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Abstract: Meeting current needs without compromising future generations’ ability to meet theirs is
the only path toward achieving environmental sustainability. As the most valuable natural resource,
soil faces global, regional, and local challenges, from quality degradation to mass losses brought on
by salinization. These issues affect agricultural productivity and ecological balance, undermining
sustainability and food security. Therefore, timely monitoring and accurate mapping of salinization
processes are crucial, especially in semi-arid and arid regions where climate variability impacts
have already reached alarming levels. Salt-affected soil mapping has enormous potential thanks
to recent progress in remote sensing. This paper comprehensively reviews the potential of remote
sensing to assess soil salinization. The review demonstrates that large-scale soil salinity estimation
based on remote sensing tools remains a significant challenge, primarily due to data resolution
and acquisition costs. Fundamental trade-offs constrain practical remote sensing applications in
salinization mapping between data resolution, spatial and temporal coverage, acquisition costs,
and high accuracy expectations. This article provides an overview of research work related to soil
salinization mapping and monitoring using remote sensing. By synthesizing recent research and
highlighting areas where further investigation is needed, this review helps to steer future efforts,
provides insight for decision-making on environmental sustainability and soil resource management,
and promotes interdisciplinary collaboration.

Keywords: environmental sustainability; monitoring; salinization mapping; soil; remote sensing

1. Introduction

Soil salinization is a major environmental hazard affecting agricultural productivity
and food security worldwide [1]. It adversely influences soil structure, nutrient availability,
and plant growth, leading to reduced crop yields and, in extreme scenarios, desertifica-
tion [2,3]. The increasing levels are caused by diverse natural and anthropogenic factors,
such as inadequate irrigation practices, fertilizer overuse, and land use changes [4]. In
addition, climate change impacts on soil salinization are a significant concern, with weather
patterns playing a fundamental role in increasing salt content around the rhizosphere [5,6].
This is particularly noticeable in areas with shallow water tables and degraded groundwa-
ter quality [7]. Therefore, real-time monitoring of soil salinity levels is essential for effective
soil management and sustainable agriculture [8,9].

Subsequently, remote sensing has proven to be an attractive alternative for mapping
and monitoring salinization in large-scale and heterogeneous landscapes, especially un-
der different land use and land cover types and areas where socio-culturally different
farming cultivation techniques are maintained [10,11]. Remote sensing data from satellite
imagery and aerial photography offer valuable information on various environmental
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parameters, including vegetation cover, soil composition, and moisture content, which are
interconnected to salt content [12]. By analyzing and interpreting such data, researchers and
practitioners can generate detailed maps and spatial models of salinity distribution, which
inform land management decisions and support the development of effective strategies for
risk mitigation [13,14]. Over the past few decades, remote sensing has undergone signifi-
cant advancements, enabling the collection of high-resolution data on various scales [15,16].
As research progresses, various tools have emerged [17–19], including multispectral imag-
ing sensors which capture information at different wavelengths, leading to more accurate
results with higher spatial resolution [20]. This enables the extraction of auxiliary data
on soil properties such as moisture content, organic matter, and salt content by analyzing
the reflected radiation from the surface [21]. To map soil salinization, many researchers
have used the concept of spectral index, a combination of pixel values from two or more
spectral bands [22–24]. As they rely on the variance in reflectance between the visible (VIS),
near-infrared (NIR), and shortwave infrared (SWIR) bands, they can be useful in detecting
changes in salt content [25].

In addition to multispectral imaging, synthetic aperture radar (SAR) has recently
become one of the most efficient remote sensing tools for soil salinity detection due to its
insensitivity to weather conditions, unlike optical remote sensing [26]. SAR uses microwave
signals to penetrate the soil and retrieve information on soil moisture [27] and structure [28].
Therefore, it can generate relevant information on soil’s electrical conductivity (EC), which is
closely related to its salt content [29,30]. The backscatter coefficient (sigma-0), as a measure
of the microwave energy reflected back to the sensor, is a commonly used parameter for
mapping soil salinity by integrating it into empirical models [31].

The accuracy of salinity mapping has been significantly improved by the fusion of
multiple data sources, such as optical and SAR data [32]. As optical sensors can capture
surface reflectance and vegetation cover, SAR sensors penetrate the vegetation and retrieve
information on soil properties [33]. Moreover, integrating remote sensing data with other
data types, such as those on land cover, land use and topographic features, provides even
more accurate estimations [4,34]. By combining data from different sensors and platforms,
researchers can take advantage of the complementary strengths of each data source and
overcome their limitations.

As the field of salinization mapping continues to progress, it has become increasingly
evident that integrating remote sensing data with machine learning offers a more robust
framework for effectively processing large datasets and generating more accurate prod-
ucts [35]. Machine learning algorithms, such as random forest [36] and support vector
machines [37], have been remarkably efficient at data processing and analysis, enabling
prediction models to learn from the spectral and spatial patterns and produce estimations
based on input features [38,39].

Despite the remarkable growth, remote sensing applications for salinization assess-
ment pose significant challenges, including issues with data resolution, spatial and temporal
coverage, acquisition costs, data processing and storage. In this regard, a comprehensive
review of remote sensing’s current state can help identify areas for further research and tech-
nological development while providing a valuable resource for researchers, policy-makers,
and stakeholders concerned with environmental sustainability and land management.

2. Remote Sensing for Mapping Soil Salinization

Not only do environmental factors, such as soil type, land use, topography, and
climate, play a leading role in salinization expansion, but anthropogenic actions, such as
the inadequacy of drainage systems and ineffective irrigation activities over an extended
period, also have a direct impact on this dynamic process [4,40,41]. In light of this, the
availability of spaceborne and airborne platforms has significantly facilitated the monitoring
of environmental hazards by providing vast amounts of data that can be applied to diverse
fields, from sustainable agriculture, land surveys, and climate change to risk mitigation [42].
Enhanced data in terms of spatiotemporal and spectral resolutions offered by these systems
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have enabled researchers to monitor changes inland and identify salinity patterns at various
spatial scales. In addition, when combined with geospatial data, ground-based systems
such as the electromagnetic induction instrument (EMI) give valuable insights into the
salinization status at both local and canopy scales, allowing policy-makers to gain a more
comprehensive understanding of the complex dynamics of salinization at the field level [43].

Integrating remote sensing data with robust analytical techniques has shown great
promise in salinization mapping, as suggested by many researchers. A study conducted
in Qom Valley in Iraq demonstrated that combining Landsat 8 OLI’s spectral indices and
topographic features can accurately predict and map soil salinity [44]. Further, jointly
using Sentinel-2 Multispectral Imager (MSI) data with laboratory measurements to build a
machine learning model for soil salinity estimation in the northern margin of the Tarim
Basin (China) provided a timeless scientific reference for futuristic scenarios related to
salinization expansion in arid areas [45]. Field observations, Landsat 5 TM and radar data
retrieved from ALOS (Advanced Land Observing Satellite) and PALSAR (Phased Array L-
Band Synthetic Aperture Radar) have provided a promising solution for salinity monitoring
in central Iraq with lower costs, as suggested by the authors of [46]. In the Great Hungarian
Plain, the authors of [47] employed spectral indices and principal components derived
from Landsat 8 OLI data coupled with multiple linear regression analysis to map salt
content distribution in the area. The study proved the potential of multispectral data, with
the outperformance of ridge regression, yielding an overall accuracy of 75%. Thus, linear
regression modeling using remote sensing-based variables can be significantly effective for
locally assessing soil salinity.

As pattern changes in land use and land cover supposedly vary with salinization
magnitude, relevant data can be effectively employed to predict soil salinity levels [48,49].
In Europe, among several land cover inventories, the CORINE system has solely provided
this information for over two decades, which fortunately could be used to map salinization
by many researchers [4,50,51]. In addition, a study conducted in Dakhla Oasis, located
in the western desert of Egypt, showed a discrepancy in soil salinity estimations based
on the linear spectral unmixing (LSU) related to land surface temperature over different
land cover types and altitudes [52]. These findings are consistent with another study
conducted in Korat province (Thailand), emphasizing the importance of vegetation cover,
soil characteristics, and seasonal fluctuations in mapping soil salinization via remote
sensing [53].

Over the past decade, research focus has shifted from traditional, labor-intensive
methods of measuring salt content through field surveys and laboratory analysis towards
a greater reliance on remotely sensed data often used with limited reference datasets for
calibration purposes [54]. Based on a qualitative analysis of the Scopus database, we have
run an advanced search query to find available peer-reviewed research papers, with the
following terms: soil salinization, monitoring, and remote sensing. Significant progress
was made in spaceborne and airborne remote sensing systems between 2014 and 2023,
which was fundamentally driven by the launch of Landsat 8 in 2013 and the subsequent
launches of Sentinel 1 and Sentinel 2 in 2014 and 2015. Figure 1 demonstrates a positive
trend in research studies that employed remote sensing for salinization assessment in the
same timeframe. However, the sudden drop in 2021 is attributed to a shift in research focus
toward other areas or technologies, funding limitations, and reference data unavailability
due to the geographic inaccessibility caused by extreme global events such as COVID-19.
Given the rise in technology availability and professional knowledge worldwide, this
increasing trend is expected to continue in 2023.

Extensive data have been used to assess salinization by measuring the changes in
reflectance along the spectrum from visible to infrared (IR) for different salinity levels
accompanied by vegetated and sparsely vegetated profiles to distinguish the disparities.
Usually, the interaction between soil and spectral energy differs based on the emitted
radiation and the surface properties, whereas salt-affected soils often exhibit whitish or
grayish crust on the topsoil [55,56]. In this regard, the authors of [57] found an increase in
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reflectance in the visible range, particularly in the blue (450 nm) range with excessively
saline soils. Moreover, higher reflectance occurs in the SWIR region (1100–3000 nm),
revealing more sensitivity to salt content, as discovered by the authors of [58] and [59].
According to the authors of [60], alterations in surface roughness caused by salinity induce
shifts in spectral reflectance. Many studies have used SWIR and thermal infrared (TIR)
spectroscopy to quantify salt content [61,62]. This means various properties influence
salt-affected land identification, including soil color, texture and moisture content.
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Figure 1. Progress of remote sensing application in salinization mapping based on available stud-
ies in Scopus between 2014 and 2023. The yearly number of studies using various sensors has
significantly increased from 14 in 2014 to 81 in 2022. The availability of satellite data and the develop-
ment of sophisticated instruments with higher spectral and spatial resolutions have contributed to
this growth.

Consequently, hyperspectral remote sensing has facilitated salt characterization by
establishing predictive models to estimate salt content more accurately [63] or through
creating spectral libraries for various salt types based on their narrow continuous bands [64],
which cover the entire spectrum from visible, near-infrared to SWIR and TIR [64]. The
situation is quite different in vegetated areas since reduced crop growth induced by saline
stress causes chlorophyll and other pigment alterations and increases heat emissions. This
presents a potential avenue to use thermal remote sensing for qualifying vulnerable areas
based on vegetation status, except for halophytes [65].

While remote sensing has provided new opportunities for soil salinization assessment,
this task complexity highlights the need for addressing data availability, investigation scale,
and mapping approaches, which are discussed in the following section.

3. Uncovering Data Availability: Investigating the Scope and Scale of Accessible Data

While remote sensing has become a valuable tool for salinization assessment, its
successful implementation depends on data availability and the investigation scale. Many
studies have applied thermal, multispectral, hyperspectral, and microwave sensors to
quantify salt content [66–70]. As these sensors have varying spectral, spatial, radiometric,
and temporal resolution properties, this has a massive impact on the scope and relevance
of the study [71]. Table 1 illustrates the most common sensors used in soil salinization
detection and their properties.



Remote Sens. 2023, 15, 2540 5 of 20

Table 1. An overview of commonly used sensors for salinization assessment and their characteristics,
including spatial, spectral, and temporal resolutions, acquisition cost, and applicable mapping scale.
The listed sensors range from regional/global-scale sensors such as MODIS to high-resolution pixel-
plot sensors such as UAV-based ones and are used for mapping at different scales depending on their
spatial coverage.

Sensor Spatial
Resolution (m)

Spectral
Resolution

Temporal
Resolution
(Day)

Acquisition
Cost

Applicable
Mapping Scale

MODIS 250–500 36 1 Free Regional/Global

Landsat 30–120 8–11 16 Free Local/Regional

Sentinel 2 10–60 13 5 Free Local/Regional

ASTER 15–90 14 16 Low Local/Regional

IKONOS 4 5 3 High Local

PlanetScope 3 8 1 Low/Medium Local/Pixel plot

Worldview <5 9 1 Low/Medium Local/Pixel plot

Sentinel 1 5 6 Free Local/Regional

RADAR 5 High Local/Regional

Hyperspectral 1 >200 High Pixel-plot

Unmanned
Aerial Vehicle
(UAV)

~2.5 cm >200 Medium/High Pixel-plot

Up to this point, these sensors have demonstrated their ability to detect patterns at
spatiotemporal scales, thanks to their spatial resolution ranging from a few centimeters
to several hundred meters with a revisit time from one day to two weeks [72]. Therefore,
selecting a remote sensing system for salinization assessment depends on the sensor’s
technical characteristics and data availability. In this regard, Sentinel missions, i.e., Sentinel-
1 and Sentinel-2, have recently dominated the European imaging systems as part of the
Copernicus program funded and developed by the European Space Agency (ESA). The
Copernicus program is an Earth observation program that examines Earth’s surface and
its environment for the benefit of the European community and provides free information
services [73]. Due to their high spatial resolution (ranging from 10 to 60 m) and fast revisit
time (ranging from five days for Sentinel-2 and six to 12 days for Sentinel-1), Sentinel
products have become a valuable data resource for many Earth observation research
projects, including salinization risk management [74].

On the other hand, fewer studies have used hyperspectral data to mainly focus on
specific areas, usually distinguished by an extremely saline environment, e.g., [75–77]. As
such, the authors of [78] studied salinity variation across the Yellow River Delta region
in China using a combination of laboratory and hyperspectral data retrieved from EO-1
Hyperion. A soil salinity spectral index (SSI) was developed from continuum-removed
reflectance (CR-reflectance) in 2052 and 2203 nm to examine the spectral absorption prop-
erties of salt-affected soils, yielding a correlation coefficient (R2) of 0.91. The Hyperion
reflectance image was processed using the final model, resulting in a quantitative salinity
map with an RMSE of 1.921 g/kg and an R2 of 0.63. The study elucidated the reliability
of hyperspectral data in estimating salt content due to their high spectral resolution. This
aligns with [79], the authors of which used HJ-1A hyperspectral data to detect topsoil salt
components across another study area in China. The research successfully established a
robust relationship between salt content and reflectance spectra.

We performed a quick query on the Scopus database to identify the most widely
used remote sensing platforms for soil salinization assessment in peer-reviewed research
papers. We used the following search keywords: Landsat, Sentinel-2, MODIS, UAV, ASTER,
IKONOS, hyperspectral, radar, remote sensing, and soil salinization. Figure 2 illustrates
the overall distribution of remote sensing data used in soil salinization-related studies.
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Figure 2. Distribution of data types used in accessible research papers related to soil salinization
assessment. Remote sensing data selection considers several factors, such as cost, accessibility, spatial
and spectral resolutions, and the research scale. Available studies have used various instruments,
such as multispectral, hyperspectral, and microwave sensors. Open-access satellite data has gained
popularity among researchers recently due to their cost-effectiveness and widespread availability,
unlike those of commercial platforms.

Optical remote sensing has been widely applied due to its practicality in data process-
ing and storage, as well as its moderately extended spatial coverage and high resolution,
which is in alignment with [71]. In contrast, fewer studies have used high-resolution
commercial sensors such as ASTER (~15 m), IKONOS (~4 m), and UAV-based ones (<1 m),
which is consistent with [72]. The associated high costs and limited coverage are the
primary causes why its application is restricted to narrow geographic regions. Neverthe-
less, accessing valuable information at different scales is essential in adopting appropriate
mitigation strategies.

Although the potential of active remote sensing in assessing soil salinization is well rec-
ognized [80], the search yielded fewer research papers, reflecting the challenges of limited
access to such data. A study conducted in Keriya River Basin, Northwest China, high-
lighted the efficacy of active remote sensing to map soil salinity by applying an integrated
threshold of backscattering values from PALSAR and Radarsat-2 polarimetric images. The
research yielded enhanced results in separating moderately and extremely saline soils [81].
Further, another study by the authors of [33] used ERS-1/2 and Sentinel-1 SAR time-series
data acquired between 2000 and 2018 to identify salinity levels in Hortobágyi National
Park in Hungary, one of the most naturally alkaline environments in Europe. The research
demonstrated the usefulness of SAR data in salt detection with an outperformance of
Sentinel-1 SAR products over ERS-1/2 due to its higher resolution and its operation with a
dually polarized antenna which could identify better subtle changes in salinity levels.

Based on Figure 2, limited research focused on radar and hyperspectral data compared
to multispectral data application (i.e., MODIS, Landsat, and Sentinel 2 MSI). This can be
associated with many factors, including data availability and resolution, spatial coverage,
acquisition costs, and processing and storage infrastructures since those products require
high processing and storage capacities.

3.1. Local Scale

Remote sensing has proven valuable for accurately and timely detecting excessive
soil salinity, enabling automated and reproducible monitoring of salinization processes in
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agricultural systems. This is fundamental for soil conservation and agricultural productivity
at the local scale. Notably, data retrieved from thermal and hyperspectral sensors have
shown particular sensitivity to saline stress, making them advantageous in characterizing
vegetation conditions and estimating salt content [82]. By capturing synoptic information
on various physiological processes under saline conditions, such as thermal energy release
and canopy health and vigor, they portray the situation on the surface [83]. This information
helps detect minimal changes in the landscape early on, allowing prompt interventions to
avoid soil fertility and biodiversity losses [84]. Intensive research has focused on studying
salinity distribution on the field scale [85–87]. Although each study has been conducted
in a specific spatiotemporal context on different cropping systems from rice to olive trees
and in diverse geographical locations (i.e., Portugal, China, and Tunisia) under different
environmental conditions, from semi-arid to irrigated systems, indicating the versatility
and applicability of remote sensing under various agricultural settings. The common
conclusion is that remote sensing data, specifically satellite imagery with relatively high
spatial resolution, i.e., Landsat and Sentinel-2, can be used to assess salinity in agricultural
lands with high accuracy when combined with electromagnetic induction techniques to
measure reference values.

The operational capabilities of remote sensing at the farm scale have significantly
improved due to the increasing availability of high-resolution platforms such as UAVs [88].
In recent years, UAVs have shown their utility in improving accuracy and providing more
insights into intensive soil monitoring [89]. Likewise, imaging spectroscopy techniques,
such as matched filtering (MF) and mixture tuned matched filtering (MTMF) with multi-
spectral advanced spaceborne thermal emission and reflection radiometer (ASTER) images,
have been successfully used to map saline soils and determine crop yield reduction and
land degradation caused by salinization at the farm level [90].

Integrating remote sensing has become a fundamental component of precision agricul-
ture, enabling the detection and monitoring of changes in salinity levels at the plot scale.
Accordingly, accurate monitoring can support soil conservation efforts and mitigate the
adverse impacts of climate change on agriculture. By optimizing the use of resources and
inputs offered by remote sensing, farmers can effectively manage salt-affected lands and
optimize crop yield while contributing to sustainable agriculture practices.

3.2. Regional Scale

As a practical and cost-effective tool, remote sensing generates valuable information
about salinization risks and vulnerable areas requiring intervention, efficiently covering
large areas and detecting hotspots that traditional field-based surveys fail to cover [91].
Recent research has well established that incorporating it with field surveys can provide a
more comprehensive understanding of salinization dynamics, at least on a smaller scale,
due to the coarse spatial resolution of most satellite imagery products. As such, many
studies have employed it to regionally assess salinization under different scenarios, from
complex agricultural systems to drylands [92,93]. A study by the authors of [94] used
imaging spectroscopy data from an SR-3500 spectrometer combined with machine learning
to map soil’s electrical conductivity in the northern Yinchuan Plain (China). Among the
six models, the extremely randomized trees-based model performed the best, with R2

values of 0.96 and 0.98. Another study by the authors of [95] assessed soil salinity in San
Joaquin Valley (CA, USA) using multi-year Landsat 7 ETM+ data in combination with
canopy reflectance and the canopy response salinity index (CRSI). The research yielded
an estimation model with R2 values of 0.61 and 0.73, where CRSI, crop type, rainfall,
and temperature were the most influential variables. This further proves that recent
research efforts have provided significant theoretical support for salinization mapping and
monitoring at the regional scale.

Nonetheless, a more comprehensive understanding of salinization dynamics will
enable targeted intervention strategies to mitigate its risks and keep it under control [96].
Despite the advantages brought on by remote sensing-based approaches in this regard,
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fundamental challenges must be addressed to ensure its valid representativeness. Not only
must the spatial and spectral resolutions of sensors be carefully selected to ensure that the
data obtained are suitable for the study scale, but atmospheric interference and calibration
issues should be addressed to optimize the product’s accuracy [97]. To fully harness the
potential of remote sensing, it is crucial to develop robust techniques that can address the
associated challenges and ensure the accuracy and validity of acquired data. By doing so,
we can access reliable and up-to-date information to develop effective strategies to mitigate
soil salinization impacts inland.

3.3. Global Scale

Salinization is expanded over more than 1 billion hectares worldwide and constantly
increasing, according to FAO and ITPS report [98]. Other estimations of total salt-affected
lands differ somewhat substantially. According to [99], the disparity in current estimates of
saline soils is frequently caused by discrepancies in methodology for data collection and
analysis; hence, only a rough estimate can be provided.

Currently, the Harmonized World Soil Database represents the most popular database
that delivers a global coverage of soil salinity data [100]. While this database represents a
valuable resource for global studies, it has a few limitations to consider, such as the dis-
continuity of pixel values, the coarse spatial resolution (>1 km), and outdated information
on soil salinity, with its most recent version (v1.2) released in 2012 [101]. A lack of spatial
resolution and accurate data highlights an urgent need for an updated worldwide soil
salinity map.

To address this issue, the Global Soil Partnership (GSP) and the Food and Agriculture
Organization (FAO) have initiated efforts to create a more comprehensive global map of
salt-affected soils, the Global Map of Salt-affected Soils (GSASmap V1.0.0), which was
released in 2020 [102]. The product includes contributions from over 118 countries, with
more than 350 national experts involved in the harmonization process [103]. Each country
subsequently generated its maps following approved technical standards set by FAO. The
map illustrates SAS spatial distribution at the topsoil (0–30 cm) and subsoil (30–100 cm).
According to GSASmap, which covers 85% of the worldwide land surface, salinization
affects around 424 million ha of topsoil and 833 million ha of subsoil [104], with nearly
two-thirds of global SAS falling under arid and semi-arid climates [105].

Despite the progress made, monitoring salinization is an ongoing process, and there is
still much to be done to improve the accuracy of available maps [106]. This emphasizes
the necessity for further research and international collaborations to address this growing
issue in real-time and promote sustainable land management practices.

4. Mapping Approaches

Although diverse approaches are available for generating accurate salt content es-
timates, including in situ and laboratory analysis, they are time-consuming and require
intensive sampling and enormous labor costs, making them impractical for larger-scale
studies [107]. Alternatively, indirect methods such as remote sensing can provide relatively
useful information at lower costs based solely on electromagnetic energy, enabling con-
tinuous monitoring of saline environments at a broader range [108]. Recent progress in
machine learning and artificial intelligence has tremendously supported the establishment
of more robust digital soil mapping approaches, providing reliable predictive tools for
salinization assessment [109].

Substantially, changes in land cover due to excessive salinity, such as deterioration of
soil structure, organic matter loss, changes in water balance, and loss of biodiversity, result
in detectable differences in reflectance characteristics, which can be detected by sensors in
high to extreme scenarios [110]. The most commonly used methodologies can be broadly
categorized into three main types: statistical models, machine learning algorithms, and
physical models. Statistical models such as those based on linear regression [111,112] use
an empirical approach to analyze the correlation between variations in remote sensing
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derivatives such as spectral indices and principal components with field measurements.
These models are simple and easy to develop but fail to capture complex interactions
between variables. As a result, this affects the methodology’s replicability since there may
be other factors involved that interact in synergy or solely, which are not captured by
simple estimation models. Therefore, the model fails to yield accurate results without con-
sidering these influential indicators when replicating the research workflow. In this context,
hybrid modeling techniques are increasingly integrated for salinity prediction [113,114],
particularly in poorly sampled locations. These methods combine the strengths of various
models and sensors to generate more accurate and reliable estimates. Geostatistical models
such as co-kriging and regression kriging rely on a spatial correlation, assuming that lo-
cations closer to each other have similar properties, while a regression analysis between
two variables or more is exploited to predict the dependent variable’s distribution in lowly
sampled areas [4,115]. Although hybrid models’ main goal is to overcome individual
models’ limitations by combining them, their effectiveness highly depends on the nature of
the data, the significance of the correlation between covariates, and the research question.
Thus, a hybrid technique application becomes irrelevant if no significant correlation exists
between the model covariates. Consequently, it is crucial to carefully select and combine
the models based on the research scope and available data to obtain the most accurate
and reliable estimations. For instance, cubist models are based on a hybrid approach that
combines regression analysis and decision tree modeling techniques to enable accurate
predictions based on input data while employing boosting with multiple training data
points to improve accuracy and balance the variables’ weights [116]. Through generating a
set of rules to combine input variables, each rule is associated with a linear model [117].
This method involves constructing a series of decision trees, each with adjusted weights, to
produce a model that accurately reflects the patterns in the data [118]. It can be advanta-
geous in cases where the relationship between input variables and the predicted outcome
is complex and difficult to discern using traditional statistical models such as soil salinity
modeling [119,120]. Nevertheless, this is quite different for geostatistical models [121–123],
although they rely on statistical assumptions about underlying spatial variability to esti-
mate salinity at unsampled locations. Some geostatistical methods, such as the stochastic
simulation technique [124], can be considered process-based modeling, as it involves using
physical parameters and equations to estimate the parameter of interest. On the other
hand, machine learning-based models [125], such as neural networks [126], support vector
machines [127], random forests [128], and extreme gradient boosting [129], use advanced
mathematical models to analyze enormous and complex datasets for prediction. These
models can be computationally intensive and may not be as easy to interpret as most statis-
tical models. Physical models, such as the soil, vegetation and atmosphere transfer (SVAT)
model [130], are process-based and numerical models that simulate the physical processes
controlling salt accumulation and vegetation growth. While they can be computationally
demanding, they provide a more in-depth understanding of the underlying physicochemi-
cal mechanisms at play. Their simulation capabilities allow physical models to test various
hypotheses and scenarios that may not be directly observable in the field. A comparative
study conducted by the authors of [131] between a physical model and three ML models,
including distributed random forest (DRF), gradient boosting machine (GBM), and deep
learning (Deeplearning) for salinity estimation at the canopy scale, found that machine
learning-based models have predictive power similar to physical-based models; however,
their performance primarily depends on the prediction scenarios and input variables. In
the coastal rural areas of Bangladesh, research was carried out by the authors of [132] to
explore the potential of salinity using Landsat 8 OLI data. The study used various vegeta-
tion and salinity indices in a linear regression analysis-based approach to determine the
statistical association between these indices and ground-measured electrical conductivity
to yield a low correlation between the ground EC and the pixel values of generated maps,
suggesting that the indices are not sufficient to assess salinity. This eventually contradicts
other research work carried out in the same context, which suggests differently. In the oasis
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lands of Egypt, a study conducted by the authors of [133] to map salinity using different
statistical models based on Landsat 8 OLI and imaging spectroscopy data revealed that the
used spectral indices had low to moderate correlations with EC values, with an R2 ranging
between 0.27 and 0.64. Although this research recommended Landsat-based spectral in-
dices to produce spatial distribution maps, a further investigation is suggested to explore
the produced models’ dependencies and their validity under other climatic conditions. In
the Ebinur Lake region in China, a bootstrap hybrid machine-learning framework was
established by combining Sentinel-2 MSI data and environmental covariates [134]. The
research initially compared four machine learning methods (i.e., bagging, classification and
regression tree, random forest, and gradient boosting regression tree (GBRT)) to conclude
that the models driven by spectral information and environmental covariates explained up
to 88% of data variability, with the superiority of GBRT. The proposed approach offers a
soil salinity mapping strategy with a 10 m resolution and high accuracy in poorly sampled
locations, which can eventually help in future land restoration projects.

Although several remote sensing methods have been proposed for determining soil
salinity, no widely accepted standard can consistently generate accurate data across diverse
environmental conditions [135]. The accuracy of these methods can vary significantly
across different regions, indicating the challenge of creating a globally harmonized data
system. Consequently, producing a comprehensive and reliable global soil salinity map
remains complicated.

Ideally, combining the abovementioned approaches and fusing multi-source data
allow extracting the maximum amount of information from remotely sensed data while
considering the complex interactions between environmental factors. The choice usually
depends on the research scope, the available data, and the computational resources. Table 2
provides an overview of the most commonly used methods for salinization assessment.

Table 2. Comparison of modeling techniques for soil salinization mapping based on remote sensing
data. This table provides an overview of commonly used modeling techniques for remote sensing
data analysis, their estimated accuracy range, and their strengths and weaknesses. The estimated
accuracy range of each method is based on the existing literature and may vary depending on the
specific application and data used.

Modeling
Technique/Algorithm

Estimated Accuracy
Range (%) Strengths Weaknesses Example Studies

Linear Regression 40–50 Simple and efficient; can
identify linear relationships

Assumes only linear
relationships [136]

Multiple Linear
Regression 60–80 Can account for multiple

variables
Assumes only

linear relationships [20,137]

Decision Trees 70–85 Easy to interpret; can handle
nonlinear relationships Prone to overfitting [23]

Random Forest 80–90 Good for nonlinear
relationships

Can be slow with
large datasets [138,139]

Support Vector Machines 75–90 Can handle high-dimensional
data Prone to overfitting [140,141]

Artificial Neural
Networks 80–95 Can learn complex

relationships Can be prone to overfitting [142,143]

Spectral Indices 60–80
Simple and fast, it can provide

helpful information about
vegetation and soil properties.

Limited to specific vegetation
and soil types, and sensitive to

atmospheric interferences
[144,145]

Deep Learning 90–95 Can learn complex
relationships

Requires large amounts of
data and computing power [146,147]

Maximum Likelihood
Classification 60–80 Simple and easy to implement

Requires accurate training
data and assumes a normal
distribution of pixel values

[148,149]
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Table 2 summarizes the main approaches used in recent studies, encompassing the
estimated accuracy range, strengths, and weaknesses of each method. Deep learning
and artificial neural networks have the highest estimated accuracy ranges of 90–95%
and 80–95%, respectively. While multiple linear regression and spectral indices have
significantly lower accuracy ranges of 60–80%, linear regression has the lowest expected
accuracy. This can be explained by the fact that deep learning approaches focus more
on the complex nonlinear connections between covariates, which is more realistic than
the assumption of linearity. Researchers must consider the available data, investigation
scale, and desired accuracy to choose an appropriate mapping approach for salinization
assessment. The specific characteristics of the study area, such as vegetation cover, land
use, and soil type, should also be studied.

It is crucial to address the challenges associated with this topic, including data availabil-
ity, spatial resolution, and investigation scale. By considering the strengths and weaknesses
of different methodologies, researchers can build more practical tools for assessing soil
salinization based on remote sensing data.

5. Challenges in Salinization Mapping

Soil salinization assessment via remote sensing poses several challenges that must be
addressed to deliver reliable information on a spatiotemporal framework. Substantially,
the remote sensing community faces a trade-off between data quality, spatial coverage,
acquisition costs, and high accuracy [150]. One of the primary challenges is the limited
spatial coverage. As most sensors have low spatial coverage, this has restricted soil
salinization studies mainly to a local scale [151].

When tracking changes in soil salinity over an extended period, the limited temporal
coverage of remote sensing data presents another challenge. Since salinity can frequently
fluctuate in response to various factors, such as climate variability, irrigation practices,
and land management activities [152], it must be continuously evaluated to identify the
causes and impacts in the long term. Collecting and comparing remote sensing data at
different time intervals allows the detection of patterns and trends in soil salinization,
enabling a better understanding of its dynamics for more effective intervention strategies
to be developed. In the Yellow River Delta, the authors of [153] established a novel remote
sensing monitoring index of salinization based on a three-dimensional feature space model
using Landsat data. The research showed an increasing trend in salinization intensity
between 1984 and 2022 due to the inadequate agricultural systems adopted. The authors
of [154] extracted Sentinel-2 MSI-based indices to monitor soil salinity in a typical saline
zone in the Weigan River–Kuqa River Delta Oasis. The study proved that using remote
sensing-based monitoring models in this context is fundamental to comprehensively grasp
the salinization magnitude and enhance land management practices on the watershed
scale. Therefore, the concept of temporal variation is fundamental for the success of remote
sensing-based monitoring efforts, as proven by these studies.

Landsat missions have continuously acquired data since the 1970s, providing extensive
temporal coverage for analyzing land use and cover changes [155]. This can be leveraged
to monitor salinization and even predict future trends based on past data. In comparison,
other space missions, such as MODIS and Sentinel 2, have had less archived data since
2002 and 2015, respectively. Although they provide relevant information, more extended
coverage remains essential for temporal analysis-related studies, given the climate and
land cover changes that have gradually accelerated salinization expansion in some regions
in recent decades [156].

While hyperspectral data have shown higher efficiency [157], they are limited in use
compared to multispectral data, which have lower efficiency but broader spatial cover-
age [158]. The application of hyperspectral data is constrained by their high cost, low
temporal resolution, and restricted spatial coverage. These limitations make it difficult to
develop comprehensive and accurate salinization maps that could inform and assist in
developing soil management strategies. Nevertheless, the emergence of new generations of
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hyperspectral satellites such as the Italian PRecursore IperSpettrale della Missione Applicativa
(PRISMA), American Hyperspectral InfraRed Imager (HyspIRI), Japanese Hyperspectral
Imager Suite (HISUI), and German Environmental Mapping and Analysis Program (En-
MAP) is revolutionizing soil mapping by providing higher spatial and spectral resolution
data [159–161]. With their advanced capabilities, these satellites can offer a wealth of
information on the composition and properties of the land surface, allowing more detailed
and accurate soil salinity mapping.

Additional challenges may arise in some regions, such as those with dense vegetation
and high cloud cover [162]. Under dense vegetation cover, remote sensing data acquisition
and accuracy can be limited, with the obstructed view of the soil surface making it impos-
sible to directly detect salt content variations from bare soil, reducing mapping accuracy.
Similarly, cloud cover can hinder the acquisition of optical data, resulting in limited tempo-
ral coverage and mediocre accuracy, which can be addressed by implementing radar data
instead to avoid the atmospheric effects associated with optical data [163].

Validation based on ground truth data can improve salinization products derived
from remote sensing, but obtaining reliable field data can be complex due to factors such
as the heterogeneity of soil properties and salinity distribution, the lack of uniformity
in the methods used to collect and analyze soil samples, and the inaccessibility of some
locations [164]. Standardized methods for collecting and analyzing field data are essential
to account for soil heterogeneity and salinity distribution across various regions. This task
requires the involvement of soil experts and environmental scientists with local knowledge
to ensure the representativeness of field surveys.

Moreover, data processing and analysis pose another challenge to accurately assessing
soil salinity spatiotemporal distribution. With the enhancement of data quality retrieved
from sensors, the amount and dimension of generated information can reach the terabyte
scale, making it necessary to adopt efficient methods for processing, analysis, and storage
without affecting data quality [165]. Integrating multi-sensor data should also be further
explored to improve the accuracy of salinization maps, though it requires supplementary
efforts in terms of data processing and management, as well as high-performance comput-
ing resources. Addressing these challenges involves establishing processing algorithms
that meet the operational requirements of soil experts and remote sensing scientists [166].

Despite these challenges, remote sensing offers opportunities to better monitor and
map soil salinization. Establishing new data processing and analysis methods, adopting
standard variables for monitoring, and integrating multi-sensor data may provide an
opportunity to improve our ability to assess salt-affected lands. Further, recent research
has demonstrated the potential of using composite images in soil mapping by combining
information from multi-temporal data [167]. By integrating temporal information with
spectral data, such as surface reflectance values obtained from remote sensing, researchers
have developed accurate models for mapping soil attributes [168]. Composite images
have several advantages over single-date images, including noise reduction, the ability to
capture the dynamic nature of soil processes [169], and identifying long-term trends and
patterns. Thus, it is worth investigating in future studies for soil salinity mapping.

Furthermore, cloud-based systems, such as the Google Earth engine and Microsoft’s
Planetary Computer, have granted an opportunity to manage and analyze large amounts
of data and track temporal changes in soil salinity [170,171]. These systems are time-
efficient for time series data processing and interpretation, which are difficult to fulfill
using conventional computing methods. As such, cloud-based systems enable easier
collaboration and data sharing among researchers and policy-makers. For soil salinity
monitoring, they merit further investigation to explore their full potential.

Developing innovative remote sensing tools, such as imaging spectroscopy and UAV-
based systems, has tremendously improved our capacity to conduct a more thorough
and detailed local assessment. Specifically, UAV technology has emerged as an attractive
option for acquiring high-resolution data at the field scale and upscaling satellite images
covering larger geographic areas [172,173]. Future work should examine the efficiency
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and potential of recent technologies in validating the findings retrieved from space-borne
remote sensing systems.

6. Conclusions

The significance and relevance of salinization assessment using remote sensing in
the scientific community were assessed in this review paper. The number of research
papers published on this topic increased over the last decade, highlighting the need for
further development. This review underlines the advantages of remote sensing tools in
salinization mapping but also emphasizes the need for continued research and technological
development to improve the accuracy and effectiveness of salinization products to achieve
sustainable land management practices.

While hyperspectral data outperformed multispectral data regarding salt-affected
land characterization and detection due to its higher spectral resolution, less research has
been carried out using commercial sensors, including most hyperspectral instruments, due
to their high costs, limited spatial coverage, and restricted public access.

Given the limitations of current remote sensing systems, it is essential to investigate
alternative options. With the growing accessibility of open-access data, such as Sentinel-1
synthetic aperture radar (SAR) data, radar remote sensing has emerged as a promising ap-
proach for salinization mapping. Microwave sensors have the potential to provide valuable
information due to their capacity to penetrate vegetation and measure soil moisture content,
which has been demonstrated to have a strong correlation with salinization processes.

Data retrieved from high-resolution sensors have shown their full potential in identi-
fying plant canopy conditions and detecting soil moisture and salinity-induced stress at
the plot and local scale. Therefore, further research should prioritize regional monitoring
at the landscape scale to maintain environmental sustainability and explore the efficiency
of emerged hyperspectral remote sensing systems such as EnMap, PRISMA, and UAVs to
validate the findings from open-access satellite data.

Finally, it should be noted that no universally recognized approaches have been
established for estimating soil salinity using remote sensing that could be applied to
multiple scenarios and still produce accurate data under various climatic conditions.
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