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Abstract: Leaf area index (LAI) and leaf chlorophyll content (Cab) are two important indicators
of vegetation growth. Due to the high-coupling of spectral signals of leaf area and chlorophyll
content, simultaneous retrieval of LAI and Cab from remotely sensed date is always challenging.
In this paper, an approach for joint estimation of grassland LAI and Cab from unmanned aerial
vehicle (UAV) hyperspectral data was proposed. Firstly, based on a PROSAIL model, 15 typical
hyperspectral vegetation indices (VIs) were calculated and analyzed to identify optimal VIs for LAI
and Cab estimation. Secondly, four pairs of VIs were established and their discreteness was also
calculated for building a two-dimension matrix. Thirdly, a two-layer VI matrix was generated to
determine the relationship of VIs with LAI values and Cab values. Finally, LAI and Cab were jointly
retrieved according to the cells of the two-layer matrix. The retrieval reduced the cross-influence
between LAI and Cab. Compared with the VI empirical model and the single-layer VI matrix, the
accuracy of LAI and Cab retrieved from UAV hyperspectral data based on the two-layer VI matrix
was significantly improved (for LAI: R2 = 0.73, RMSE = 0.91 m2/m2 and u(SD) = 0.82 m2/m2; for
Cab: R2 = 0.79, RMSE = 11.7 µg/cm2 and u(SD) = 10.84 µg/cm2). The proposed method has the
potential for rapid retrieval of LAI and Cab from hyperspectral data. As a method similar to look-up
table, the two-layer matrix can be used directly for LAI and Cab estimation without the need for prior
measurements for training.

Keywords: joint estimation; leaf area index; leaf chlorophyll content; VI matrix; UAV
hyperspectral data

1. Introduction

Grassland degradation is a serious ecological and economical problem in northern grass-
land of China. Leaf area index (LAI) and leaf chlorophyll content (Cab), two key indicators
of grassland vegetation growth, are important access points for studying the problem [1–3].
Due to the mobility characteristics of unmanned aerial vehicles (UAVs), they provide
a more efficient and convenient means for grasslands monitoring [4–7]. Relatively
high spatio-temporal resolution and spectral resolution information for grasslands can
be collected based on the UAV system, which can be equipped with consumer-grade
hyperspectral sensors.

Modeling and analysis based on hyperspectral data are important methods to estimate
LAI and Cab in large areas of grassland. Many studies have successfully retrieved LAI
and Cab using the inversion of a radiative transfer model using methods such as look-up
tables (LUT), neural networks (NNs), simulated annealing (SA), genetic algorithms (GAs)
and other optimization techniques [2,8–11]. However, due to the measurement and model
uncertainties and the limited information carried by the radiometric signal, the inversion
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of physical models is ill-posed [12–14]. Vegetation indices (VIs), calculated based on target
information of spectral signals, are computationally simple. VIs can be used as the model
parameter in place of the full spectral band for inversion model construction, representing
an important method for retrieving LAI and Cab from remote sensing data.

The changes in LAI and Cab are jointly reflected in canopy reflectance. At times,
two different vegetation types or growth states (different combinations of LAI and Cab)
may present the same spectral characteristics. Therefore, under the coupling effect of
spectral information, the retrieval of LAI and Cab based on VIs is influenced by their
variation [15]. VI optimization and VI combinations are two efficient ways to improve the
retrieval accuracy of LAI and Cab. The optimized VIs, such as TCARI and MCARI, have
been adjusted to improve their relevance to Cab by reducing the influence of background
soil spectral information [16,17]. However, the effects of LAI on Cab retrieval still exist.
Liang et al. pointed out that although the OSAVI had become more sensitive to LAI through
adjustment, the Cab still had influence on the relationships between the VI and LAI at low
chlorophyll contents [15]. VI combinations have been established to reduce the effect of
one parameter on the retrieval of another parameter. For example, since VIs such as TCARI
and OSAVI are sensitive to Cab and LAI, respectively, their ratio TCARI/OSAVI can be
used for Cab retrieval by reducing the effect of LAI [16]. The simple ratio indices include
R750/R700 and R865/R665; the former is strongly correlated to Cab, while the latter is
widely used in LAI estimation. Therefore, their combination can be used for the estimation
of Cab and LAI [17].

Simultaneous retrieval of LAI and Cab based on appropriate VI combinations is
one way to solve the problem and improve the estimation accuracy. In this study, an
approach for the joint estimation of grassland LAI and Cab from unmanned aerial vehicle
(UAV) hyperspectral data is proposed. The approach focuses on (1) evaluating different
VI combinations for joint estimation of LAI and Cab based on PROSAIL model simulation;
(2) generating a two-layer VI matrix to determine the relationship between VIs and LAI
values and Cab values; (3) testing the sensitivities and reliability of the two-layer matrix
with simulated data; (4) carrying out the retrieval of LAI and Cab from UAV hyperspectral
data over a grassland demonstration area.

2. Materials and Methods
2.1. The Study Area and Data
2.1.1. Description of the Study Area and In Situ Measurements

In order to carry out research on grassland ecosystem function assessment, a compre-
hensive field campaign was conducted over Inner Mongolia Grassland Ecosystem Research
Station (IMGERS). The IMGERS (UL: 43◦34′18.81′′N, 116◦39′24.82′′E; UR: 43◦34′19.03′′N,
116◦40′40.75′′E; BL: 43◦33′7.34′′N, 116◦39′25.23′′E; BR: 43◦33′7.56′′N, 116◦40′41.13′′E) is
located on the north side of the Xilin river basin, which is one of the most representative
steppe zones in China, as shown in Figure 1. The Xilin river basin is located between
43◦26′–44◦29′N and 115◦32′–117◦12′E in the Inner Mongolia Autonomous Region, China.
In the Xilin river basin, the annual mean temperature is about 1–4 ◦C, while annual
mean precipitation is ~350 mm, most of which is concentrated between June and August.
Stipa grandis and Leymus chinensis are two dominant species in the basin [18,19].

During the campaign, surface reflectance of soil, grassland leaf and grassland canopy
was collected on 10 Aug 2018 using SVC HR-1024 manufactured by Spectra Vista Corpo-
ration, Poughkeepsie, NY, USA. The SVC HR-1024 is a field portable spectrometer, and
its spectral range covers from 0.35 µm to 2.5 µm. During the field campaign, surface
reflectance of each ESU (Elementary Sampling Unit, 1 m × 1 m) was calculated using the
average of 5 measurements.

A Plant Canopy Analyzer LAI-2200 was used for collecting in situ LAI shortly after
sunrise or shortly before sunset. The average LAI of each ESU was calculated based on
four low-canopy measurements and one above-canopy measurement. After LAI mea-



Remote Sens. 2023, 15, 2525 3 of 17

surements, top, middle and bottom leaves of the plant were cut and used for chlorophyll
content (Cab) measurement in the laboratory.
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2.1.2. Description of the UAV Hyperspectral Data

A 720 g Rikola hyperspectral camera was carried on the UAV platform and used for
obtaining the hyperspectral data over the IMGERS. The Rikola hyperspectral camera was a
full-frame lightweight device, provided by SenopOy, Kangasala, Finland. Table 1 lists the
technical properties of the Rikola hyperspectral camera [20].

Table 1. Technical properties of the Rikola hyperspectral camera.

Parameter Value

Image mode Frame-based
FOV 36.5◦

Pixel resolution 1010 × 1010
Field resolution 6.5 cm@100 m
Spectral range 500–900 nm

Spectral resolution ~10 nm
Weight 720 g

The HSIs required a series of pre-processing steps, including band matching, geometric,
radiometric and atmospheric corrections. The band matching and full image matching
were processed using supporting software RegMosaic. Georeferencing of HSIs scenes
to the reference system WGS 84 UTM 50 N was carried out based on 13 field geometric
control points. Since the atmospheric influence was almost negligible, an empirical line
approach was carried out for the atmospheric correction and the conversion from radiance
to reflectance of the HSI spectra. During the processing, the PVC panels in white, grey and
black were taken as the spectrally defined ground targets for calibration.

2.2. A Two-Layer Matrix Approach for Joint Estimation of LAI and Cab
2.2.1. PROSAIL Model and Simulated Dataset

The PROSAIL model, coupling PROSPECT leaf optical properties model [21] and
SAIL canopy bidirectional reflectance model [22], has been used for more than twenty
years to study plant canopy spectral and directional reflectance in the solar domain and
vegetation biophysical properties [23,24]. In this article, the PROSAIL model was used
for the selection and evaluation of vegetation indices. The PROSPECT model simulates
the leaf’s optical properties (the reflectance and transmittance) from 400 nm to 2500 nm
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as a function of leaf structure parameters and biochemical parameters [24], including
equivalent water thickness Cw (g/cm2), dry matter content Cm (g/cm2), leaf chlorophyll
a and b content Cab (µ/cm2) and leaf structure parameter N (unitless). The reflectance and
transmittance of leaves simulated by PROSPECT are then inputted into SAIL model to
simulate the canopy spectral and directional reflectance as a function of canopy structure
parameters [24], including soil reflectance ρs (unitless), leaf area index LAI (m2/m2), average
leaf angle ALA (◦), hot-spot size parameter Hot (m/m) and external parameters for view
zenith angle VZA (◦), sun zenith angle SZA (◦) and relative azimuth angle RSA (◦) between
the sensor and sun.

An appropriate parameterization of the PROSAIL model was required for simulating
canopy reflectance. Based on the field measurements and documents [23–28], the ranges
of input parameters are shown in Table 2. Background reflectance can be a significant
contributor to the canopy reflectance signal [28]. In this study, a factor f was established
based on field measured soil spectrum for quantizing the variation in soil brightness.

soil = f × soilmin + (1− f )× soilmax (1)

where soilmin and soilmax are the minimum and maximum of field measured soil
reflectance spectra.

Table 2. The main input parameters of the PROSAIL model.

Parameters Symbol Unit Expectation Range

Chlorophyll a + b content Cab µg/cm2 45 10–90
Dry matter content Cm g/cm2 0.005 0.001–0.01

Equivalent water thickness Cw g/cm2 0.02 0.005–0.04
Leaf area index LAI m2/m2 2.8 0–5

Average leaf angle ALA ◦ 15 10–65
Leaf structure parameter N 1.5 1.4–2.2
Hot-spot size parameter Hot m/m 0.2 0–1.4

Soil factor f 0.4 0.1–0.9
View zenith angle VZA ◦ 5.78
Sun zenith angle SZA ◦ 23.12

Relative azimuth angle RSA ◦ 111.39

With the defined ranges, 150,000 parameter combinations were obtained using uniform
random sampling to generate 150,000 canopy spectra. The simulated dataset was divided
into two parts: 100,000 simulations were randomly selected and used for modeling and the
other simulations were used independently for model testing.

2.2.2. Selection of the Vegetation Indices

Based on the simulated canopy spectral data, 15 typical vegetation indices were
calculated and analyzed for LAI and Cab estimation, including normalized difference
vegetation index (NDVI), simple ratio vegetation index (SR), etc. The 15 typical vegetation
indices are listed in Table 3. The wavelengths used were within the HSI’s band domains, in
the visible and near-infrared ranges.

To identify appropriate vegetation indices for LAI and Cab estimation, the VIs shown
in Table 2 were tested and analyzed based on the performance of different fitting models.
Firstly, the VIs were taken as the independent variable, vegetation parameter (LAI or Cab)
was taken as the dependent variable. Then, the optimal fitting models were constructed
based on the best fit from the linear regression, power regression, logarithmic regression
and exponential regression. Finally, the coefficient of determination (R2) and root mean
square error (RMSE) of the curve fitting models were used for assessing the performance
of VIs.

The inversion performance of the 15 VIs for LAI and Cab was assessed and the
RMSE/R2 values are ranked in descending order in Tables 4 and 5.
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Table 3. The 15 typical vegetation indices.

Vegetation Index Formulation Reference

NDVI (ρ864 − ρ664)/(ρ864 + ρ664) [29]
SR ρ752/ρ704 [30]

EVI 2.5× ρ864−ρ664
ρ864+6×ρ664−7.5×ρ504+1 [31]

MTVI1 1.2[1.2(ρ800 − ρ550)− 2.5(ρ672 − ρ550)] [28]

MTVI2
1.5[1.2(ρ800−ρ550)−2.5(ρ672−ρ550)]√
(2ρ800+1)2−(6ρ800−5

√
ρ672)−0.5

[28]

OSAVI (1+0.16)×(ρ800−ρ672)
(ρ800+ρ672+0.16)

[32]

MSAVI 2ρ800+1−
√

(2ρ800+1)2−8(ρ800−ρ672)
2

[33]

TCARI 3[(ρ704 − ρ672)− 0.2(ρ704 − ρ552)
(
ρ704
ρ672

)
] [17]

TCARI2 3[(ρ752 − ρ704)− 0.2(ρ752 − ρ552)ρ752/ρ704] [34]
MCARI [ρ704 − ρ672 − 0.2(ρ704 − ρ552)]× (ρ704/ρ672) [35]
MTCI (ρ752 − ρ712)/(ρ712 − ρ680) [36]

CIgreen ρ864/ρ560−1 [37]
CIrededge ρ864/ρ720−1 [37]

REP 704 + 35 (ρ672+ρ784)/2−ρ704
ρ744−ρ704

[38]

TVI 0.5[120(ρ752 − ρ552)− 200(ρ672 − ρ552)] [39]

Table 4. The relationship between LAI and VIs.

Indices Fitting Equation a b R2 RMSE

NDVI f(x) = axb 3.133 2.036 0.7442 0.4395
OSAVI f(x) = axb 3.633 1.544 0.7325 0.4494
MTVI2 f(x) = axb 3.06 0.87 0.7081 0.4695
MSAVI f(x) = ax + b 3.574 −0.1135 0.683 0.4892

EVI f(x) = ax + b 3.421 −0.2812 0.6279 0.5301
MTVI1 f(x) = axb 3.02 0.8121 0.6277 0.5302

TVI f(x) = axb 0.1607 0.8104 0.6225 0.5339
SR f(x) = axb 0.6915 0.7908 0.4564 0.6407

CIgreen f(x) = axb 0.8082 0.5259 0.4449 0.6474
MCARI f(x) = axb 3.035 0.3223 0.4306 0.6557

CIrededge f(x) = axb 1.937 0.599 0.3112 0.7212
TCARI f(x) = ax + b 4.22 0.9238 0.1814 0.7862
MTCI f(x) = aexp(bx) 1.025 0.2256 0.0954 0.8265

TCARI2 f(x) = aexp(bx) 1.592 −0.4836 0.0111 0.8641
REP f(x) = aexp(bx) 0.0018 0.0093 0.0061 0.8663

Table 5. The relationship between Cab and VIs.

Indices Fitting Equation a b R2 RMSE

REP f(x) = axb 2.142 × 10−210 73.98 0.8104 8.658
MTCI f(x) = axb 31.85 0.7857 0.7199 11.133

CIrededge f(x) = axb 58.03 0.5938 0.5107 14.23
TCARI f(x) = ax + b −159.1 66.56 0.4704 14.81
CIgreen f(x) = ax + b 4.722 27.67 0.3345 16.6
MCARI f(x) = aexp(bx) 59.5 −2.017 0.3265 16.7

SR f(x) = ax + b 8.852 20.57 0.3018 17
TCARI2 f(x) = ax + b −71.88 54.47 0.2559 17.55
NDVI f(x) = aexp(bx) 35.4 0.3531 0.0208 20.13
TVI f(x) = aexp(bx) 48.94 −0.0053 0.0097 20.25

MTVI1 f(x) = ax + b −8.827 48.79 0.0093 20.25
EVI f(x) = aexp(bx) 40.37 0.2029 0.0078 20.27

OSAVI f(x) = aexp(bx) 40.06 0.2076 0.0072 20.27
MSAVI f(x) = aexp(bx) 41.33 0.1824 0.0062 20.28
MTVI2 f(x) = axb 43.87 −0.0226 0.0018 20.33
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Based on the above results, NDVI (R2 = 0.7442) and OSAVI (R2 = 0.7325) were selected
for LAI estimation, while REP (R2 = 0.8104) and MTCI (R2 = 0.7199) were selected for Cab
estimation. The different combinations of these vegetation indices were established as
shown in Table 6.

Table 6. The VI combinations.

↓ LAI REP MTCI
NDVI (NDVI, REP) (NDVI, MTCI)
OSAVI (OSAVI, REP) (OSAVI, MTCI)

↓ Cab NDVI OSAVI
REP (REP, NDVI) (REP, OSAVI)

MTCI (MTCI, NDVI) (MTCI, OSAVI)

2.2.3. Evaluation of VI Combinations

An appropriate VI combination for vegetation parameter estimation should be not
only sensitive to the target parameters, but also insensitive to interference factors [40].
To evaluate the sensitivity of the vegetation index combinations to different vegetation
parameters, the PROSAIL model was used to simulate the influence of LAI, Cab, Cm, Cw, N,
ALA and ρs on the 15 vegetation indices described above. During the sensitivity analysis
process, only the interference factor was varied according to the threshold range and the
remained parameters of PROSAIL model were set to the fixed value. The VI combinations
were drawn in a two-VI space, as shown in Figure 2.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 19 
 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 2. The analysis of dispersion of different VI combinations: (a) NDVI vs. REP, (b) OSAVI vs. 
REP, (c) NDVI vs. MTCI, (d) OSAVI vs. MTCI. 

In Figure 2, the LAI isolines (the same symbol) and the Cab isolines (the same color) 
had different trends. This indicates that the LAI and Cab can be well-separated by VI com-
binations. In general, the sensitivity of VI combinations changed with the LAI and Cab, 
varying in different VI spaces and positions. The VI combinations of NDVI–MTCI and 
OSAVI–MTCI had higher discreteness (the Cab isolines in these VI spaces were the most 
separated) and are better for distinguishing Cab, indicating the most sensitivity. Due to 
the saturation effects, the higher the LAI value, the lower the sensitivity of the VI combi-
nations to LAI and the more dense the LAI isolines in two-VI space. When both the LAI 
and Cab were high, the saturation effect was most pronounced. 

It was difficult to directly judge the dispersion of VI combination only from the fig-
ure. Therefore, the ability of different combinations to distinguish LAI or Cab was quan-
titatively described based on the distance of adjacent points in the matrix. The operations 
were as follows: (1) Normalize the matrix; (2) Calculate the mean value (Lave) and stand-
ard deviation (Lstd) of the distance between different Cab points on the LAI isoline to 
represent the dispersion of the current matrix to Cab. The larger the Lave, the better the 
dispersion of the matrix to Cab, and the smaller the Lstd, the better the stability of the 
matrix. Similarly, the distance mean and variance of LAI on Cab isolines were also calcu-
lated. The larger the Lave of LAI, the better the dispersion of the matrix for LAI, and the 
smaller the Lstd of LAI, the better the stability of the matrix. 

Figure 2. The analysis of dispersion of different VI combinations: (a) NDVI vs. REP, (b) OSAVI vs. REP,
(c) NDVI vs. MTCI, (d) OSAVI vs. MTCI.



Remote Sens. 2023, 15, 2525 7 of 17

In Figure 2, the LAI isolines (the same symbol) and the Cab isolines (the same color)
had different trends. This indicates that the LAI and Cab can be well-separated by
VI combinations. In general, the sensitivity of VI combinations changed with the LAI
and Cab, varying in different VI spaces and positions. The VI combinations of NDVI–MTCI
and OSAVI–MTCI had higher discreteness (the Cab isolines in these VI spaces were the
most separated) and are better for distinguishing Cab, indicating the most sensitivity. Due
to the saturation effects, the higher the LAI value, the lower the sensitivity of the VI combi-
nations to LAI and the more dense the LAI isolines in two-VI space. When both the LAI
and Cab were high, the saturation effect was most pronounced.

It was difficult to directly judge the dispersion of VI combination only from the figure.
Therefore, the ability of different combinations to distinguish LAI or Cab was quantitatively
described based on the distance of adjacent points in the matrix. The operations were
as follows: (1) Normalize the matrix; (2) Calculate the mean value (Lave) and standard
deviation (Lstd) of the distance between different Cab points on the LAI isoline to represent
the dispersion of the current matrix to Cab. The larger the Lave, the better the dispersion of
the matrix to Cab, and the smaller the Lstd, the better the stability of the matrix. Similarly,
the distance mean and variance of LAI on Cab isolines were also calculated. The larger the
Lave of LAI, the better the dispersion of the matrix for LAI, and the smaller the Lstd of LAI,
the better the stability of the matrix.

As shown in Table 7, for Cab, OSAVI–MTCI not only had the highest dispersion
(Lave of Cab was 0.0931) but also the lowest standard deviation (Lstd of Cab was 0.0285),
which was consistent with the phenomenon described above. For LAI, OSAVI–REP
performed best, but at the same time, it had certain instability for Cab. It can also be
seen from Figure 2 that in the OSAVI–REP space, contour lines such as Cab = 5 µg/cm2,
20 µg/cm2, 35 µg/cm2 were relatively discrete, while contour lines such as Cab = 65 µg/cm2,
80 µg/cm2, 90 µg/cm2 were relatively clustered. This indicates that the degree of disper-
sion variability of this VI combination is relatively large (Lstd of Cab was 0.0888). Thus, a
partitioned multi-stage inversion strategy should be established for joint estimation of LAI
and Cab. For example, the Cab parameter should be preferentially retrieved because its
VI combinations were more sensitive to Cab.

Table 7. The degree of dispersion of different matrices.

NDVI–REP OSAVI–REP NDVI–MTCI OSAVI–MTCI

Lave of Cab 0.0886 0.0849 0.0863 0.0931
Lstd of Cab 0.0946 0.0888 0.0359 0.0285
Lave of LAI 0.0694 0.0731 0.0716 0.0683
Lstd of LAI 0.0971 0.0819 0.0896 0.0897

The dispersion of OSAVI–REP to Cab under different thresholds was further analyzed
to determine the combination mode of the two VI matrices. It can be seen from Figure 3 that
the dispersion degree of OSAVI–REP decreases significantly with the increase in Cab value.
Therefore, it is necessary to introduce the VI matrix in stages according to the variation
trend of the dispersion. That is, OSAVI–REP should be used when the Cab is low, while
OSAVI–MTCI should be used when the Cab is high.

The effects of the other parameters on VI combinations are also evaluated in this
paper. Taking VI combination OSAVI–MTCI as an example, its sensitivity to the parameters
of ALA, Cm, Cw, N and ρs was analyzed using the simulations of PROSAIL. The results
are shown in Figure 4. By comparing the curves in Figure 4 with those of the curves
in Figure 2, the variation in Cm, Cw and ρs had no obvious effect on the results. The
changes in ALA and N had limited effects on OSAVI–MTCI combination, for which N had
a relatively high impact; the parameter ALA had a great influence on LAI when LAI value
was low (Figure 4(a1)–(a4)), but it did little to change the overall properties of OSAVI–MTCI
combination. Although the effect of N on Cab was minimal when the Cab value was lower
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than 35 µg/cm2 (Figure 4(d1)–(d4)), it led to a reduction in the dispersion of OSAVI–MTCI
combination (the Cab curves were relatively gathered).
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Figure 4. The sensitivity analysis of VI combinations to other parameters. (a1) ALA = 10, (a2) ALA = 25,
(a3) ALA = 40, (a4) ALA = 60; (b1) Cm = 0.001, (b2) Cm = 0.004, (b3) Cm = 0.007, (b4) Cm = 0.009;
(c1) Cw = 0.005, (c2) Cw = 0.017, (c3) Cw = 0.029, (c4) Cw = 0.04; (d1) N = 0.001, (d2) N = 0.004,
(d3) N = 0.007, (d4) N = 0.009; (e1) ρs = 0.001, (e2) ρs = 0.004, (e3) ρs = 0.007, (e4) ρs = 0.009.

2.2.4. Establishment of a Two-Layer Matrix Inversion Method

As shown in Figure 5, the VI combinations of OSAVI–REP and OSAVI–MTCI were
divided into cells to establish the inversion matrix. Each matrix had 1000 × 1000 cells and
each cell corresponded to a small range of vegetation index values. Based on the modeling
dataset simulated from the PROSAIL model, the LAI and Cab values were assigned to a
matrix cell according to the values of the two simulated VIs. Because one cell had multiple
values of LAI and Cab, all the values mapped to the same cell would be calculated as
average and standard deviation. Then, the average (ave) and standard deviation (sd) values
of the LAI and Cab were mapped to each cell, constituting the average and standard
deviation matrices.

The distribution of matrix dispersion was uneven due to the value change of LAI and
Cab, which was described in Section 2.2.3. The dispersion curves of OSAVI–REP matrix
and OSAVI–MTCI matrix converge at Cab ≈ 50 µg/cm2 (Figure 3). When Cab was low,
OSAVI–REP matrix had better discretization, which should be used for Cab estimation.
Otherwise, OSAVI–MTCI should be used for Cab estimation. In order to reduce the error
brought by the instability of the dispersion of the matrix, the range (40 µg/cm2, 60 µg/cm2)
was determined as the intermediate choice. Then, the weight coefficient can be established
to determine the participation of matrix cells in different layers. As described above, when
Cab value ≤ 40 µg/cm2, OSAVI–REP dispersion was high. Therefore, the corresponding
cell in OSAVI–REP matrix should be assigned a higher weight, which was set to 1 in
this paper. Similarly, when Cab value > 60 µg/cm2, OSAVI–MTCI dispersion was high
and the corresponding cell in OSAVI–MTCI should be assigned a higher weight. When
40 µg/cm2 < Cab value ≤ 60 µg/cm2, the corresponding cell in OSAVI–REP matrix and
OSAVI–MTCI matrix were both assigned as 0.5. At last, the weight coefficient (w) was
entered in each cell to form the weight matrix.

In the retrieval process, the expected estimation value of LAI and Cab were calculated
based on the average matrix and the weight matrix. Additionally, the total standard
deviation represented the inversion uncertainty.

After establishing the two-layer matrix, the LAI and Cab can be easily retrieved based
on the four VIs calculated from the reflectance data. If the cell value of each layer matrix
was valid, its value can be calculated with the weight coefficient and set as the estimated
LAI and Cab. However, in some cases, the VIs calculated from the remotely sensed data
were not within the range of the matrix and LAI and Cab values of the corresponding units
could not be searched. In other words, the VI combinations calculated based on simulated
reflectance data still cannot cover those calculated based on the remotely sensed data. This
could be due to improper parameter settings during PROSAIL model simulation or the
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observation deviation of remotely sensed data. If the searched LAI and Cab values in the
located cell were both null in two-layer matrices, the nearest 8-connected neighborhood
was averaged and used as the estimated LAI and Cab. If the values of LAI and Cab in the
located cell were null only in a one-layer matrix, the non-null values of the other layer were
directly set to the estimated LAI and Cab.
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2.2.5. Joint Estimation of LAI and Cab

The joint estimation of LAI and Cab included two cases:
Case 1 based on simulated data: the simulated test datasets were used for retrieving LAI

and Cab through VI empirical model, the single-layer VI matrix and the two-layer matrix.
As described in Section 2.2, 50,000 canopy spectra were used as a test dataset (TD data)

for joint estimation of LAI and Cab. In this case, to further consider bias in the acquisition
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and processing of remote sensing data, a new test dataset (NTD data) was constructed by
adding 5% relative Gaussian noise to the canopy spectra as reflectance uncertainty. The
new test dataset was produced, which can also be used for evaluating the influence of
reflectance measurement uncertainty on the retrieval accuracy of vegetation parameters.

Therefore, in this case, the two-layer matrix was evaluated by retrieving LAI and Cab
from the simulated data with and without noise.

Case 2 based on UAV hyperspectral data: the UAV hyperspectral data obtained during
the field campaign were used for retrieving LAI and Cab through approaches of matrices
and machine learning, including the single-layer matrix of OSAVI–REP, the single-layer
matrix of OSAVI–MTCI, the two-layer matrix, partial least squares regression (PLSR) and
random forest (RF).

In Case 2, to improve the model robustness when the model was used for actual
observation data, the two-layer matrix was optimized by adding 5% relative Gaussian
noise for comparison. Therefore, in this case, the two-layer matrix established with and
without noise was evaluated by retrieving LAI and Cab from the UAV hyperspectral data.

3. Results
3.1. Evaluation of the Two-Layer Matrix Based on Simulated Data

Based on the two-layer matrix, LAI and Cab were jointly estimated from the simulated
TD and NTD datasets. The inversion results were compared with those estimated using
the VI empirical model and the single-layer VI matrix (Table 8). The following statistical
indicators were used for accuracy analysis: coefficient of determination (R2) and root mean
square error (RMSE). The standard deviation (u(SD)) characterized the performance of the
matrices and was also used to represent the uncertainty of LAI and Cab estimation.

Table 8. The retrieving results from simulated data.

Retrieval Methods Performance (u(SD))
TD Data NTD Data

R2 RMSE R2 RMSE

relationships of LAI–OSAVI: y = 3.633x1.544 LAI - 0.69 1.06 0.58 1.22

relationships of Cab–REP: y = 2.142 × 10−210x73.98 Cab - 0.75 12.63 0.69 14.02

single-layer matrix of OSAVI–REP LAI 0.87 0.75 0.94 0.72 0.99
Cab 9.51 0.79 12.24 0.73 13.41

single-layer matrix of OSAVI–MTCI LAI 0.98 0.71 1.01 0.66 1.09
Cab 7.93 0.83 14.52 0.77 16.16

two-layer matrix of OSAVI–REP and OSAVI–MTCI LAI 0.67 0.79 0.87 0.76 0.92
Cab 7.6 0.85 11.05 0.79 12.66

As shown in Table 8, regardless of whether the test dataset contains noise, the two-layer
retrieval matrix achieved the best estimation accuracies of the LAI and Cab. LAI retrieved
from NTD (TD) data obtained R2 of 0.76 (0.79) and RMSE of 0.92 m2/m2 (0.87 m2/m2).
Cab retrieved from NTD (TD) data obtained R2 of 0.79 (0.85) and RMSE of 12.66 µg/cm2

(11.05 µg/cm2). Although the single-layer matrix of OSAVI–REP had similar estimated
accuracy for retrieving LAI from the simulated reflectance with and without reflectance
noise, for Cab estimation, the two-layer matrix of OSAVI–REP and OSAVI–MTCI performed
better. In addition, compared with the single-layer matrix of OSAVI–REP, the uncertainty
of the two-layer matrix applied to Cab estimation was lower. The reason why the two-layer
matrix was superior to the single-layer matrix was that the two-layer matrix was combined
with the most separable part of the single-layer matrix, which reduced the cross-influence
of LAI and Cab and improved the robustness of the inversion process.

Compared with the empirical model, the matrix-based approaches were obviously more
accurate for estimating LAI and Cab. By combining OSAVI–REP and OSAVI–MTCI matri-
ces, the two-layer matrix achieved a higher estimation than one-dimensional relationships.
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Retrieval results based on matrix models were better because the matrices better character-
ize the relationship between reflectance and LAI and Cab. Empirical models based on VI
cannot represent the complex relationship between reflectance and LAI and Cab well.

The accuracy of LAI and Cab retrieved from reflectance data containing noise were sig-
nificantly lower than that from the reflectance data without noise. The result indicates that
the uncertainty of remotely sensed observations had an important effect on the estimation
accuracy of vegetation parameters.

3.2. Evaluation of the Two-Layer Matrix Based on UAV Hyperspectral Data

The retrieval methods were applied to the UAV hyperspectral data for retrieving the
grassland LAI and Cab. Figure 6 shows the results retrieved from UAV hyperspectral data
based on different inversion matrices. The statistical parameters of R2, RMSE and u(SD)
were used for estimation accuracy and uncertainty analysis.
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Figure 6. The retrieval of LAI (top) and Cab (bottom) from UAV hyperspectral data using different
methods: (a) single-layer matrix of OSAVI–REP; (b) single-layer matrix of OSAVI–MTCI; (c) two-layer
matrix of OSAVI–REP and OSAVI–MTCI.

Among the three inversion matrices of single-layer matrix of OSAVI–REP, single-
layer matrix of OSAVI–MTCI and two-layer matrix of OSAVI–REP and OSAVI–MTCI, the
estimation using the two-layer matrix yielded the highest accuracy and lowest uncertainty.
The R2, RMSE and u(SD) for LAI were 0.67, 1.03 m2/m2 and 0.9 m2/m2 (Figure 6c top). The
R2, RMSE and u(SD) for Cab were 0.70, 14.2 µg/cm2 and 12.36 µg/cm2 (Figure 6c bottom).
The matrix of OSAVI–MTCI had the lowest accuracy for LAI estimation, with R2 = 0.55 and
RMSE = 1.26 m2/m2 (Figure 6a top). The matrix of OSAVI–REP had the lowest accuracy
for Cab, with R2 = 0.52 and RMSE = 17.26 µg/cm2 (Figure 6a top).

As described in Section 3.1, retrieval accuracy is influenced by the uncertainty of
canopy reflectance. Therefore, the matrices were optimized by adding noise for comparison.
The performance of the matrices with reflectance noise was also analyzed based on the
values of mean standard deviation (u(SD)), which was also used to represent the uncertainty
of LAI and Cab estimation when using those approaches. Table 9 shows that the uncertainty
of the matrix did not increase significantly after the addition of simulated noise.
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Table 9. The uncertainty of the matrices.

Retrieval Methods Performance (u(SD))

single-layer matrix of OSAVI–REP LAI: 0.88, Cab: 9.34
single-layer matrix of OSAVI–MTCI LAI: 1.04, Cab: 7.83

two-layer matrix of OSAVI–REP and OSAVI–MTCI LAI: 0.72, Cab: 7.4

The optimized two-layer matrix was applied to UAV hyperspectral data for retrieving
the grassland LAI and Cab. The retrieval results were compared with the single-layer matrix
of OSAVI–REP and the single-layer matrix of OSAVI–MTCI, as shown in Table 10. In order
to evaluate the applicability of the two-layer matrix more comprehensively, partial least
squares regression (PLSR) and random forest (RF) were also selected for comparison. PLSR
integrates the ideas of principal component analysis, correlation analysis and multiple
regression, and has great advantages in dealing with problems where the number of
independent variables is much larger than the number of samples. The RF algorithm is a
versatile machine learning method that has a better fitting effect for nonlinear data.

Table 10. The retrieval of LAI and Cab from UAV hyperspectral data using different methods.

Retrieval Methods
Retrieval Accuracy

R2 RMSE

single-layer matrix of OSAVI–REP LAI: 0.66 LAI: 1.04 m2/m2

Cab: 0.61 Cab: 16.82 µg/cm2

single-layer matrix of OSAVI–MTCI LAI: 0.63 LAI: 1.13 m2/m2

Cab: 0.69 Cab: 17.43 µg/cm2

two-layer matrix of OSAVI–REP and OSAVI–MTCI LAI: 0.73 LAI: 0.91 m2/m2

Cab: 0.79 Cab: 11.70 µg/cm2

partial least squares regression (PLSR) LAI: 0.65 LAI: 1.07 m2/m2

Cab: 0.66 Cab: 14.97 µg/cm2

random forest (RF)
LAI: 0.68 LAI: 1.06 m2/m2

Cab: 0.70 Cab: 14.88 µg/cm2

For the three inversion matrices established based on the reflectance dataset with
noise, the estimation using the two-layer matrix yielded the highest accuracy and lowest
uncertainty. The R2, RMSE and u(SD) for LAI were 0.73, 0.91 m2/m2 and 0.82 m2/m2. The
R2, RMSE and u(SD) for Cab were 0.79, 11.7 µg/cm2 and 10.84 µg/cm2. The retrieval results
of the matrices with reflectance noise were obviously better than those of matrices without
noise. This indicated that, due to the influence of different factors such as imaging condition
difference, land surface spatial heterogeneity, geometric registration and atmospheric
correction, there were certain uncertainties in the reflectance data obtained by the UAV
platform. The addition of reflectance noise improved the robustness of the two-layer matrix.
In addition, the results also showed that the proposed method had better performance
compared with PLSR and RF approaches.

4. Discussion

The remote sensing of LAI and Cab is challenging due to the cross-influence be-
tween them. The joint estimation approach based on a two-layer matrix proposed in this
study can retrieve LAI and Cab simultaneously at the canopy level. Compared with the
one-dimensional equations of individual VIs or VI ratios, matrix-based approaches can
eliminate the influence of other parameters, such as leaf angle distribution, soil background,
etc., as well as the cross-influence between LAI and Cab. The elimination of influencing
is helpful for improving accuracy and reducing uncertainty in LAI and Cab. Compared
with traditional physical modeling and machine learning methods, this approach is much
simpler and more efficient.
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Although the construction of vegetation indices has taken into account the influence
of non-vegetation factors, such as soil background and atmosphere, it is still difficult to
avoid the interaction between vegetation parameters. Therefore, in order to reduce the
influence of different vegetation parameters during inversion, a variety of VI combinations
are established. For example, a three-VI combination was established for calculating leaf
mass per area (LMA), which takes into account the influence of leaf water content (Cw) in
the SWIR region [41]. The TCARI–OSAVI combination was established for Cab retrieval
from Sentinel-2 Data, which considers the influence of LAI on it [42]. However, the retrieval
result of those VI combinations may still have uncertainty. In this paper, the retrieval result
of LAI from UAV hyperspectral data using a single-layer matrix of OSAVI–MTCI had an
R2 of 0.55, which was still a low accuracy. The interaction between LAI and Cab was one of
the factors affecting the inversion effect.

The estimation results of the two-layer matrix were obviously better than those of
the single-layer matrix with and without noise. The reason why the two-layer matrix was
superior to the single-layer matrix was that the two-layer matrix was combined with the
most separable part of each single-layer matrix. This helped to reduce the cross-influence
of LAI and Cab and improved the robustness of the inversion process. In addition, other
vegetation and environmental parameters still affected the VI combinations and two-layer
matrix. As shown in Section 2.2.3, parameters such as N, Cm and ALA had large effects on
LAI and Cab estimation based on OSAVI–MTCI combination. A priori information can be
used to limit the physical boundary of these parameters during simulation, so as to reduce
the uncertainties [26].

Since the reflectance data are obtained after payload calibration, atmospheric correc-
tion and other processes, there is some uncertainty in the reflectance data. Therefore, the
influence of reflectance measurement uncertainty on inversion was tested by adding or
not adding noise tested in this study. If no noise was added during matrix modeling, the
estimation accuracies of LAI and Cab retrieved from data with noise will be greatly reduced,
as shown in Section 3.1. This showed that the uncertainty of the remotely sensed data can
increase the uncertainty of retrieved LAI and Cab. If the phenomena of the same object
with a different spectrum and the same spectrum with a different object were considered,
noise was added in matrix modeling (namely the influence of LAI and Cab changes on
reflectance). That is, the value in each cell of the matrix fluctuated within the noise range of
5% to generate mean value and standard deviation, which not only solved the ill-posed
problem of physical model inversion, but also presented the uncertainty of the inversion.

The experiment for the joint estimation of the LAI and Cab from the simulated re-
flectance and UAV hyperspectral data both demonstrated that a two-layer matrix achieved
better accuracies than the one-dimensional relationships of VIs and a single-layer matrix.
Compared with machine learning methods such as RF and PLSR, the proposed method
performed better, too. As a method similar to look-up table, the two-layer matrix can
be used directly for LAI and Cab inversion without the need for prior measurements
for training.

5. Conclusions

This paper proposed a novel approach for joint estimation of LAI and Cab using a
two-layer matrix based on PROSAIL simulations. In this approach, LAI and Cab were
directly obtained from a cell of the matrices, avoiding the possible distortion caused by
the regression relationships of the VIs with LAI and Cab. This retrieval also reduced the
cross-influence between LAI and Cab.

In this paper, the effectiveness of the approach for joint estimation of LAI and Cab
was examined using simulated data and UAV hyperspectral data. Compared with the
traditional single VIs and single-layer matrices, the two-layer matrix estimated LAI and Cab
simultaneously, which improved inversion efficiency and accuracy. The results of adding
noise showed that the simulation effect can be improved by considering the influence of
noise when constructing the matrix. The accuracy of LAI and Cab retrieval from UAV
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hyperspectral data was significantly improved; the RMSE was reduced from 1.03 m2/m2

to 0.91 m2/m2 for LAI, and from 14.2 µg/cm2 to 11.7 µg/cm2 for Cab.
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Abbreviations

Abbreviation Reference
LAI Leaf area index
Cab Leaf chlorophyll a+b content
UAV Unmanned aerial vehicle
PROSAIL PROSPECT+SAIL
PROSPECT PROperties SPECTra
SAIL Scattering by Arbitrarily Inclined Leaves
VIs Vegetation indices
R2 The coefficient of determination
RMSE Root mean square error
u(SD) Standard deviation
LUT Look-up table
NN Neural Network
SA Simulated Annealing
GA Genetic Algorithm
PLSR Partial Least Squares Regression
RF Random Forest
IMGERS Inner Mongolia Grassland Ecosystem Research Station
HSI Hyperspectral imaging
FOV Field of view
WGS 84 World Geodetic System 1984
UTM Universal Transverse Mercator
PVC Polyvinyl chloride
Cm Dry matter content
Cw Equivalent water thickness
ALA Average leaf angle
N Leaf structure parameter
Hot Hot-spot size parameter
f Soil factor
ρs Soil reflectance
VZA View zenith angle
SZA Sun zenith angle
RSA Relative azimuth angle
NDVI Normalized difference vegetation index
SR Simple ratio vegetation index
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EVI Enhanced vegetation index
MTVI Multi temporal vegetation index
OSAVI Optimized soil-adjusted vegetation index
MSAVI Modified soil-adjusted vegetation index
TCARI Transformed chlorophyll absorption ratio index
MCARI Modified chlorophyll absorption ratio index
MTCI Modified triangular chlorophyll index
CIgreen Green chlorophyll index
CIrededge Red-edge chlorophyll index
REP Red edge position
LMA Leaf mass per area
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