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Abstract: Sea ice thickness (SIT) presents comprehensive information on Arctic sea ice changes
and their role in the climate system. However, our understanding of SIT is limited by a scarcity of
observations and inaccurate model simulations. Based on simultaneous parameter optimization with
a micro genetic algorithm, the North Atlantic/Arctic Ocean–Sea Ice Model (NAOSIM) has already
demonstrated advantages in Arctic sea ice simulations. However, its performance in simulating
pan-Arctic SITs remains unclear. In this study, a further evaluation of Arctic SITs from NAOSIM was
conducted based on a comparison with satellite and in situ observations. Generally, NAOSIM can
reproduce the annual cycle and downward trend in the sea ice volume. However, deficiencies can
still be found in the simulation of SIT spatial patterns. NAOSIM overestimates the SIT of thinner ice
(<1.5 m) in the Beaufort Sea, underestimates the SIT of thick ice (>1.5 m) in the central Arctic and is
unable to capture the upward trend in the SIT in the north of the Canadian Archipelago as well as to
reproduce the intensity of the observed SIT variability. In terms of SIT simulation, NAOSIM performs
better as the time approaches the optimization window (2000–2012). Therefore, in the context of rapid
changes in Arctic sea ice, how to optimize this model based on limited observations still remains
a challenge.

Keywords: sea ice thickness; Arctic; model; parameter optimization; NAOSIM; CS2SMOS

1. Introduction

Arctic sea ice has significantly reduced with climate change during the past several
decades. For example, it has undergone a decline in extent in all months, with a maximum
magnitude in September [1]. The average sea ice thickness (SIT) over the central Arctic
Basin has decreased by 2 m in the melt seasons of 2011–2018 compared to the 1958–1976
period, and the decline in volume is evident in satellite records, dominated by large losses
of thick multiyear ice [2]. Changes in the sea ice are causing impacts on the ecosystem and
human activities in the Arctic [3]. For example, opportunities for navigation may increase
under the opening of Arctic sea routes in summer [4–6]. Studies on these changes are of
great importance and a clearer understanding of Arctic sea ice should be strengthened.

The SIT is essential for understanding the sea–ice mass balance, and changes in
its distribution has implications for ocean–atmosphere heat fluxes and surface energy
budgets [2,7], which reflect more information on how sea ice is changing under the impact
of climate change. Unfortunately, compared with other sea ice properties such as the sea
ice extent or concentration, a long-term pan-Arctic record of the SIT is more difficult to
establish owing to a lack of reliable data in the Arctic. Currently, the commonly used data
types are in situ and remote sensing observations and numerical model outputs with or
without data assimilation. Moreover, each type of data has its own characteristics.

A number of SIT observations based on different measurement methods have been
publicly released in recent years. A historical SIT record from 1975 to 2005 is available

Remote Sens. 2023, 15, 2537. https://doi.org/10.3390/rs15102537 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15102537
https://doi.org/10.3390/rs15102537
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3707-3794
https://orcid.org/0000-0002-4181-2107
https://orcid.org/0000-0003-4347-9683
https://orcid.org/0000-0002-7114-2036
https://doi.org/10.3390/rs15102537
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15102537?type=check_update&version=1


Remote Sens. 2023, 15, 2537 2 of 15

currently, using upward-looking sonar (ULS) from submarines to measure the ice draft [8,9],
which has broad but incomplete spatial coverage and inconsistent temporal sampling. ULS
measurements have also been carried out on anchored moorings [10], which give long-term
SIT information but only at a local scale. Operation IceBridge uses airborne measurements
to retrieve the SIT mainly during March/April [11], and electromagnetic induction methods
from helicopters are also used to measure the SIT several times per year [12]. Besides,
buoys embedded in multi-year ice measure the sea–ice mass balance and explore how the
SIT changes along the trajectories [13]. In situ observations can best indicate the actual
changes in sea ice, but cannot combine both continuous, long-term temporal coverage and
extensive spatial coverage.

Pan-Arctic SIT data records can be obtained by remote sensing techniques. However,
unlike the relatively mature application to ice extent for the past 40 years, the development
of satellite observations of the SIT started late. Satellite-based methods using the laser
altimeter onboard the Ice, Cloud and Land Elevation Satellites (ICESat and ICESat-2) and
the radar altimeter onboard the Earth Resource Satellites (ERS-1 and ERS-2), Envisat and
CryoSat-2, can estimate the SIT from the measured ice freeboard with the assumption of hy-
drostatic equilibrium [14–18]. The SIT can also be derived from the brightness temperature
measured by the Soil Moisture Ocean Salinity (SMOS) satellite, but only for thin ice [19].
However, it is difficult for satellite sensors to correctly identify the different signals between
meltwater ponds and sea ice during summer. Most data are only available in the freezing
seasons. A year-round satellite SIT record from CryoSat-2 was released only recently, using
deep learning and numerical simulations to generate the SIT for the Arctic melt period, and
this is a bi-weekly pan-Arctic SIT dataset with a spatial resolution of 80 km [20].

In order to obtain a record of the SIT for a sustained, long-term period of time and with
wide spatial coverage, numerous models (without data assimilation) have been developed.
However, the simulations of these models still produce results that are noticeably different
from the actual sea ice changes. For instance, an evaluation of the Massachusetts Institute of
Technology general circulation model (MITgcm) indicated that the model underestimates
the seasonal growth in the sea ice volume (SIV) and demonstrates great uncertainty in its
SIT simulations in different seasons [21]. Although some start-of-the-art models from the
Coupled Model Intercomparison Project Phase 6 (CMIP6) can reasonably reproduce the
climatological mean SIT, a significant intermodel spread still exists [22].

To improve estimates of Arctic sea ice, sea ice reanalyses are produced by assimilating
observed information into the model. For example, the Pan-Arctic Ice–Ocean Modeling and
Assimilation System (PIOMAS) is a coupled sea ice–ocean model with sea ice concentration
(SIC) and sea surface temperature assimilations, and the SIT from PIOMAS agrees well
with satellite retrievals and in situ observations [23]. However, only specific variables can
be adjusted during the period of assimilation, which may affect the consistency of the mod-
eled sea ice variables. Moreover, efforts to improve parameterization schemes of physical
processes in sea ice models are also ongoing [24]. Numerous approaches have provided ef-
fective methods to perform multiple parameter optimization [25,26]. In these studies, a cost
function is minimized as a metric of the model–observation misfit to achieve optimization,
but problems may exist when faced with nonlinear model responses, resulting in a complex
shape of the cost function. Sumata et al. [27] found that the micro genetic algorithm (mGA)
has advantages in exploring the global minimum of a structurally complex cost function.
In a more recent study, they used the mGA approach to optimize the parameters of a
coupled sea ice–ocean model, the North Atlantic/Arctic Ocean–Sea Ice Model (NAOSIM),
which strongly improved the estimation of sea ice [28]. NAOSIM SIT simulations have
been used in estimations of thermodynamic and dynamic SIV changes to understand the
negative thermodynamic ice growth feedback mechanism in the Arctic [29]. It has been
found that, without any assimilation, NAOSIM can reproduce the above negative feedback
mechanism better than PIOMAS in the North America–Asia marginal seas, eastwards
from the Laptev Sea to the Beaufort Sea. The ice datasets given by NAOSIM provide a
good opportunity to analyze the Arctic sea ice changes in recent decades. Notably, the
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SIT observations used for optimization are constructed from multiple observations based
on a regression model, the Ice Thickness Regression Procedure (ITRP). The observational
sources include ULS instruments mounted on submarines or moorings, electromagnetic
sensors on helicopters or aircraft and lidar or radar altimeters on airplanes or satellites.
Some of the sea ice properties from NAOSIM have been evaluated previously [28]. The
optimized SIT simulations have been improved from an initial assessment comparing them
with CryoSat-2 and ITRP, but there may be inaccuracies due to the large uncertainties in thin
ice (<1 m) estimates in CryoSat-2 [30] and the errors from different individual measurement
systems in ITRP which are not accurately calculated and corrected in homogenizing the
observational SIT record [31]. The SIT has also been evaluated in recent studies of sea ice
volume export based on NAOSIM [32,33], but these evaluations have mainly focused on the
performance of NAOSIM in specific channels. Thus, it is worth further assessing whether
NAOSIM can accurately simulate the SIT in the Arctic-wide region if more appropriate
SIT observations are available. The annual cycle, linear trends, intensity of variability and
frequency distribution of the Arctic SIT from NAOSIM were all evaluated in this work
based on comparisons with satellite data and numerous in situ observations. Overall, our
evaluation demonstrated the reliability of the NAOSIM SIT and indicated that NAOSIM
can be used to analyze changes in Arctic sea ice over time.

The rest of the paper is organized as follows: The SIT data from NAOSIM and obser-
vations, as well as the data processing methods, are introduced in Section 2. In Section 3,
NAOSIM is evaluated against both satellite products and different in situ observations.
Finally, Section 4 presents our conclusions and discussion of this research in the context of
current limitations.

2. Data and Methods
2.1. SIT from NAOSIM

NAOSIM is a regional sea ice–ocean model of the Arctic and northern North Atlantic
Ocean, developed at the Alfred Wegener Institute. The sea ice part of the model is a
two-level dynamic thermodynamic sea ice model [34]. The ocean part of the model is
based on the Modular Ocean Model version 2 [35] and is coupled to the sea ice by the
formulation of Hibler and Bryan [36]. In addition, the model is driven by atmospheric
forcing from the National Centers for Environmental Prediction Climate Forecast System
Reanalysis Climate Forecast System version 2 [37]. Considering their impacts on sea ice
properties, 15 dynamic and thermodynamic parameters were selected for simultaneous
optimization, following the micro genetic algorithm (mGA) approach. This optimization
method minimizes the model–observation misfit with basin-wide observations of three sea
ice variables: SIC, sea ice drift (SID) and SIT. The SIC observations were obtained from the
low-resolution product OSI-409/OSI-409a (version 1.2) [38], while the SID observations
were from three products: OSI-405 [39], the sea ice motion estimates by Kimura et al. [40]
and the Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, version 2 [41,42].
Both the SIC and SID observations cover an optimization window of more than two decades
(1990–2012). The SIT observations are from the estimations of Lindsay and Schweiger [31].
They provided SIT estimates covering the Arctic basin during 2000–2012 based on the ITRP,
a least-squares multiple regression model [9]. The SIT from the ITRP is spatially smoothed
and only contains a nonlinear trend without interannual variability. Additionally, this
optimization only uses the SIT estimates from October to May to avoid errors in summer.
A medium-resolution version of the model was used to assess the optimized parameters,
with a horizontal spatial resolution of 28 km × 28 km and a vertical resolution of 30 levels.
Year-round daily SIT estimates from NAOSIM are available from 1979 to present day, and
1979–2020 was the period assessed in this study.

2.2. SIT from CS2SMOS

CS2SMOS is a statistically merged product that comprises the complementary charac-
teristics of the SIT from CryoSat-2 and SMOS, based on a weighted mean and an optimal
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interpolation scheme [43]. CryoSat-2 was basically designed to measure the SIT of thick
and perennial ice, and SMOS is sensitive in thin ice (<1 m) retrieval. Using the sensitivity
of the individual products to different SITs, the merged products are sensitive to the entire
SIT range and provide increased coverage at lower latitudes. Comparisons with airborne
SIT measurements have revealed CS2SMOS to have a reduced root mean square deviation
of about 0.7 m compared to CryoSat-2 in the Barents Sea. CS2SMOS provides seven-day-
averaged SIT estimates updated from mid-October to mid-April, and the dataset that covers
the entire Arctic is projected onto the 25 km EASE-Grid 2.0. Recently, on a moving average
basis, the temporal resolution of the datasets was improved from 7 days to 1 day in later
versions, which means the datasets can be updated daily [44]. Then, the temporal coverage
was extended from spring 2020 to 2022 in version 204 (v2.4), covering a 10-year range from
2011 to 2020 [45]. Furthermore, the spatial resolution CS2MOS is closer to NAOSIM, which
makes it more appropriate as a reference. Compared with the year-round SIT records from
CryoSat-2 [20], the closer temporal and spatial resolution between CS2SMOS and NAOSIM
gives a chance to present a more consistent expression of the physical processes and reduce
the representative errors. In this study, the CS2SMOS v2.4 SIT product from 2011 to 2020
was used as a reference satellite-derived dataset for comparison.

2.3. SIT from In Situ Observations

Multiple types of in situ Arctic SIT observations involved in this study were obtained
from airborne measurements, ice mass balance (IMB) buoys and ULS instruments on
bottom-anchored moorings and submarines and used to compensate for the limitations
of CS2SMOS.

NASAs IceBridge mission has been performing airborne surveys of polar ice since
2009. Scanning lidar altimeters, snow radars and cameras are carried on aircraft, and then
certain methods are used to retrieve the SIT, freeboard and snow depth [11]. In this study,
SIT data were obtained from the IceBridge L4 Sea Ice Freeboard, Snow Depth and Thickness
dataset version 1 [46], covering the period 2009–2013. The IceBridge campaigns in March
and April provide a view of the SIT at the end of freezing period over the year in the
western Arctic basin. The data are given along the aircraft track with a length scale of 40 m.

IMB buoys provide a Lagrangian dataset of sea ice changes along the drift trajectories.
Acoustic rangefinder sounders are located above and below the ice surface to measure
the ice growth and loss [47]. IMB buoys are deployed near the North Pole, some of which
drift through the Fram Strait and others to the Beaufort Sea. Although buoys tend to be
deployed on thick and level ice floes to achieve long-term data series, the track lengths of
available SIT data vary from ten days to more than two years. IMB buoys can measure
thermodynamic changes in sea–ice mass balance at individual locations, and therefore
these observed datasets were used to assess the model’s ability to simulate thermodynamic
changes in sea ice [48]. Sixty-eight buoys from 2002 to 2016 were used in this evaluation.

The Beaufort Gyre Exploration Project (BGEP) from the Woods Hole Oceanographic
Institution has deployed ULS instruments at four locations since 2003. These instruments
were installed beneath the Arctic ice pack at Beaufort Gyre to measure the ice draft with an
error of around 0.1 m [49]. Drafts are converted to thickness with a factor of 1.1, which is
approximately the ratio of mean seawater density to sea ice density [26]. In this study, three
moorings (BGEP_A, BGEP_B and BGEP_D) were used to give a SIT record over 15 years.
The long-term and consistent SIT observations from BGEP ULS provide a year-round
reference for comparison. Furthermore, ULS measurements taken onboard U.S. Navy
submarines were taken to detect Arctic sea ice drafts from the middle of the last century.
The data collected in different forms—analog paper charts and digitally recorded data—are
archived from 1975 to 2005 at the National Snow and Ice Data Center [50]. The data have
been declassified and released within a data release area, an irregular polygon covering
roughly 38% of the Arctic Ocean. Each submarine cruise lasts roughly one month and
is divided into short segments of less than 50 km with an average SIT. The draft records
reported from the submarines have a likely bias of 0.29 ± 0.25 m, caused by multiple sonar
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system errors [51]. In this study, data from 34 cruises during 1979–2005 were used, filling
the gap between the previous observations before 2000.

2.4. Data Processing and Methods

The multiple types of reference datasets used in this study were capable of covering the
temporal and spatial range of NAOSIM. According to the characteristics of sea ice changes,
the freezing and melting periods are October–April and May–September, respectively. To
avoid the error caused by the mismatch in spatial resolutions between model simulations
and observations, data were interpolated accordingly. NAOSIM data were converted using
a bilinear interpolation approach to the locations of the observations when compared
with satellite and BGEP ULS observations. For detail, when compared with satellite data,
NAOSIM data are interpolated to the Equal-Area Scalable Earth Grid (EASE-Grid) with
a spatial resolution of 25 km × 25 km. To compare the SIT from the observed trajectories
with grid averaging, the SITs from IMB, IceBridge and submarines were averaged to the
gridded data within each grid cell of NAOSIM (28 × 28 km) and paired with the closest
model grid cell.

The SIV is calculated by multiplying the effective SIT by the total area of the grid
where sea ice exists. The annual cycles of SIV and SIT are defined as the multiyear averages
of SIV/SIT for each day during the freezing period over the time period from 2011 to 2020,
and anomalies are defined as departures from the annual cycle. Bias, regression coefficient,
standard deviation (STD), correlation coefficient (CC), skewness (Ske) and kurtosis (Kur)
are used as evaluation metrics for comparing the SIT.

Bias is the mean difference between two vectors. In this study, the positive/negative bi-
ases between NAOSIM and the reference datasets indicate the overestimation/
underestimation of NAOSIM. The bias is calculated as follows:

Bias =
1
n

n

∑
i=1

(X−Y) (1)

where n is the number of samples.
The linear trend is the regression coefficient (β) of the linear regression model, which

is calculated with the least square method in this study:

β = (n ∑ n
i=1tX−∑ n

i=1t ∑ n
i=1X)/(n ∑ n

i=1t2 − (∑ n
i=1t)2

) (2)

where t is the time vector.
The STD measures the dispersion of the data relative to the mean. The STD of SIT

anomalies after detrending is used to measure the intensity of SIT variability, and the STD
is calculated as follows:

STD = σ =

√
1
n ∑ n

i=1

(
Xi − X

)2 (3)

Pearson correlation coefficients are used to describe the correlation between NAOSIM
and the observed SIT variability along the buoy trajectories in this study:

CC =
1
n

n

∑
i=1

Xi − X(Yi −Y)/(σXσY) (4)

where σX and σY are the standard deviations of the vectors X and Y, respectively.
A probability histogram is used to show the distribution of random values of the SIT,

with skewness and kurtosis used to show the symmetry and flatness of the distribution.
These metrics are calculated as follows:

Ske =

√
1

6n

n

∑
i=1

(
Xi − X

σ
)3 (5)
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Kur =
√

n
24

[
1
n

n

∑
i=1

(
Xi − X

σ
)4 − 3

]
(6)

3. Results
3.1. Comparison to CS2SMOS

As the SIT is characterized by seasonal and interannual variability and has been de-
creasing in recent decades [1,9], NAOSIM was evaluated against CS2SMOS in terms of
the annual cycle, linear trends and intensity of the SIT variability to determine how well
NAOSIM can replicate these characteristics. Figure 1 shows the annual cycle of SIV and
the spatial distribution of the annual mean SIT bias between NAOSIM and CS2SMOS in
the freezing period (October–April). NAOSIM can basically reproduce the increase in SIV
during the freezing period (Figure 1a). Negative bias in SIV can be found in NAOSIM from
October to December, while there is general agreement between NAOSIM and satellite ob-
servations from January to April, with only a slight positive bias occurring in February and
a more pronounced positive bias from mid-March to April. The uncertainties of CS2SMOS
become progressively greater from October to April, and the bias for all months is within
the uncertainty. To identify the differences in these two periods shown above, the spatial
patterns of the annual mean SIT bias in October–December and January–April are shown
in Figure 1b,c. During October–December, NAOSIM significantly overestimates the SIT
of thinner ice (<1.5 m) compared with CS2SMOS in the Beaufort Sea and underestimates
the SIT of thick ice (>1.5 m) in the southern Chukchi Sea and Central Arctic (Figure 1b). A
negative SIT bias of NAOSIM can be found in most of Baffin Bay and along the Eurasian
coast. The extensive underestimation of the SIT in October–December leads to an underesti-
mation of the SIV. During January–April, the area of SIT overestimation in the Beaufort Sea
expands, with the SIT bias turning positive in most of Baffin Bay and along the Eurasian
coast (Figure 1c). The counteracting positive and negative SIT biases in January–April lead
to a smaller SIV bias. For both periods, a significant SIT bias exists in most of the Arctic
region, exceeding the uncertainty of satellite observations. Although the good performance
of NAOSIM is clear when simulating the annual cycle of SIV in the Arctic, an obvious
mismatch can still be found in the spatial distribution of the SIT, with biases varying with
the seasons.
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Figure 1. The annual cycle of sea ice volume (SIV) and the annual mean sea ice thickness (SIT) bias of
the North Atlantic/Arctic Ocean–Sea Ice Model (NAOSIM) against CS2SMOS (merged CryoSat-2
and SMOS (Soil Moisture Ocean Salinity satellite) SIT product)] in the freezing period. In (a), the
orange and blue lines denote the SIV related to NAOSIM and CS2SMOS, respectively. The shaded
areas denote the uncertainty of the satellite SIV. (b) SIT Bias (2011–2020) from October to December
between NAOSIM and CS2SMOS. The black contours indicate the average SIT of NAOSIM, while the
dotted areas denote where the bias is beyond the uncertainties of CS2SMOS. (c) As in (b) but from
January to April.

Daily averaged SIV and SIT anomalies from NAOSIM and CS2SMOS were processed
into freezing period averages for obtaining a linear trend in response to the low-frequency
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variations in SIT. The linear trend of the freezing period average SIV anomalies and the
spatial distribution of the trend in SIT anomalies of NAOSIM and CS2SMOS and their
differences from 2011 to 2020 are shown in Figure 2. As Figure 2a shows, the observed SIV
anomalies decrease at a slow rate (−35 km3 yr−1), a small value similar to the insignificant
trend in the CryoSat-2 records from 2011 to 2018 [2]. Although the trend of NAOSIM
SIV (−182 km3 yr−1) shows a more significant decline than that of the observations, it
is still within the 95% confidence interval of the observations (−228 to 158 km3 yr−1).
A further analysis of the spatial distribution of the SIT trends was then carried out to
investigate the details of the difference in SIV trends between NAOSIM and CS2SMOS.
Satellite observations of SIT anomalies show a decreasing trend in the Pacific sector and
off the coast of Greenland (Figure 2b), particularly in areas near the Bering Strait and east
of Greenland, where the trends passed the 95% significance test. However, there is a clear
upward trend in areas around the north of the Canadian Archipelago, which has coverage
of thicker ice due to regional ice convergence [52]. A generally consistent downward spatial
trend in SIT anomalies from NAOSIM is shown in Figure 2c, with the fastest declines
concentrated in the Beaufort Sea and along the Greenland coast, both of which passed the
significance test, and only an upward trend in eastern Baffin Bay. As shown in Figure 2d,
compared to the satellite results, a slower rate of decline in SIT anomalies from NAOSIM
simulations is shown near the sea ice outflow passages, a faster speed is observed in the rest
of the decreasing region and the upward trend in the north of the Canadian Archipelago
cannot be captured by NAOSIM. Only in some regions are the differences beyond the
uncertainties of the observed trends (95% confidence interval), indicating that NAOSIM
can reproduce the decreasing trend in most of the Arctic. Note, however, because of the
small sample sizes of the SIV and SIT anomalies, the results of the linear trend are subject to
interannual variability. The SIT observations used for the optimized parameters have less
interannual variability, which may lead to some spatial mismatching between NAOSIM
and CS2SMOS. However, validation using higher temporal resolution data showed that
although the number of samples increases from 10 to 1770, the changing trend rate is less
than 2% for NAOSIM and 3% for CS2SMOS. The relative relations between NAOSIM and
CS2SMOS were stable regardless of which temporal resolution of data was used, i.e., the
trend of decreasing SIV was more pronounced for NAOSIM compared to CS2SMOS.

Figure 3 displays the spatial distribution and difference in the intensity of the SIT
anomaly variability after detrending between NAOSIM and CS2SMOS. The trend estimates
for the detrending process are based on daily averaged SIT anomaly sequences. As shown in
Figure 3a, the intensity of the SIT variability in satellite observations varies widely in terms
of its spatial distribution, with greater intensities in the Central Arctic and Canada–Novaya
Zemlya sector compared to other areas. Especially in the north of the Canadian Archipelago
and the Svalbard Islands, a large intensity SIT variability is apparent, reaching up to 0.77 m,
due to the intense sea ice deformation and a large amount of sea ice outflow [53]. The
intensity of the SIT variability simulated by the model is spatially consistent, with only
a small area of large variability intensity off the coast of the Canadian Archipelago and
Greenland, and an intensity of about 0.1 m in other areas. Compared with CS2SMOS,
NAOSIM underestimates the intensity of the SIT variability in most regions, especially in
the north of the Canadian Archipelago and Svalbard Islands, where sea ice changes are
severe. Only a slight overestimation in the middle of the Beaufort Sea and Chukchi Sea
exists. The spatial distribution of the differences in intensity of the SIT variability between
NAOSIM and CS2SMOS is significant in most regions. Compared with the simulation
of SIT trends, a wider spatial range of significant differences is found in the simulated
intensity of SIT variability, and a uniform underestimation is shown by NAOSIM. However,
the spatial distribution of intensity of SIT variability does not appear to be consistent with
the SIT bias in Figure 1.
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3.2. Comparison to In Situ Observations

Considering the uncertainties and limited temporal coverage of satellite datasets, in
situ observations were used to provide a more accurate evaluation with a broader temporal
coverage. Figure 4 displays the SIT frequency distribution of NAOSIM and IceBridge
observations. Compared with the mean SIT of IceBridge, it can be seen that a larger mean
SIT was simulated by NAOSIM in the Beaufort Sea but a smaller mean was simulated in
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the Chukchi Sea and the Central Arctic, with all the biases passing the significance test
(t-test with alpha = 0.05). In addition, in the Beaufort Sea, NAOSIM has a lower frequency
in sea ice below 1.5 m and a higher frequency within 1.5–3 m (Figure 4a). However,
a data processing bias should be noted in the IceBridge observations; IceBridge shows
insufficient sensitivity to thin ice with freeboard under 0.5 m, which results in the possible
underestimation of NAOSIM in the assessment [54]. SITs over 4 m and below 0.75 m cannot
be clearly simulated by NAOSIM. In the Chukchi Sea, NAOSIM has a significantly higher
frequency in the SIT range of 1.75–2.5 m and is unable to show ice above 2.5 m (Figure 4b).
Combined with the results in Figure 1c, we can see that the model underestimates the SIT in
areas close to the Bering Strait. In the central Arctic, the agreement between NAOSIM and
the observed SIT is better than in the other two regions, albeit the model still has a higher
frequency in the 2.5–3 m range and a lower frequency within 3–4.5 m (Figure 4c). The
spatial differences in the SIT bias obtained here are close to the conclusions from CS2SMOS,
confirming the results from the satellite-based analysis (Figure 1). In addition, a more
concentrated SIT distribution is exhibited by NAOSIM, with larger errors in the extreme
values of SIT compared to IceBridge.
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Figure 4. Probability histogram of the NAOSIM SIT and the IceBridge SIT in (a) the Beaufort Sea
(BS), (b) the Chukchi Sea (CS) and (c) the central Arctic (CA), along with (d) a schematic map of
the observational trajectories and three individual Arctic sea regions. The blue (red) stair-shaped
plots represent the NAOSIM (IceBridge) ice thickness. The dashed lines indicate the mean SIT of the
datasets. The bin size is 0.25 m and the probability distribution is normalized. N refers to the number
of grids in which observations are located.

Figure 5 presents the frequency distributions of the SIT for NAOSIM and BGEP
ULS in the Beaufort Sea for the freezing period (October–April) and melting period
(May–September) separately. NAOSIM has a positive bias compared to the observed
mean, which is consistent over both periods. The bias reaches 0.33 m during the freezing
period and only 0.12 m during the melting period. In the freezing period, a left-skewed SIT
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distribution can be found both in NAOSIM and the observations. The asymmetric distribu-
tion of the NAOSIM SIT is more significant, showing a higher frequency of SITs greater
than 1.8 m and a lower frequency of thin ice less than 1.6 m (Figure 5a). By comparing the
kurtosis of NAOSIM and the observations, it can be seen that the kurtosis of NAOSIM is
greater than that of the observations, which demonstrates the more concentrated distri-
bution of the model’s SIT. In the melting period, a small positive skewness exists in the
observed SIT distribution towards the minimal value zone for SIT, while an insignificant
negatively skewed distribution is shown by NAOSIM (Figure 5b). The kurtosis of NAOSIM
is smaller than that of the observations. It is difficult for the model to simulate the minimum
SIT observed in the range of 0–0.2 m. NAOSIM consistently overestimates the SIT in the
Beaufort Sea, showing more pronounced errors during the freezing period and inadequate
simulations of minimum SIT values during the melting period. This analysis presents the
SIT distribution difference between NAOSIM and the in situ observations in the Beaufort
Sea and complements the SIT data during the melting period in this region that is lacking
in CS2SMOS. Additionally, the overestimation of NAOSIM in the mean SIT in the Beaufort
Sea compared with BEGP ULS confirms the conclusion from CS2SMOS.
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Figure 5. Probability histograms of the SIT for NAOSIM and Beaufort Gyre Exploration Project
(BGEP) upward-looking sonar (ULS) observations in (a) October–April (freezing period) and (b) May–
September (melting period). The blue (red) stair-shaped plots represent the SIT of NAOSIM (BGEP
ULS). The dashed lines indicate the mean SIT of the datasets. The bin size is 0.2 m and the probability
distribution is normalized. N refers to the number of samples, and Mean, Kur and Ske refer to the
mean value, kurtosis and skewness of the SIT probability distribution, respectively.

BGEP ULS data were also used to evaluate the yearly SIT trend (Table 1). The time
period chosen for the trend analysis was firstly consistent with that of CS2SMOS. During
the CS2SMOS time period, a consistent downward SIT trend can be observed in both
CS2SMOS and ULS at the locations of three moorings (BGEP_A, BGEP_B and BGEP_D).
The decreasing rates in CS2SMOS are within the 95% confidence interval of ULS trends at
BGEP_A and BGEP_B. Therefore, the SIT trends in the Beaufort Sea can be characterized
by both satellite and in situ observations. NAOSIM can reproduce the decreasing trend
of the SIT at all locations. A faster rate of decrease at BGEP_A is found in NAOSIM
compared to the CS2SMOS- and ULS-observed trends, which slightly exceeds the 95%
confidence interval of the observed trend. However, the decreasing rates in NAOSIM at
BGEP_B and BGEP_D are within the 95% confidence interval of the observed trends. In
terms of the rate of decline at BGEP_B and BGEP_D, however, there are more moderate
decreasing rates in NAOSIM than the ULS observations, but faster than that of CS2SMOS.
During the ULS period, the observed SIT also shows year-round negative trends at these
three moorings. Over longer timespans, the decreasing trends of NAOSIM at all mooring
locations are within the 95% confidence interval. However, the simulated rate of decline is
slower than observed at all locations. In addition to validating the analysis by CS2SMOS,
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BGEP provides a comparison of the yearly trend and extends the temporal coverage to
2003. Analyses of both periods indicates NAOSIM can reproduce the decreasing trend of
the SIT in the Beaufort Sea.

Table 1. Linear trends (m yr−1) of NAOSIM, CS2SMOS and observed SIT anomalies at different
mooring locations and periods with corresponding 95% confidence intervals for observed trends.
The CS2SMOS period is October–April 2011 to 2020 and the ULS period is 2003–2020.

Mooring Trend in CS2SMOS Period Trend in ULS Period

BGEP_A −0.043 ± 0.030 −0.045 ± 0.018
CS2SMOS_A −0.016
NAOSIM_A −0.075 −0.044

BGEP_B −0.051 ± 0.034 −0.062 ± 0.018
CS2SMOS_B −0.029
NAOSIM_B −0.046 −0.047

BGEP_D −0.076 ± 0.044 −0.059 ± 0.028
CS2SMOS_D −0.017
NAOSIM_D −0.050 −0.040

The correlation and standard deviation (STD) difference between NAOSIM and the
IMB-observed SIT along 68 buoy trajectories are shown in Figure 6. By testing the correla-
tion coefficient for 95% significance, the NAOSIM SIT for 90% of the buoys was found to be
significantly correlated with the observed SIT. The NAOSIM SIT for 86% of the buoys is
positively correlated with the observed SIT, and most are highly correlated. In addition,
84% of the points fall within the positive interval of the STD difference and most passed
the significance test. These comparisons indicate that NAOSIM can basically simulate
the thermodynamic growth in the SIT, but shows a greater intensity of variability than
observed along most buoy trajectories.
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Figure 6. The correlation and STD difference between NAOSIM SIT and IMB (ice mass balance)
observations along 68 buoy trajectories. Circles (triangles) indicate that the correlation coefficient
passed (failed) the 95% significance test. Blue (red) points indicate that the STD difference passed
(failed) the significance test (F-test with alpha = 0.1). The red text indicates the percentage of circles
located in different quadrants.

As sea ice has changed rapidly in recent years, in order to see how NAOSIM performs
from 1980 to the present, submarine observations with the most overlap in time with
NAOSIM were selected for analysis (Figure 7). As shown in the frequency histogram,
the SIT observed by the submarines is distributed within 0–6 m and its peak is located
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in the interval of 3–3.5 m, basically following a Gaussian distribution. Meanwhile, the
NAOSIM SIT is distributed within 0–3.5 m and the peak is located in the range of 1–1.5 m,
with an obvious negative skew. The model has a low frequency in thick ice over 3 m,
with a particularly insufficient simulation ability for sea ice thicker than 3.5 m. NAOSIM
significantly underestimates the SIT during 1979–2005. Considering the rapid change in
SIT, the results were divided into three groups by decade (shown in Figure 7) to explore
whether the underestimation of the model differs in different decades. It can be seen
from the scatterplot that a thinner sea ice is simulated by NAOSIM overall, and this is
more pronounced before 2000. In the years closer to 2000, the scatter moves close to the
1:1 line and the underestimation of the model gradually decreases. After 2000, although the
amplitude of underestimation decreases, NAOSIM still overestimates the SIT for thin ice
(>1.5 m) and underestimates it for thick ice (<1.5 m). It can be seen that the model performs
better with time closer to the optimization window of the SIT (2000–2012), indicating
parameter optimization that is dependent on the choice of optimization window.
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4. Conclusions

A long-term daily NAOSIM SIT was produced from simulations with simultaneous
parameter optimization. In this study, the NAOSIM SIT data were evaluated against
satellite and in situ observations. Although multiple types of observations are used as
reference datasets in this study, these observations both complement and validate each
other in terms of spatial and temporal distribution and the physical processes of concern.
The present results show that the multi-source observations are self-consistent with each
other, which makes it possible to evaluate the NAOSIM SIT from several perspectives
based on the above data, and the conclusions are consistent. In general, NAOSIM can
basically reproduce the annual cycle and downward trend in SIV. In detail, NAOSIM
can reproduce the annual growth in the Arctic SIV during the freezing period and can
qualitatively estimate the downward trend in the SIV and SIT measured by the observations
in most regions of the Arctic. Although the trend differs from the observed values, it is
within the 95% confidence interval. Additionally, in terms of SIT thermodynamics, the
thermodynamic growth in the SIT in NAOSIM is highly correlated with that of the IMB
observations. These results suggest that NAOSIM can be used to study the variation in
Arctic sea ice over time.

However, deficiencies can still be found in NAOSIMs simulation of SIT spatial patterns
compared with satellite and in situ observations. This is mainly reflected in the SIT
overestimation of thin ice (<1.5 m) in the Beaufort Sea and the underestimation of thick ice
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(>1.5 m) in the central Arctic during the freezing period. In addition, the sea ice distribution
of NAOSIM is more concentrated and errors appear especially at extreme SITs. Compared
to the BGEP ULS observations, although NAOSIM always presents a thicker ice in the
Beaufort Sea, the error during the melting period is smaller than that in the freezing period.
Furthermore, a mismatch in the trend and intensity of variability can still be found between
NAOSIM and the observations. NAOSIM is unable to capture the upward trend in the
SIT in the north of the Canadian Archipelago and the spatial difference in the intensity
of the SIT variability. Additionally, it underestimates the intensity of the SIT variability
in most regions, especially in the areas with severe sea ice changes. Using smoothed SIT
observations without interannual variability for optimization may affect these simulations.
Notably, compared to submarine observations over a longer time span, although NAOSIM
produces an overall underestimation of the SIT before 2000, it performs better at times
closer to the optimization window (2000–2012), suggesting parameter optimization that is
dependent on the choice of optimization window. In the context of global warming, the
nature of Arctic sea ice properties is changing rapidly [55]. The limited temporal coverage
of SIT observations chosen for parameter optimization makes it difficult for the model to
accurately simulate the different sea ice variability over different decades. Therefore, it is
important to know how to better optimize the parameters used in model simulations of sea
ice based on limited observations under this rapid change, which may help to improve the
accuracy of estimated Arctic SIT and provide support to further research related to Arctic
sea ice.

In addition, the limited temporal sampling of Arctic SIT observations used in this
study for evaluation cannot be ignored. Although the temporal resolution of CS2SMOS is
better compared to the other satellite datasets, the seven day averaged product cannot be
completely consistent with the daily SIT from NAOSIM. The observations are unevenly
distributed over time, with all datasets concentrated after 2000 except for the data from
submarines. All these limitations will affect the accuracy of the assessment. Therefore, with
the development of observational datasets, more accurate estimations of Arctic SIT can be
expected to improve the reliability of such evaluations.
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