistently better than that of the other methods in terms of OA. The average OA of all
comparison methods decreases with the increase in noise rate. It can be seen that the deep
learning-based methods (DCRN, S3Net, and 2D-ADCL) show a lower attenuation speed on
OA than the traditional methods (RLPA, DPNLD, and SALP). When the noise rate increases
from 0.1 to 0.7, the OA attenuation values of 2D-ADCL on SV, HOU, and KSC data sets are
approximately within 5%, 8% and 4%, respectively. This indicates that ADCL is robust to
high noise rates.

4.6. Computational Cost

Computational cost is also an important metric to evaluate classification algorithms.
We set the noise rate to 0.5 to compare the running times of different methods, including
training time and test time. Table 8 displays the running times of different methods on SV,
HOU, and KSC data sets.

Table 8. Running times (s) on three data sets. Running time for RLPA, DPNLD, SALP, DCRN, S3Net,
and 2D-ADCL, where the running time consists of training time and testing time.

Time (s) SV HOU KSC

RLPA [15] 85.8 55.3 19.5
DPNLD [12] 65.5 41.3 26.5

SALP [17] 113.6 46.5 28.5
DCRN [20] 148.8 91.4 45.3
S3Net [21] 161.7 116.8 48.7
2D-ADCL 178.1 130.4 55.4

The results from Table 8 show that the running times for comparison methods range
from tens of seconds to hundreds of seconds, and none of them require too much running
time. Another finding is that the running times of deep learning-based methods are longer
than those of traditional methods, since deep learning methods need more time for training
models. For the three deep learning methods (DCRN, S3Net, 2D-ADCL), the running time
of 2D-ADCL is slightly longer than that of the other two methods, which is still within the
acceptable range.

4.7. Further Analysis

In order to investigate the role of the “agreement” strategy in ADCL, we took ADCL
and DCL for comparison, where DCL only adopted the data with a small loss from the
peer network to update the weight parameters. The other settings for DCL are the same
as ADCL. Table 9 shows the classification results of the two methods when the noise rate
was 0.5.

Table 9. Classification results in terms of OA, AA, and kappa on three data sets. Classification
accuracy obtained by 2D-DCL and 2D-ADCL with 50% noisy labels in the training set.

Data Sets SV HOU KSC

Method 2D-DCL 2D-ADCL 2D-DCL 2D-ADCL 2D-DCL 2D-ADCL

OA 95.64 97.20 86.15 88.51 96.25 97.82
AA 95.82 97.34 86.44 88.43 95.74 97.14

k × 100 95.23 97.11 86.29 88.31 95.82 97.25

As seen from the results in Table 9, the average OAs, AAs, and kappa coefficients
of 2D-ADCL on the three data sets are higher than those of 2D-DCL, indicating that the
“agreement” strategy plays an important role in learning from label noise.
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5. Discussion

Previous experiments revealed some important findings that require further discussion.
As demonstrated in Section 4.3, compared with related loss functions, the proposed

joint loss function has better performance because it makes full use of both networks’ own
supervision information and mutual information between the two networks. Additionally,
the experimental results illustrate that the relative loss in the joint loss plays a more
important role, because the supervision information from the peer network is more effective
than its own supervision information in the presence of label noise.

As shown in Sections 4.4 and 4.5, compared with state-of-the-art methods, 2D-ADCL
obtains better classification performance in terms of OA, AA, and kappa coefficient. In
addition, 2D-ADCL has better robustness to high noise rate. This can be attributed to several
factors, including the unified framework with a dual network that leverages the mutual
guidance abilities of the two networks, the “disagreement” and “agreement” strategies that
enhance the model’s discrimination ability, and the designed loss function that improves
the model’s robustness to label noise.

The experimental results from Section 4.6 indicate that the running time of 2D-ADCL
is acceptable. The main reason for this result is that the proposed framework is simple, and
it does not have complicated network structures. The results in Section 4.7 suggest that the
“agreement” strategy is crucial in label noise learning, particularly in the presence of a high
noise ratio, as the agreement data playa a significant role.

6. Conclusions

In this paper, we proposed an ADCL framework for HSI classification with noisy
labels. The proposed ADCL adopted a unified framework with a dual-network structure
for label noise learning. The experimental results demonstrated the effectiveness of the
proposed method. Previous results and analysis can be summarized in the following
four conclusions:

• The proposed framework, based on a dual-network structure, proved to be robust to
label noise, and it can achieve good classification performance even in the case of a
high noise rate.

• The designed joint loss function, composed of the supervision loss and relative loss,
demonstrated good robustness to label noise. This is because when there is label noise,
the self-supervised information of each network may not be completely accurate,
but the mutual supervised information from both networks will help to correct and
improve the accuracy of the predictions.

• In terms of time efficiency, the proposed method is acceptable because we do not use a
complex network except for a dual-network structure.

• The “agreement” strategy plays an important role in improving the classification
accuracy, as it helps mitigate the problem of difficult convergence of neural networks
when there is a high ratio of label noise.

The limitation of this work is that ADCL requires estimating the noise rate to deter-
mine the small loss data, which may not be feasible in some scenarios. Future research
could explore small loss data selection methods that are independent of the noise rate.
Additionally, this work only used a 2D-CNN as the backbone for ADCL, but other ad-
vanced neural networks could be adopted to further improve the performance of the propo-
sed framework.

Author Contributions: Conceptualization, Y.Z. and J.S.; formal analysis, Y.Z., Z.G. and H.S.; funding
acquisition, Y.Z., J.S. and G.C.; methodology, Y.Z., Q.Y. and X.L.; validation, Z.G. and X.L.; writ-
ing—original draft, Y.Z.; writing—review and editing, H.S., Z.G., X.L. and Q.Y. All authors have read
and agreed to the published version of the manuscript.



Remote Sens. 2023, 15, 2543 19 of 21

Funding: This work was supported in part by the National Natural Science Foundation of China
under grants 62201282 and 62203231, in part by the Natural Science Foundation of Jiangsu Province
under grants BK20200763 and BK20191284, in part by the Natural Science Research Project of Jiangsu
Higher Education Institutions under grants 19KJB510052 and 22KJB510037, in part by the State Key
Laboratory of Ocean Engineering (Shanghai Jiao Tong University) under grant GKZD010084, in part
by the China Postdoctoral Science Foundation under grant 2020M681685, in part by the Postdoctoral
Research Funding Project of Jiangsu Province under grant 2021K161B, and in part by the Research
Start Foundation of Nanjing University of Posts and Telecommunications under grant NY220157.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture.

Remote Sens. 2020, 12, 2659. [CrossRef]
2. Huang, H.; Liu, L.; Ngadi, M.O. Recent developments in hyperspectral imaging for assessment of food quality and safety. Sensors

2014, 14, 7248–7276. [CrossRef] [PubMed]
3. Cruz-Ramos, C.; Garcia-Salgado, B.P.; Reyes-Reyes, R.; Ponomaryov, V.; Sadovnychiy, S. Gabor features extraction and land-cover

classification of urban hyperspectral images for remote sensing applications. Remote Sens. 2021, 13, 2914. [CrossRef]
4. Ye, C.; Li, Y.; Cui, P.; Liang, L.; Pirasteh, S.; Marcato, J.; Goncalves, W.N.; Li, J. Landslide detection of hyperspectral remote sensing

data based on deep learning with constrains. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5047–5060. [CrossRef]
5. Wang, F.; Gao, J.; Zha, Y. Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges. ISPRS J.

Photogramm. Remote Sens. 2018, 136, 73–84. [CrossRef]
6. Okwuashi, O.; Ndehedehe, C.E. Deep support vector machine for hyperspectral image classification. Pattern Recognit. 2020,

103, 107298. [CrossRef]
7. Zhang, Y.; Cao, G.; Li, X.; Wang, B.; Fu, P. Active semi-supervised random forest for hyperspectral image classification. Remote Sens.

2019, 11, 2974. [CrossRef]
8. Yu, X.; Feng, Y.; Gao, Y.; Jia, Y.; Mei, S. Dual-weighted kernel extreme learning machine for hyperspectral imagery classification.

Remote Sens. 2021, 13, 508. [CrossRef]
9. Peng, J.; Sun, W.; Li, H.; Li, W.; Meng, X.; Ge, C.; Du, Q. Low-rank and sparse representation for hyperspectral image processing:

A review. IEEE Geosci. Remote Sens. Mag. 2022, 10, 10–43. [CrossRef]
10. Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep learning for hyperspectral image classification: An

overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [CrossRef]
11. Vali, A.; Comai, S.; Matteucci, M. Deep learning for land use and land cover classification based on hyperspectral and multispectral

earth observation data: A review. Remote Sens. 2020, 12, 2495. [CrossRef]
12. Tu, B.; Zhang, X.; Kang, X.; Zhang, G.; Li, S. Density peak-based noisy label detection for hyperspectral image classification.

IEEE Trans. Geosci. Remote Sens. 2019, 57, 1573–1584. [CrossRef]
13. Tu, B.; Zhang, X.; Kang, X.; Wang, J.; Benediktsson, J.A. Spatial density peak clustering for hyperspectral image classification with

noisy labels. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5085–5097. [CrossRef]
14. Tu, B.; Zhou, C.; He, D.; Huang, S.; Plaza, A. Hyperspectral classification with noisy label detection via superpixel-to-pixel

weighting distance. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4116–4131. [CrossRef]
15. Jiang, J.; Ma, J.; Wang, Z.; Chen, C.; Liu, X. Hyperspectral image classification in the presence of noisy labels. IEEE Trans. Geosci.

Remote Sens. 2019, 57, 851–865. [CrossRef]
16. Jiang, J.; Ma, J.; Liu, X. Multilayer spectral-spatial graphs for label noisy robust hyperspectral image classification. IEEE Trans.

Neural Networks Learn. Syst. 2022, 33, 839–852. [CrossRef] [PubMed]
17. Leng, Q.; Yang, H.; Jiang, J. Label noise cleansing with sparse graph for hyperspectral image classification. Remote Sens. 2019,

11, 1116. [CrossRef]
18. Maas, A.E.; Rottensteiner, F.; Heipke, C. A label noise tolerant random forest for the classification of remote sensing data based on

outdated maps for training. Comput. Vis. Image Underst. 2019, 188, 102782. [CrossRef]
19. Damodaran, B.B.; Flamary, R.; Seguy, V.; Courty, N. An entropic optimal transport loss for learning deep neural networks under

label noise in remote sensing images. Comput. Vis. Image Underst. 2020, 191, 102863. [CrossRef]
20. Xu, Y.; Li, Z.; Li, W.; Du, Q.; Liu, C.; Fang, Z.; Zhai, L. Dual-channel residual network for hyperspectral image classification with

noisy labels. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5502511. [CrossRef]
21. Xu, H.; Zhang, H.; Zhang, L. A superpixel guided sample selection neural network for handling noisy labels in hyperspectral

image classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9486–9503. [CrossRef]
22. Roy, S.K.; Hong, D.; Kar, P.; Wu, X.; Liu, X.; Zhao, D. Lightweight heterogeneous kernel convolution for hyperspectral image

classification with noisy labels. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5509705. [CrossRef]
23. Wei, W.; Xu, S.; Zhang, L.; Zhang, J.; Zhang, Y. Boosting hyperspectral image classification with unsupervised feature learning.

IEEE Trans. Geosci. Remote Sens. 2022, 60, 5502315. [CrossRef]

https://doi.org/10.3390/rs12162659
https://doi.org/10.3390/s140407248
https://www.ncbi.nlm.nih.gov/pubmed/24759119
https://doi.org/10.3390/rs13152914
https://doi.org/10.1109/JSTARS.2019.2951725
https://doi.org/10.1016/j.isprsjprs.2017.12.003
https://doi.org/10.1016/j.patcog.2020.107298
https://doi.org/10.3390/rs11242974
https://doi.org/10.3390/rs13030508
https://doi.org/10.1109/MGRS.2021.3075491
https://doi.org/10.1109/TGRS.2019.2907932
https://doi.org/10.3390/rs12152495
https://doi.org/10.1109/TGRS.2018.2867444
https://doi.org/10.1109/TGRS.2019.2896471
https://doi.org/10.1109/TGRS.2019.2961141
https://doi.org/10.1109/TGRS.2018.2861992
https://doi.org/10.1109/TNNLS.2020.3029523
https://www.ncbi.nlm.nih.gov/pubmed/33090961
https://doi.org/10.3390/rs11091116
https://doi.org/10.1016/j.cviu.2019.07.002
https://doi.org/10.1016/j.cviu.2019.102863
https://doi.org/10.1109/TGRS.2021.3057689
https://doi.org/10.1109/TGRS.2020.3040879
https://doi.org/10.1109/LGRS.2021.3112755
https://doi.org/10.1109/TGRS.2021.3054037


Remote Sens. 2023, 15, 2543 20 of 21

24. Wang, C.; Zhang, L.; Wei, W.; Zhang, Y. Toward effective hyperspectral image classification using dual-level deep spatial manifold
representation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5505614. [CrossRef]

25. Ghafari, S.; Ghobadi Tarnik, M.; Sadoghi Yazdi, H. Robustness of convolutional neural network models in hyperspectral noisy
datasets with loss functions. Comput. Electr. Eng. 2021, 90, 107009. [CrossRef]

26. Huang, L.; Chen, Y.; He, X. Weakly supervised classification of hyperspectral image based on complementary learning.
Remote Sens. 2021, 13, 5009. [CrossRef]

27. Song, H.; Kim, M.; Park, D.; Shin, Y.; Lee, J.G. Learning from noisy labels with deep neural networks: A survey. IEEE Trans.
Neural Networks Learn. Syst. 2022; in press. [CrossRef]

28. Algan, G.; Ulusoy, I. Image classification with deep learning in the presence of noisy labels: A survey. Knowledge-Based Syst. 2021,
215, 106771. [CrossRef]

29. Karimi, D.; Dou, H.; Warfield, S.K.; Gholipour, A. Deep learning with noisy labels: Exploring techniques and remedies in medical
image analysis. Med. Image Anal. 2020, 65, 101759. [CrossRef]

30. Goldberger, J.; Ben-Reuven, E. Training deep neural-networks using a noise adaptation layer. In Proceedings of the 5th
International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017; pp. 1–9.

31. Yao, J.; Wang, J.; Tsang, I.W.; Zhang, Y.; Sun, J.; Zhang, C.; Zhang, R. Deep learning from noisy image labels with quality
embedding. IEEE Trans. Image Process. 2019, 28, 1909–1922. [CrossRef]

32. Ghosh, A.; Kumar, H.; Sastry, P.S. Robust loss functions under label noise for deep neural networks. In Proceedings of the 31st
AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 1919–1925.

33. Englesson, E.; Azizpour, H. Generalized jensen-shannon divergence loss for learning with noisy labels. In Proceedings of the
Advances in Neural Information Processing Systems (NeurIPS), Virtual, Online, 6–14 December 2021; pp. 30284–30297.

34. Gupta, A.; Lam, S.M. Weight decay backpropagation for noisy data. Neural Networks 1998, 11, 1127–1138. [CrossRef] [PubMed]
35. Arplt, D.; Jastrzȩbskl, S.; Bailas, N.; Krueger, D.; Bengio, E.; Kanwal, M.S.; Maharaj, T.; Fischer, A.; Courville, A.; Bengio, Y.; et al.

A closer look at memorization in deep networks. In Proceedings of the 34th International Conference on Machine Learning
(ICML), Sydney, NSW, Australia, 6–11 August 2017; pp. 233–242.

36. Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. Mixup: Beyond empirical risk minimization. In Proceedings of the 6th
International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018; pp. 1–13.

37. Nishi, K.; Ding, Y.; Rich, A.; Höllerer, T. Augmentation strategies for learning with noisy labels. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, Online, 19–25 June 2021; pp. 8022–8031.

38. Patrini, G.; Rozza, A.; Menon, A.K.; Nock, R.; Qu, L. Making deep neural networks robust to label noise: A loss correction
approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
21–26 July 2017; pp. 1944–1952.

39. Liu, T.; Tao, D. Classification with noisy labels by importance reweighting. IEEE Trans. Pattern Anal. Mach. Intell. 2016,
38, 447–461. [CrossRef] [PubMed]

40. Song, H.; Kim, M.; Lee, J.G. SELFIE: Refurbishing unclean samples for robust deep learning. In Proceedings of the 36th
International Conference on Machine Learning (ICML), Long Beach, CA, USA, 10–15 June 2019; pp. 5907–5915.

41. Ye, M.; Li, H.; Du, B.; Shen, J.; Shao, L.; Hoi, S.C.H. Collaborative refining for person re-identification with label noise. IEEE Trans.
Image Process. 2022, 31, 379–391. [CrossRef] [PubMed]

42. Shen, Y.; Sanghavi, S. Learning with bad training data via iterative trimmed loss minimization. In Proceedings of the 36th
International Conference on Machine Learning (ICML), Long Beach, CA, USA, 10–15 June 2019; pp. 5739–5748.

43. Yi, R.; Huang, Y.; Guan, Q.; Pu, M.; Zhang, R. Learning from pixel-level label noise: A new perspective for semi-supervised
semantic segmentation. IEEE Trans. Image Process. 2022, 31, 623–635. [CrossRef] [PubMed]

44. Meng, D.; Gao, F.; Dong, J.; Du, Q.; Li, H.C. Synthetic aperture radar image change detection via layer attention-based noise-
tolerant network. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4026505. [CrossRef]

45. Li, P.; He, X.; Qiao, M.; Cheng, X.; Li, J.; Guo, X.; Zhou, T.; Song, D.; Chen, M.; Miao, D.; et al. Exploring label probability sequence
to robustly learn deep convolutional neural networks for road extraction with noisy datasets. IEEE Trans. Geosci. Remote Sens.
2022, 60, 5614018. [CrossRef]

46. Zhang, Z.; Guo, W.; Li, M.; Yu, W. GIS-supervised building extraction with label noise-adaptive fully convolutional neural
network. IEEE Geosci. Remote Sens. Lett. 2020, 17, 2135–2139. [CrossRef]

47. Xi, M.; Li, J.; He, Z.; Yu, M.; Qin, F. NRN-RSSEG: A deep neural network model for combating label noise in semantic segmentation
of remote sensing images. Remote Sens. 2023, 15, 108. [CrossRef]

48. Kang, J.; Fernandez-Beltran, R.; Kang, X.; Ni, J.; Plaza, A. Noise-tolerant deep neighborhood embedding for remotely sensed
images with label noise. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 4, 2551–2562. [CrossRef]

49. Kang, J.; Fernandez-Beltran, R.; Duan, P.; Kang, X.; Plaza, A.J. Robust normalized softmax loss for deep metric learning-based
characterization of remote sensing images with label noise. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8798–8811. [CrossRef]

50. Dong, R.; Fang, W.; Fu, H.; Gan, L.; Wang, J.; Gong, P. High-resolution land cover mapping through learning with noise correction.
IEEE Trans. Geosci. Remote Sens. 2022, 60, 4402013. [CrossRef]

51. Wang, C.; Shi, J.; Zhou, Y.; Li, L.; Yang, X.; Zhang, T.; Wei, S.; Zhang, X.; Tao, C. Label noise modeling and correction via loss curve
fitting for SAR ATR. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5216210. [CrossRef]

https://doi.org/10.1109/TGRS.2021.3073932
https://doi.org/10.1016/j.compeleceng.2021.107009
https://doi.org/10.3390/rs13245009
https://doi.org/10.1109/TNNLS.2022.3152527
https://doi.org/10.1016/j.knosys.2021.106771
https://doi.org/10.1016/j.media.2020.101759
https://doi.org/10.1109/TIP.2018.2877939
https://doi.org/10.1016/S0893-6080(98)00046-X
https://www.ncbi.nlm.nih.gov/pubmed/12662780
https://doi.org/10.1109/TPAMI.2015.2456899
https://www.ncbi.nlm.nih.gov/pubmed/27046490
https://doi.org/10.1109/TIP.2021.3131937
https://www.ncbi.nlm.nih.gov/pubmed/34874857
https://doi.org/10.1109/TIP.2021.3134142
https://www.ncbi.nlm.nih.gov/pubmed/34910634
https://doi.org/10.1109/LGRS.2022.3198088
https://doi.org/10.1109/TGRS.2021.3128539
https://doi.org/10.1109/LGRS.2019.2963065
https://doi.org/10.3390/rs15010108
https://doi.org/10.1109/JSTARS.2021.3056661
https://doi.org/10.1109/TGRS.2020.3042607
https://doi.org/10.1109/TGRS.2021.3068280
https://doi.org/10.1109/TGRS.2021.3121397


Remote Sens. 2023, 15, 2543 21 of 21

52. Hu, Z.; Gao, K.; Zhang, X.; Wang, J.; Wang, H.; Han, J. Probability differential-based class label noise purification for object
detection in aerial images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6509705. [CrossRef]

53. Cao, Y.; Huang, X. A coarse-to-fine weakly supervised learning method for green plastic cover segmentation using high-resolution
remote sensing images. ISPRS J. Photogramm. Remote Sens. 2022, 188, 157–176. [CrossRef]

54. Li, Y.; Zhang, Y.; Zhu, Z. Error-tolerant deep Learning for remote sensing image scene classification. IEEE Trans. Cybern. 2021,
51, 1756–1768. [CrossRef]

55. Wei, W.; Li, W.; Zhang, L.; Wang, C.; Zhang, P.; Zhang, Y. Robust hyperspectral image domain adaptation with noisy labels.
IEEE Geosci. Remote Sens. Lett. 2019, 16, 1135–1139. [CrossRef]

56. Li, Q.; Chen, Y.; Ghamisi, P. Complementary learning-based scene classification of remote sensing images with noisy labels.
IEEE Geosci. Remote Sens. Lett. 2022, 19, 8021105. [CrossRef]

57. Xu, G.; Deng, M.; Sun, G.; Guo, Y.; Chen, J. Improving building extraction by using knowledge distillation to reduce the impact of
label noise. Remote Sens. 2022, 14, 5645. [CrossRef]

58. Xu, G.; Fang, Y.; Deng, M.; Sun, G.; Chen, J. Remote sensing mapping of build-up land with noisy label via fault-tolerant learning.
Remote Sens. 2022, 14, 2263. [CrossRef]

59. Blum, A.; Mitchell, T. Combining labeled and unlabeled data with co-training. In Proceedings of the Annual Conference on
Computational Learning Theory (COLT), Madison, WI, USA, 24–26 July 1998; pp. 92–100.

60. Malach, E.; Shalev-Shwartz, S. Decoupling “when to update” from “how to update”. In Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 961–971.

61. Han, B.; Yao, Q.; Yu, X.; Niu, G.; Xu, M.; Hu, W.; Tsang, I.W.; Sugiyama, M. Co-teaching: Robust training of deep neural networks
with extremely noisy labels. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Montréal, QC,
Canada, 3–8 December 2018; pp. 8536–8546.

62. Yu, X.; Han, B.; Yao, J.; Niu, G.; Tsang, I.W.; Sugiyama, M. How does disagreement help generalization against label corruption?
In Proceedings of the 36th International Conference on Machine Learning (ICML), Long Beach, CA, USA, 10–15 June 2019;
pp. 7164–7173.

63. Wei, H.; Feng, L.; Chen, X.; An, B. Combating noisy labels by agreement: A joint training method with co-regularization. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–18 June 2020;
pp. 13726–13735.

64. Zhang, X.; Song, Q.; Liu, R.; Wang, W.; Jiao, L. Modified co-training with spectral and spatial views for semisupervised
hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2044–2055. [CrossRef]

65. Romaszewski, M.; Głomb, P.; Cholewa, M. Semi-supervised hyperspectral classification from a small number of training samples
using a co-training approach. ISPRS J. Photogramm. Remote Sens. 2016, 121, 60–76. [CrossRef]

66. Zhou, S.; Xue, Z.; Du, P. Semisupervised stacked autoencoder with cotraining for hyperspectral image classification. IEEE Trans.
Geosci. Remote Sens. 2019, 57, 3813–3826. [CrossRef]

67. Fang, B.; Chen, G.; Chen, J.; Ouyang, G.; Kou, R.; Wang, L. CCT: Conditional co-training for truly unsupervised remote sensing
image segmentation in coastal areas. Remote Sens. 2021, 13, 3521. [CrossRef]

68. Hu, T.; Huang, X.; Li, J.; Zhang, L. A novel co-training approach for urban land cover mapping with unclear landsat time series
imagery. Remote Sens. Environ. 2018, 217, 144–157. [CrossRef]

69. Jia, D.; Gao, P.; Cheng, C.; Ye, S. Multiple-feature-driven co-training method for crop mapping based on remote sensing time
series imagery. Int. J. Remote Sens. 2020, 41, 8096–8120. [CrossRef]

70. Wang, Y.; Ma, X.; Chen, Z.; Luo, Y.; Yi, J.; Bailey, J. Symmetric cross entropy for robust learning with noisy labels. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 322–330.

71. Liang, X.; Wu, L.; Li, J.; Wang, Y.; Meng, Q.; Qin, T.; Chen, W.; Zhang, M.; Liu, T.Y. R-Drop: Regularized dropout for neural net-
works. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Virtual, Online, 6–14 December 2021;
pp. 10890–10905.

72. Grupo de Inteligencia Computacional (GIC). Available online: https://www.ehu.eus/ccwintco/index.php/Hyperspectral_
Remote_Sensing_Scenes (accessed on 28 February 2020).

73. 2013 IEEE GRSS Data Fusion Contestest. Available online: https://hyperspectral.ee.uh.edu/?page_id=459 (accessed on
31 May 2013).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/LGRS.2022.3172983
https://doi.org/10.1016/j.isprsjprs.2022.04.012
https://doi.org/10.1109/TCYB.2020.2989241
https://doi.org/10.1109/LGRS.2018.2889800
https://doi.org/10.1109/LGRS.2022.3208904
https://doi.org/10.3390/rs14225645
https://doi.org/10.3390/rs14092263
https://doi.org/10.1109/JSTARS.2014.2325741
https://doi.org/10.1016/j.isprsjprs.2016.08.011
https://doi.org/10.1109/TGRS.2018.2888485
https://doi.org/10.3390/rs13173521
https://doi.org/10.1016/j.rse.2018.08.017
https://doi.org/10.1080/01431161.2020.1771790
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://hyperspectral.ee.uh.edu/?page_id=459

	Introduction 
	Related Work and Contributions 
	Label Noise Learning Based on Deep Learning 
	Deep Neural Network-Based Label Noise Learning in Remote Sensing 
	Co-Training in Remote Sensing 
	Contributions 

	Proposed ADCL Method 
	Joint Loss 
	Agreement and Disagreement-Based Co-Learning Framework 
	Formula Analysis 

	Experimental Results and Analysis 
	HSI Data Sets 
	Experiment Settings 
	Evaluation of the Joint Loss Function 
	Comparison with State-of-the-Art Methods 
	Performance Evaluation under Different Noise Rates 
	Computational Cost 
	Further Analysis 

	Discussion 
	Conclusions 
	References

