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Abstract: Studying the dynamics of snowline altitude at the end of the melting season (SLA-EMS)
is beneficial in predicting future trends of glaciers and non-seasonal snow cover and in compre-
hending regional and global climate change. This study investigates the spatiotemporal variation
characteristics of SLA-EMS in nine glacier areas of the Himalayas, utilizing Landsat images from
1991 to 2022. The potential correlations between SLA-EMS, alterations in temperature, and variations
in precipitation across the Himalayas region glacier are also being analyzed. The results obtained
are summarized below: (1) the Landsat-extracted SLA-EMS exhibits a strong agreement with the
minimum snow coverage at the end of the melting season derived from Sentinel-2, achieving an
overall accuracy (OA) of 92.6% and a kappa coefficient of 0.85. The SLA-EMS can be accurately
obtained by using this model. (2) In the last 30 years, the SLA-EMS in the study areas showed an
upward trend, with the rising rate ranging from 0.4 m·a−1 to 9.4 m·a−1. Among them, the SLA-EMS
of Longbasaba rose fastest, and that of Namunani rose slowest. (3) The SLA-EMS in different regions
of the Himalayas in a W-E direction have different sensitivity to precipitation and temperature.
However, almost all of them show a positive correlation with temperature and a negative correlation
with precipitation.

Keywords: Landsat; snowline altitude; spatiotemporal variation; Himalayas

1. Introduction

Snow cover plays an important role in many ecological, climatic, and hydrological
processes in mountain regions and high latitudes. Investigating the variations in snow
cover holds immense significance in scrutinizing and preserving water management prac-
tices for eco-systemic processes and irrigation purposes, since more than one sixth of the
world’s population depends on water sourced from mountainous snow melt [1–3]. The
snowline serves as the boundary separating snow covered area from snow-free areas on
the earth’s land surface [4], the snowline altitude (SLA), and its inter- and intra-annual
fluctuations constitute crucial traits that reflect the temporal transformations in snow cover
and the duration of snow melting [5]. In the middle latitudes, seasonal changes can cause
the position of the snowline to rise or fall [6,7], this temporary boundary is also called the
seasonal snowline (or the transient snowline) [8–11]. In the field of glaciology, the snow-
line refers specifically to the lower limit of snow cover at the end of the melting season,
equivalent to the snowline altitude at the end of the melting season (SLA-EMS) [12–14].
The SLA-EMS serves as a reliable symbol of the equilibrium line altitude (ELA) on glaciers
and is frequently utilized to signify the mass balance of glaciers [12–17]. The fall or rise of
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SLA-EMS directly reflects glaciers’ advance and retreat. As an important climate change
indicator, the study of SLA-EMS helps predict the future trend of glaciers and non-seasonal
snow cover and to understand regional and global climate change [18–20]. This research
holds immense significance for managing water resources in the cryosphere and ensuring
their sustainability.

The Himalayas host approximately 15,000 glaciers, many of which are proglacial and
rapidly retreating [21]. The Himalayan region consists of a chain of mountains, valleys, and
basins, with copious snow cover, representing an extremely vulnerable area that responds
acutely to regional and global climate alterations. In general, the glaciers situated in the
Himalayas have been in a state of recession since the year 1850 [22]. The loss of snow and
ice in the Himalayas during the last century has exceeded the rates of change recorded
anywhere else in the world over a comparable timeframe [23,24]. Perennial snow and ice
melt from the three primary Himalayan River systems (i.e., the Brahmaputra, Indus, and
Ganga) are utilized for various purposes such as irrigation, hydroelectric power generation,
bio-resource production, and meeting local water demands in catchments and alluvial
plains [25]. Monitoring changes in SLA in the Himalayas using remote sensing, and
exploring their correlation with climate variables, can offer valuable insights into the effects
of climate change on regional hydrology.

The employment of remote sensing technology has emerged as a significant approach
for conducting cryosphere research [26–30]. Using satellite remote sensing, it is possible
to extract and assess the snowline in regions that are challenging to reach due to their
rugged topography and severe weather conditions [31,32]. MODIS snow cover products
are extensively utilized for monitoring seasonal (or transient) snowline altitude over a large
area due to their high temporal resolution [5,16,33–36]. However, the spatial resolution of
MODIS snow cover products is limited, which makes it unsuitable for monitoring SLA-EMS
in small areas [13]. In contrast, Landsat images provide long-term and high-resolution
remote sensing data but have not been fully utilized due to challenges related to storage
and processing [6,17,37,38]. The Google Earth Engine (GEE) is a cloud computing platform
that facilitates access to powerful computing resources for analyzing large geospatial
datasets [39,40]. The potential of GEE for snow mapping and monitoring of snowlines has
been demonstrated in several studies [32,41,42]. Further research is necessary to develop
an effective approach for estimating continuous spatial SLA-EMS using Landsat imagery
over a long-term period. However, this may be challenging due to the influence of cloud
cover and cloud shadows on surface snow cover information, which can compromise the
accuracy of SLA extraction in optical remote sensing [26,43]. Therefore, combining the
advantages of high-resolution remote sensing, and developing the SLA extraction model
supported by GEE is an important way to accurately monitor the SLA-EMS.

This study used Landsat images to make long-term continuous observations of SLA-
EMS on 9 glacial areas in the Himalayas. The purposes of this study are to (1) extract the
SLA-EMS over the Himalayas during the end of snowmelt season (June to September)
between 1991–2022, based on the Landsat image; (2) analyze the spatiotemporal variations
of SLA-EMS; and (3) investigate the relationship between SLA-EMS and meteorological
variables, such as precipitation and temperature.

2. Study Area and Data
2.1. Study Area

The Himalayas are situated on the southern periphery of the Tibet Plateau, featuring
seven of the loftiest summits exceeding an altitude of 8000 m above sea level. This colossal
mountain range spans across a distance of 2400 km, with a breadth varying between
150–400 km in an east–west direction. The water reserves stored in the Himalayas glaciers
are estimated to be about 1012 m3 [44,45]. To assess the dynamics of mountainous SLA-EMS
in the Himalayas, nine glaciers (Figure 1, Table 1) distributed across the west, central, and
east Himalayas have been selected for this study. The retreating and thinning of these
glaciers have significant implications for agricultural production and geological disasters
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downstream, and these glaciers’ meltwater is the source of several major rivers [46,47]. The
meltwater of Gechongkang, Longbasaba, and Lianggang glacier eventually drain into the
Brahmaputra. The Rikha Samba glacier meltwater drains into the Langtang River. The
Toshain, Durung Drong, and Samudra Tapu glacier meltwater eventually drain into the
Indus. The MaNa and Namunani glacier meltwater eventually drain into the Ganga.
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Figure 1. The location and topography of the study region as represented. Glacier images are Landsat
series images (false-color composite in the SWIR, blue, and green bands) (a) Toshain; (b) Durung
Drong; (c) Samudra Tapu; (d) MaNa; (e) Namunani; (f) Rikha Samba; (g) Gechongkang; (h) Long-
basaba; and (i) Lianggang.

Table 1. Detailed information relating to each glacier and Landsat image was used.

Glacier Latitude/Longitude Location Landsat Path/Row Number of Used Images Area/km2

Toshain 35.14◦E/74.48◦N West Himalaya 149/36, 150/36, 150/35 419 32.0949
Durung Drong 33.74◦E/76.30◦N West Himalaya 148/37, 148/36 317 81.7236
Samudra Tapu 32.47◦E/77.44◦N West Himalaya 147/37, 147/38 236 95.0904

MaNa 30.98◦E/79.27◦N Central Himalaya 146/38, 146/39 318 54.0945
Namunani 30.45◦E/81.32◦N Central Himalaya 144/39 169 8.5518

Rikha Samba 28.83◦E/83.49◦N Central Himalaya 142/40, 142/40 203 7.452
Gechongkang 28.15◦E/86.72◦N East Himalaya 140/40, 140/41 263 53.6319
Longbasaba 27.90◦E/88.06◦N East Himalaya 139/41 178 10.3356
Lianggang 28.12◦E/90.37◦N East Himalaya 138/40, 138/41 194 75.1473

2.2. Data
2.2.1. Landsat Data

This study utilized land surface reflectance data obtained from the Landsat series
(TM/ETM+/OLI) during the period from June to September 1991 to 2022. This dataset has
a spatial resolution of approximately 30 m and a revisit interval of approximately 16 days.
All the land surface reflectance images were radiometrically corrected by the LaSRC [48]
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(OLI) or LEDAPS [49] (TM/ETM+) atmospheric correction method. That data includes a
quality assessment (QA) band, which can identify high-confidence cloud pixels by using
CFMask [50,51]. The study used green, near-infrared (NIR), shortwave infrared (SWIR),
and QA bands from Landsat image data to extract snow cover, besides using the NIR band
to distinguish snow from glaciers. This data can be directly processed and analyzed in GEE
by code.

2.2.2. Sentinel-2 MSI

The European Space Agency (ESA) launched the Sentinel-2 satellite in 2017, a multi-
spectral earth observation mission with high spatial and temporal resolutions. It features a
high-resolution multi-spectral imager with 13 spectral bands, including 10 m, 20 m, and
60 m spatial resolution, covering a wide swath of 290 km. The satellite’s revisit time is
5 days with two satellites (2A and 2B) at midlatitudes, under cloud-free conditions, pro-
viding continuous observation of Earth. The combination of the wide swath and frequent
revisit times offered by Sentinel-2 enables continuous monitoring of the Earth’s surface. To
validate the SLA-EMS extraction results obtained from Landsat data, the study employed
the Sentinel-2 Level-2A product, which is available from GEE.

2.2.3. SRTM DEM and ERA5-LAND Reanalysis

To extract SLA information, the study utilized the SRTM DEM NASA V3.0, acquired
from the Shuttle Radar Topography Mission [52]. With a global vertical accuracy of ap-
proximately 16 m and a spatial resolution of 30 m, the SRTM DEM NASA V3.0 enabled
the study to obtain reliable SLA data. The study also employed ERA5, which provides
hourly estimates of atmospheric, land, and oceanic climate variables from 1979 onwards.
Due to the complex and rugged topography of the study area, and limited field survey and
meteorological data recorded at the meteorological stations, they are not sufficiently repre-
sentative of the climatic conditions in the study area. We used precipitation/temperature
from ERA5 to investigate the relationship between SLA-EMS and meteorology. In addition,
compared with other climate reanalysis data, ERA5 has better applicability over the Tibetan
Plateau [53,54]. SRTM DEM and ERA5-LAND are available from GEE.

2.2.4. Auxiliary Data

The 2022 Fluctuations of Glaciers database was obtained from the World Glacier
Monitoring Service (WGMS, https://wgms.ch/, accessed on 10 December 2022), which
collects standardized observations of glacier changes, such as variations in mass, volume,
area, and length, over time. The WGMS employs the Fluctuations of Glaciers methodology
for this purpose. In addition, the study used version 6.0 of the Randolph Glacier Inventory
(RGI 6.0), which contains digital outlines of glaciers worldwide, sourced from the Global
Land Ice Measurements from Space initiative [55]. To analyze the influence of the El
Niño/Southern Oscillation on glacier fluctuations, the study employed the bi-monthly
multivariate El Niño/Southern Oscillation (MEI.v2, https://psl.noaa.gov/enso/mei/,
accessed on 10 February 2023) index [56,57]. The MEI.v2 is a time series of the dominant
combined empirical orthogonal function of five variables, namely sea level pressure, sea
surface temperature, zonal and meridional components of the surface wind, and outgoing
longwave radiation, over the tropical Pacific basin.

3. Methods

The complete flowchart outlining the process of extracting SLA-EMS is illustrated
in Figure 2. The methodology can be categorized into three key phases: (1) SNOMAP
and OTSU thresholding algorithm for snow classification map (snow, glacier, land, cloud),
(2) minimize snow cover extraction at the end of the melting season, and (3) regional SLA
extraction and accuracy verification.

https://wgms.ch/
https://psl.noaa.gov/enso/mei/
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Figure 2. Framework diagram of the SLA-EMS extraction and accuracy assessment from Landsat
image and DEM data using Google Earth Engine.

3.1. Snow Mapping

The QA band was used to identify Landsat images data clouds and eliminate cloud
pixels. After excluding cloud cover, the SNOMAP algorithm was employed in this study for
snow classification, leveraging the pronounced spectral difference between the shortwave
infrared (SWIR) and visible bands. This algorithm is the most commonly used in snow
and glacier remote sensing [58,59]. We take advantage of these bands’ features to establish
a computationally efficient method for mapping clean glacier and snow areas using the
normalized difference snow index (NDSI). The NDSI is calculated according to the equation:

NDSI = (ρGreen − ρSWIR)/(ρGreen + ρSWIR) (1)

where ρGreen is the surface reflectance in the green band and ρSWIR is the surface reflectance
in the SWIR band. Furthermore, in order to mitigate the effects of water and mountain
shadows, this algorithm utilizes only the reflectance values of NIR greater than 0.11. The
specific strategy is that a pixel with NDSI > 0.4 and NIR > 0.11 is identified as the clean
glacier and snow pixels.

The OTSU thresholding method [60] is an adaptive technique used for image segmen-
tation. In this study, it is used for distinguishing between ice and snow [61,62]. Moreover,
this technique is well-suited for delimiting snowlines for a vast number of glaciers, in
comparison to manual interpretation and semi-automated methods [63]. The method
utilized in this study is based on the principle that the gray-level which maximizes the
between-class variance (BCV) is chosen as the threshold, which maximizes the separability
function between two classes. (Figure 3). In this study, we utilized the distinct NIR spectral
reflection characteristics of the clean glacier and snow to apply threshold functions that
enabled the separation of the two. The use of NIR in this way facilitated the differentiation
of glaciers and snow in the imagery. Additionally, a snow classification image is obtained
by combining the identified snow, glacier, land, and the identified cloud in the QA band.



Remote Sens. 2023, 15, 2534 6 of 19

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 19 
 

 

between-class variance (BCV) is chosen as the threshold, which maximizes the separabil-
ity function between two classes. (Figure 3). In this study, we utilized the distinct NIR 
spectral reflection characteristics of the clean glacier and snow to apply threshold func-
tions that enabled the separation of the two. The use of NIR in this way facilitated the 
differentiation of glaciers and snow in the imagery. Additionally, a snow classification 
image is obtained by combining the identified snow, glacier, land, and the identified cloud 
in the QA band. 

 
Figure 3. Framework diagram of Otsu thresholding method. (a) RGB composition of Landsat OLI 
image. (b) Discriminate clean glaciers and snow from land by the SNOMAP method. (c)The NIR 
images that mask off land and cloud. (d) Histogram of NIR values. (e) To discriminate snow from 
glacier using Otsu thresholding method. 

3.2. Snow Cover Minimum Extent Extraction 
The cloud removal and time series fusion are carried out through the transient SLA 

to reduce the impact of clouds and obtain the most appropriate minimum snow cover 
range at the end of the melting season. 

3.2.1. Transient Snowline Altitude Cloud Removal 
To determine the ratio of snow cover to cloud cover in the area, we judge that if the 

proportion of cloud cover and snow cover was less than 1, the transient regional SLA (Sec-
tion 3.3) of the area would be extracted to remove the clouds. The strategy of transient 
SLA cloud removal: if the height of a pixel classified as a cloud was higher than the in-
stantaneous SLA, it would be categorized as snow. Conversely, if it was lower than the 
instantaneous SLA, it would be categorized as land. When the proportion of cloud cover 
is too large, it is easy to have very few snow pixels or cloud cover all around the snow 
cover area, which results in a large deviation or unable to extract the transient SLA. To 

Figure 3. Framework diagram of Otsu thresholding method. (a) RGB composition of Landsat OLI
image. (b) Discriminate clean glaciers and snow from land by the SNOMAP method. (c)The NIR
images that mask off land and cloud. (d) Histogram of NIR values. (e) To discriminate snow from
glacier using Otsu thresholding method.

3.2. Snow Cover Minimum Extent Extraction

The cloud removal and time series fusion are carried out through the transient SLA to
reduce the impact of clouds and obtain the most appropriate minimum snow cover range
at the end of the melting season.

3.2.1. Transient Snowline Altitude Cloud Removal

To determine the ratio of snow cover to cloud cover in the area, we judge that if the
proportion of cloud cover and snow cover was less than 1, the transient regional SLA
(Section 3.3) of the area would be extracted to remove the clouds. The strategy of transient
SLA cloud removal: if the height of a pixel classified as a cloud was higher than the
instantaneous SLA, it would be categorized as snow. Conversely, if it was lower than the
instantaneous SLA, it would be categorized as land. When the proportion of cloud cover is
too large, it is easy to have very few snow pixels or cloud cover all around the snow cover
area, which results in a large deviation or unable to extract the transient SLA. To ensure the
efficacy of the extracted transient SLA, this study sets that when the ratio of cloud to snow
area is greater than 1, it will directly participate in the temporal fusion processing.

3.2.2. Time Series Fusion

The time series fusion using multi-temporal snow classification images (including
images after cloud removal of transient SLA) approaches the end of the snowmelt season.
We obtain the map of the minimum snow cover that represents the end of the snowmelt
season. The strategy of time series fusion is as follows: each pixel is classified as land
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if it is distinguished as land by any temporal phase. When over 50% of the pixel are
identified as snow and other time series are classified as clouds, the pixel is labeled as
snow. Conversely, when more than 50% of the pixel are identified as clouds and other time
series are labeled as snow, the pixel is classified as clouds (Figure 4). The minimum snow
coverage map representing the end of the snowmelt season obtained after fusion is used to
extract the SLA-EMS.
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3.3. Regional Snowline Altitude Extraction

Our study presents a method for extracting regional SLA based on the approach
developed by Krajčí et al. (2014) [5]. The proposed method is based on the principle of
determining an altitude within the target region that minimizes the sum of non-snow pixels
above the altitude and snow pixels below the altitude. The altitude corresponding to this
condition is considered to represent the SLA in the region (Figure 5). The calculation of
regional SLA is expressed as:

sum = Cbelow + Cabove (2)

sumSLA = Min(sumelevmin , sumelevmin+1, · · ·, sumelevmax) (3)

where sum is the total of the number of snow pixels below the altitude (Cbelow) and the
number of non-snow pixels above the altitude (Cabove), elevmin is the minimum altitude in
the region, and elevmax is the maximum altitude in the region.

The specific process starts from the minimum altitude of the region and calculates the
total of the number of snow pixels below the target altitude and the number of non-snow
pixels above the altitude. Then, the calculation is carried out once for every additional 1 m
altitude to the maximum altitude in the region. Finally, find the minimum value sumSLA
and the altitude corresponding to this value is the SLA in this region. This method can
allow the existence of partial cloud coverage and is the optimal estimation of SLA in the
target region. This method is used to extract transient SLA and SLA-EMS.
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3.4. Accuracy Assessment

The Sentinel-2 image with higher spatial resolution and shorter revisit period is used
to verify the accuracy of the Landsat data in extracting the SLA-EMS by extracting the
minimum snow cover range at the end of the melting season. The specific verification
method is as follows: for snow cover mapping using the visual interpretation method,
multi-temporal Sentinel-2 remote sensing images of each scene, approaching the end of
snowmelt season and with cloud cover less than 10% in the study area, from 2019 to 2022
have been utilized. Then, these images adopt the same time series fusion strategy with
Landsat to obtain the minimum snow cover range at the end of the melting season extracted
by Sentinel-2, and the image is taken as the true value. Finally, based on the minimum
snow cover range map at the end of the melting season extracted by Sentinel-2, random
sampling of verification samples is conducted near the snowline location, and combined
with DEM data and the SLA-EMS extracted by Landsat, to calculate the overall accuracy
(OA), precision (Pre), recall (Rec), and kappa coefficient of the SLA-EMS extraction model.
The calculation is expressed as:

OA =
A + D

A + B + C + D
× 100% (4)

Pre =
A

A + B
× 100% (5)

Rec =
A

A + C
× 100% (6)

Pe =
(A + C)(A + B) + (B + D)(C + D)

(A + B + C + D)2 (7)

Kappa =
OA − Pe

1 − Pe
(8)

where A is the number of points above the SLA-EMS of the Landsat and identified as snow
in the Sentinel-2 minimum snow coverage, B is the number of points above the SLA-EMS
of the Landsat and identified as snow-free in the Sentinel-2 minimum snow coverage, C
is the number of points below the SLA-EMS of the Landsat and identified as snow in the
Sentinel-2 minimum snow coverage, and D is the number of points below the SLA-EMS
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of the Landsat and identified as snow-free in the Sentinel-2 minimum snow coverage.
When the Pre > Rec, there is an overestimation of SLA, when the Pre < Rec, there is an
underestimate of the SLA.

4. Results
4.1. Accuracy of SLA-EMS

The accuracy of the SLA-EMS extraction in the study areas based on Landsat was
evaluated quantitatively by establishing a confusion matrix and calculating the OA, Pre,
Rec, and Kappa coefficients (Table 2). The results show that the extraction of SLA-EMS in
the study area has high accuracy. OA is 92.6%, and the Kappa coefficient is 0.85. However,
the Pre in the study area is slightly lower than Rec, indicating that the SLA-EMS extracted
by Landsat is slightly underestimated compared with the minimum snow cover range at
the end of the melting season at Sentinel-2 with higher time resolution. The Pre of the study
area is 90.9%, which means that the probability of being identified as snow-free cover in the
minimum snow cover range extracted by Sentinel-2 above the SLA-EMS period extracted
by Landsat is 9.1%. The Rec of the study area is 94.9%, which means that the probability of
being identified as snow cover in the minimum snow cover range extracted by Sentinel-2
under the SLA-EMS extracted by Landsat is only 5.1%.

Table 2. Confusion matrix relating the Sentinel-2 minimum snow cover and the SLA-EMS derived
from Landsat data.

Sentinel-2 Snow Sentinel-2 Snow-Free

Above Landsat SLA 1219 121
OA = 92.6%

Kappa = 0.85

Below Landsat SLA 66 1108
Pre = 90.9%
Rec = 94.9%

4.2. Regional SLA Dynamics during the Snowmelt Season

The time series of regional SLA for different glaciers from June to September at 16 days
intervals are demonstrated in Figure 6. The regional SLA gradually increases from June
onwards due to the snowpack melting, reaching its maximum in July or August, and sub-
sequently decreasing thereafter. The regional SLA exhibits large interannual fluctuations,
which differ in different glaciers. To further visualize the regional SLA dynamics during
the snowmelt season, Figure 7 displays the spatial pattern of the regional SLA for different
glaciers (the black line indicates the SLA-EMS). Overall, the glaciers located in the East
Himalayas have the highest Regional SLA, while the West Himalayas has a lower regional
SLA. The regional SLA during the snowmelt season and the SLA-EMS reflect well the
snow cover state of retreat above the glacier area. Taking Durung Drong as an example,
the regional SLA rises from 4650 m (June) to 5082 m (August) and declines to 4759 m
(September). Additionally, the SLA-EMS (5199 m) is higher than all the regional SLAs
during the snowmelt season, reaching the peak of snow cover retreat.

4.3. Interannual Variations of SLA-EMS

To illustrate the fluctuations of snow cover at the end of the melting season, the
interannual variations of SLA-EMS are presented in Figure 8. Overall, the mean SLA-
EMS gradually increases from the West Himalaya to the East Himalaya, from Toshain
(5188 m) to GechongKang (6204 m). The SLA-EMS for all glaciers generally shows an
increasing trend during 1991–2022, ranging from about 13 to 301 m. Specifically, the SLA-
EMS of Longbasaba is the significantly fastest rising (linear trend = 9.41 m·a−1, p < 0.05),
increasing by approximately 200.4 m. The SLA-EMS of Namunani is the slowest rising
(linear trend = 0.4 m·a−1), increased by approximately 13 m. In addition, the standard
deviation (σ) reflects the interannual fluctuations of SLA-EMS. It can be seen that MaNa
shows a relatively low standard deviation of SLA-EMS (σ = 64.4 m) reflecting the small
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interannual variability. Longbasaba shows relatively high interannual variability of SLA-
EMS (σ = 144.03 m), reflecting its unstable snow cover state.
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4.4. The Influences of Climate Factors on SLA-EMS

Figure 9 shows the interannual variations of annual temperature/precipitation and
summer temperature/precipitation. The annual temperature/precipitation refers to the
mean temperature/total precipitation from the previous year October to the current year
September and the summer temperature/precipitation refers to the mean temperature/total
precipitation during the current year June–August. The temperatures of Durung Drong,
Samudra Tapu, MaNa, and Longbasaba have exhibited a declining trend over the past
three decades. Similarly, the yearly precipitation in the three glacial regions situated in
the Western Himalayas Mountains has displayed a conspicuous downward trend. The
Rikha Samba, GechongKang, Longbasaba, and Lianggang precipitation in the central and
eastern Himalayas are mainly concentrated in summer, and the summer precipitation
accounts for 70.2%, 75.4%, 70.2%, and 69.7% of the whole year, respectively. Toshain has
the highest average summer temperature (2.6 ◦C), and Longbasaba has had the highest
average annual temperature (−6.7 ◦C) over the past three decades. Samudra Tapu has had
the lowest average summer (−1.3 ◦C) and annual (−12.2 ◦C) temperature over the past
three decades. Figure 9 shows that some correlation between temperature and SLA-EMS.
For instance, both the temperature and SLA-EMS of MaNa reached a maximum in 2008,
reached a minimum in 2019.

Table 3 further displays the correlation of the SLA-EMS, annual temperature/precipitation,
and summer temperature/precipitation for different glaciers. The correlation between
SLA-EMS and temperature is typically positive, while it is negative with precipitation for
almost all glaciers. This implies that SLA-EMS would increase with temperature rise or
precipitation decline. More specifically, the SLA-EMS correlates more with precipitation
than the temperature for Durung Drong, Samudra Tapu, Namunani, Rikha Samba, and
Lianggang. Among them, the SLA-EMS is significantly affected by annual precipitation
in Durung Drong (p < 0.05) and Samudra Tapu (p < 0.01), while it is significantly affected
by summer precipitation in Lianggang (p < 0.01). The SLA-EMS correlates more with
temperature than precipitation for Toshain, MaNa, Gechongkang, and Longbasaba. Among
them, the SLA-EMS is significantly affected by annual temperature in MaNa (p < 0.01)
and Longbasaba (p < 0.01), while it is significantly affected by summer temperature in
Gechongkang (p < 0.05).
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Figure 9. Time series of the annual temperature/precipitation and summer temperature/precipitation
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Table 3. Pearson correlation coefficients between the SLA-EMS, annual temperature/precipitation,
and summer temperature/precipitation for different glaciers.

Summer Temperature Annual Temperature Summer Precipitation Annual Precipitation

Toshain 0.184 0.165 −0.067 −0.061
Durung Drong 0.236 0.031 −0.242 −0.364 *
Samudra Tapu 0.271 0.160 0.077 −0.488 **

MaNa 0.264 0.462 ** −0.017 0.051
Namunani 0.106 0.027 −0.089 0.164

Rikha Samba 0.103 0.130 −0.288 −0.267
Gechongkang 0.385 * 0.185 −0.092 −0.050
Longbasaba 0.034 0.428 ** −0.066 −0.058
Lianggang 0.289 0.059 −0.444 ** −0.309 *

Note: * and ** indicate statistical significance at the 0.05 and 0.01 level, respectively.
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5. Discussion
5.1. Uncertainties and Limitations

In this study, we present a method approach to extract the SLA-EMS by utilizing long-
term (1991–2022) continuous Landsat observations developed to track the dynamics of
SLA-EMS in the Himalayas. The SLA-EMS extracted by this method can capture the snow
cover state above the nine glacier areas with relatively high accuracy (Sections 4.1 and 4.2).
However, the uncertainties and limitations (including snow cover mapping and SLA-EMS
extraction) may come from the following:

(1) in mountainous regions, the accuracy of snow cover range extraction using optical
remote sensing images can be influenced by topographic effects, such as moun-
tain shadows caused by terrain fluctuations (topographic effect). The topographic
effect had a significant impact on the progress of remote sensing in mountainous
regions [64,65], and thus many researchers have developed topographic correction
methods. For instance, the spectral reflectance of snow cover is reduced in moun-
tainous areas under the shadow, as compared to the reflectance of soil or vegetation
that is exposed to direct sunlight. The latest topographic correction methods may
greatly eliminate the effect of topographic effect on mountain snow cover information
identification [66–68]. In addition, for the SLA extraction at the pixel scale [4,35], the
effect of microtopographic factors (e.g., slope gradients and aspect) on SLA should be
considered. This study focuses on the SLA at the regional scale (e.g., a glacier area or a
catchment) to obtain one comprehensive SLA value for a region. Therefore, this study
does not consider the slight effect of the topographic effect and microtopographic
factors for a while.

(2) cloud and cloud shadow interferences have long been one of the most significant
error sources of snow cover information extraction in optical remote sensing. In this
study, a small amount of cloud cover can be removed by the regional SLA (when
the proportion of cloud cover and snow cover is less than 1). However, when this
ratio is greater than 1 (very large), the accuracy of the extracted regional SLA is
greatly reduced, and then so is the accuracy of cloud removal. Moreover, the cloud
information of Landsat is derived from the cloud flag based on the CFMask algorithm
with an overall accuracy of 96.4% [69]. Selkowitz et al. [70] (2015) reported that
the CFMask algorithm was susceptible to commission errors in regions of rocky,
alpine terrain, and where a combination of snow, ice, and other land cover types
were present. In this case, the revised CFmask approach developed by Selkowitz
et al. (2015) can be adopted to improve the ability of cloud recognition based on
Landsat data. Additionally, combining Sentinel-1 synthetic aperture radar (SAR)
remote sensing data with Sentinel-2 optical remote sensing data can improve the
ability to identify snow cover under cloud cover [71,72].

(3) Landsat image has a long revisit period (16 days) and there are inevitable data gaps
at a certain time, originating from cloud cover, sensor, orbital limitations, and other
factors. In this case, the available snow cover maps during the snowmelt season are
quite scarce, and thus the accuracy of SLA-EMS extraction will be affected.

5.2. Spatiotemporal Variation of SLA-EMS

This study found that spatial interannual fluctuation of the SLA-EMS in the study
areas had shown an upward trend in the past three decades (Figure 8), which is very in
keep with the research conclusion that the material balance of Himalayas Mountain is in
a negative balance state [21,25,73,74]. Previous studies, such as Maanya et al. (2016) [75]
and Wei et al. (2021) [76], have documented the rapid retreat and fragmentation of Durung
Drong and Longbasaba glaciers, which corresponds with the observed increase in SLA-
EMS of both glaciers in our study. Furthermore, we conducted the correlation between
the annual mass balance (AMB) of Rikha Samba in 11 years and its corresponding SLA-
EMS was analyzed (as shown in Figure 10), revealing a considerable negative correlation
between the two variables. The methodology developed in this study is anticipated to
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enhance the precision of assessing the annual mass balance of glaciers and offer essential
data support for reconstructing long-term, large-scale annual mass balance.
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The SLA-EMS in the western Himalayas is the lowest, and the SLA-EMS in the eastern
Himalayas is the highest. The observed spatial pattern in the distribution of SLA could
be explained by the fact that the Eastern Himalayas have higher elevations than the West
Himalayas. The average altitude of the three study areas in the Eastern Himalayas is
approximately 6067 m, while that of the West Himalayas is about 5212 m. The distribution
pattern of SLA-EMS, which is influenced by topographic height, can be explained by the
mass altitude effect. This effect is caused by the thermodynamic impact of mountainous
masses [77]. Besides, we found that the overall SLA-EMS of Namunani on the northern
slope is higher than that of Rikha Samba on the southern slope of the central Himalayas.
Additionally, some studies have shown that the SLA of the Himalayas is low on the
south slope and high on the north slope [78,79]. The reason is that the south slope of
the Himalayas has a monsoon climate with high temperatures and distinct dry and rainy
seasons. Precipitation increases in summer under the influence of the Indian monsoon.
Precipitation decreases in winter while it decreases in the north slope in a high and cold
climate. The terrain of the high Himalayas obstructs not only the cold air from the north
to the southern slope but also the significant amount of water vapor carried by the Indian
monsoon from the southern slope to the northern slope, resulting in a notable decrease in
water vapor reaching the northern slope. This phenomenon leads to a significant difference
in SLA between the southern and northern slopes, with the SLA on the southern slope
being lower than that on the northern slope.

5.3. Effect of Climatic Factors and ENSO on SLA-EMS

As a kind of climate marker line, the altitude of the snowline is affected by climate
factors and also reflects climate change. The existing research shows that under the influ-
ence of global warming, the glacier area is shrinking, and the SLA is increasing [4], which
is consistent with the research in this paper. The study found that SLA-EMS in different
regions of the Himalayas in a W-E direction have different sensitivity to precipitation and
temperature. There exists a positive correlation between SLA and temperature, such that
an increase in temperature leads to an increase in SLA. Conversely, there is a negative
correlation between SLA and precipitation, such that increased precipitation results in a
decrease in SLA.

The variation of SLA is closely related to atmospheric circulation. When abnormal
changes in atmospheric circulation occur, the extreme climate will occur and the SLA will
be abnormal [80]. ENSO is the most typical strong signal of global air–sea interaction,
which has a great influence on the interannual variation of SLA control [81]. Figure 11
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shows the statistics of warm and cold periods in ENSO from 1991 to 2022. Obviously, the
MEI from 2007 to early 2009 and from early 2010 to early 2012 continued to be less than
0, experiencing a long cold period, the SLA-EMS of Durung Drong, MaNa, Rikha Samba,
Longbasaba, and Lianggang showed troughs during this period (Figure 8). Additionally,
the MEI from 2015 to early 2016 was greater than 0, experiencing a warm period, the SLA-
EMS in glaciers such as MaNa and Lianggang showed peaks during this period (Figure 8).
Therefore, it is inferred that the abnormal SLA-EMS variation of the Himalayas glacier may
be due to the action of La Niña and El Niño through global air–sea.
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Figure 11. Time series of the Multivariate ENSO Index (MEI). The red and blue solid dots represent
the warm and cold periods, respectively, based on the MEI threshold of ±0.5 ◦C for El Niño and La
Niña events.

6. Conclusions

Comprehending the dynamics of SLA-EMS is crucial in signifying the impact of
climate change. The main goal of this research is to establish a dataset of SLA-EMS
(1991–2022) for nine glacier regions in the Himalayas, employing the newly developed
method for extracting SLA-EMS. On this basis, the spatiotemporal dynamics of SLA-EMS
and their relationship to meteorological factors (temperature/precipitation) are analyzed.
The primary findings can be condensed as follows:

(1) The developed method for extracting the spatiotemporal patterns of the snowline
altitude at the end of the melting season (SLA-EMS) is efficient. Furthermore, the
accuracy of the extracted SLA-EMS data was assessed using higher resolution Sentinel-
2 data, resulting in an OA of 92.6% and a Kappa coefficient of 0.85.

(2) The SLA-EMS in all glacier areas in the Himalayas exhibited a general increasing
trend during the period from 1991 to 2022. The SLA-EMS of Longbasaba is the
significantly fastest rising (9.41 m·a−1), and the SLA-EMS of Namunani is the slowest
rising (0.4 m·a−1).

(3) The results of the correlation analyses between the SLA-EMS and temperature/precipitation
demonstrate that the sensitivity of temperature and precipitation to variations in SLA-
EMS varies across the different glacier areas. However, annual temperature/precipitation
has a more significant impact than summer temperature/precipitation in general. The
atmospheric circulation might have also been associated with anomalous SLA-EMS.

(4) The robust storage and computational capabilities of the GEE platform have signifi-
cantly enhanced the efficiency of remote sensing-based SLA extraction and provided
substantial computational resources for large-scale and long-term monitoring of
SLA dynamics.
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