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Abstract: Many studies have focused on the smartphone-based global navigation satellite system
(GNSS) for its portability. However, complex urban environments, such as urban canyons and
tunnels, can easily interfere with GNSS signal qualities. Current smartphone-based positioning
technologies using the GNSS signal still pose great challenges. Since the last satellite of the BeiDou
navigation system (BDS) was successfully launched on 23 June 2020, it is possible to use a low-cost
Android device to realize the localization based on the BDS signals worldwide. This research focuses
on smartphone-based outdoor pedestrian navigation utilizing the GPS/BDS multi-constellation
system. To improve the localization accuracy, we proposed the Weighted Factor Graph Optimization
localization model (W-FGO). In this paper, firstly, we evaluate the signal qualities of the BDS via the
data collected by the static experiment. Then, we structure the cost function based on the pseudo-
range and the time series data for the traditional Factor Graph Optimization (FGO). Finally, we
design the weight model based on the signal quality of each satellite and the time fading factor to
further improve the localization accuracy of the conventional FGO method. An Android smartphone
is utilized to collect the GNSS data for the evaluation and the localization. The experiment results
demonstrate the superior performance of the proposed method.

Keywords: factor graph optimization; weighting model; GPS/BDS; pedestrian navigation

1. Introduction

In recent decades, the demand for location-based services (LBS) has significantly in-
creased, leading to the development of positioning technologies and systems [1]. The global
navigation satellite system (GNSS) has been widely adopted for outdoor positioning [2–4].
Additionally, with the rapid advancement of mobile internet technology, smart devices
have become increasingly important in the field of location-based services [5–7]. Since 2016,
when Google announced the availability of GNSS raw data for the Android operating sys-
tem starting from version 7.0, GNSS positioning using smartphones has become a popular
research area [8,9].

Traditional satellite navigation systems, such as the Global Positioning System (GPS),
Galileo, and GLONASS, have been operating successfully for many years, and have been
the subject of numerous studies [10]. The Chinese Bei Dou navigation system (BDS) has
emerged in recent years. The BDS progressed from being a demonstration navigation
satellite system (BDS-1) to a regional navigation satellite system (BDS-2) by 2012. On
23 June 2020, the last satellite of the third-generation global BeiDou navigation system
(BDS-3) was successfully launched. With the global deployment of the BDS constellation,
scholars have begun to focus on using this system and its new signals for positioning.

Remote Sens. 2023, 15, 2506. https://doi.org/10.3390/rs15102506 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15102506
https://doi.org/10.3390/rs15102506
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0003-6836-8901
https://orcid.org/0000-0003-0148-3609
https://orcid.org/0000-0003-4366-4547
https://orcid.org/0000-0003-4320-8007
https://doi.org/10.3390/rs15102506
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15102506?type=check_update&version=1


Remote Sens. 2023, 15, 2506 2 of 21

However, there are still relatively few studies on smartphone positioning based on the
BDS [11]. This paper aims to explore smartphone-based pedestrian positioning using
signals from both the BDS and GPS.

The Kalman filter (KF) is an algorithm that can improve the accuracy of observed
series measurements over time, even when there are statistical inaccuracies or other sources
of noise. The KF generates unknown estimated variables intending to improve the accuracy
of the filter results compared with observed measurements. In recent decades, the Kalman
Filter has been employed across numerous domains. Scientists have dedicated their efforts
to enhance and refine the traditional KF technique. Xia et al. utilized Kalman filter to
determine both the yaw misalignment and the velocity error, as well as realized the data
fusion between the reduced Inertial Navigation System (R-INS) and the GNSS. These
techniques are utilized for the development of intelligent and autonomous vehicles [12–14].
A novel approach is also proposed to estimate the Vehicle Sideslip Angle (VSA), which
combines data from the GNSS and the Inertial Measurement Unit (IMU) . To eliminate the
gravity effects caused by vehicle roll and pitch, a square-root cubature Kalman filter (SCKF)-
based vehicle attitude angle observer is designed for estimating roll and pitch. The results
demonstrated that the proposed method effectively estimateed the VSA in both slalom
and double-lane-change (DLC) scenarios. For GNSS positioning, the observations’ state
functions and observation functions are usually nonlinear, which cannot be appropriately
filtered by KF. The Extended Kalman Filter (EKF) was proposed as a mature solution for
this problem. In the EKF, the first-order Taylor Expansion is simply used to linearize the
nonlinear system model [15,16]. Despite its benefits, the EKF has a limitation that it only
uses data from the adjacent sampling period to calculate position. Besides these data, the
historical measurements are also meaningful since the time series data are correlated. To
improve the positioning accuracy, we proposed a Weighted Factor Graph Optimization
(W-FGO) method, which contains a weighting model and the Factor Graph Optimization
(FGO) framework. This method will take advantage of the historical measurements and
their correlation. In addition, the weighting model based on the signal qualities of the
GNSS data will adjust the weight of different satellites in the cost function. The time fading
factor will determine the importance of the data from different epochs. This research’s
primary contributions are as follows:

(1) We conducted the analysis of BDS signal qualities based on the smartphone in Nordic
areas. In addition, we utilized the GPS/BDS multi-constellation data to realize pedes-
trian positioning based on the smartphone.

(2) We proposed a W-FGO method for GNSS positioning. The W-FGO method consists
of two parts: the FGO framework and a weighting model. By utilizing the FGO
framework, we explore the influence of time-correlated measurements and states on
positioning accuracy. The weighting model is designed based on signal quality and
the time fading factor. By utilizing the signal quality, we can adjust the weight of
different satellites’ signals, as well as the proportion between the observations and
the predicted values. The time fading factor can determine the importance of the data
from different epochs.

(3) We implemented the ground tests with the Huawei Mate40 Pro and the experimental
box designed by ourselves. The collected data are processed by the proposed method.
The positioning results of the W-FGO method are compared with the least square
method (LSM), including BDS-signal-based, GPS-signal-based, and BDS/GPS-multi-
signal-based, the EKF method, and the conventional FGO method.

The rest of this paper is organized as follows. Section 2 reviews the related works
on the smartphone-based pedestrian positioning utilizing the GPS and BDS systems, as
well as studies related to FGO. In Section 3, we analyze the BDS signal qualities based on a
static experiment. Section 4 briefly explains the traditional EKF algorithm utilized to realize
the GPS/BDS multi-system positioning. In Section 5, we explain the W-FGO algorithm
proposed to improve the GPS/BDS-based smartphone positioning. In Section 6, the ground
tests of the pedestrian positioning are conducted to compare the performance of the LSM,
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the traditional EKF, the conventional FGO method, and the W-FGO. The discussion and
potential future works are revealed in Section 7. Finally, the conclusion is given.

2. Related Works
2.1. The Smartphone-Based GPS/BDS Multi-System Positioning

GNSS market reports indicate that smartphones now constitute a significant portion
of the installed base of GNSS devices. In response to market demands, the principles and
algorithms behind smartphone positioning have emerged as common areas of research and
discussion within the GNSS field. In recent years, scholars have studied the positioning
performance of Single Point Positioning (SPP), Real-Time Kinematic (RTK), and Precise
Point Positioning (PPP) using GNSS observations collected by a variety of smartphones and
developed some new algorithms [17–19]. Lachapelle and Gratton explored the effectiveness
of static PPP in modern smartphones, highlighting considerable progress compared to
prior smart device models. They illustrated the possibility of achieving coordinate accuracy
on the scale of 1 m after gathering data for a duration of 30 min [20]. As a novel satellite
navigation system, the BDS positioning on a smartphone is also a research hotspot. Sci-
entists made great efforts in BDS observation analysis. An analysis of the properties of
13 kinds of BDS DCBs and the accuracy of BDS-based GIM was conducted, using data from
the International GNSS Service (IGS) and International GNSS Monitoring and Assessment
System (iGMAS). The findings, covering a one-month period, reveal that the stability of
BDS DCB estimations across distinct frequency bands is connected to the contributing
observations. Moreover, the receiver DCB estimations exhibit higher standard deviation
values compared to the satellite DCB estimations [21]. Comprehensive PPP models utilizing
single-, dual-, triple-, and quad-frequency BDS observations are introduced and assessed by
Jin’s group [22]. Chen et al. uses a single-frequency PPP strategy that estimates two clock
biases of a smartphone (Xiaomi Mi 8) to achieve a real-time high-precision smartphone
positioning [23]. The results indicate that, due to the instability of BDS-locked satellites
during dynamic experiments, the positioning accuracy of BDS is inferior to that of GPS.
In addition, the GPS/BDS multi-system positioning is also worthy of exploration. Sun
et al. explored the relationship between the data quality of smartphones equipped with
GNSS modules and the accuracy and reliability of single-frequency RTK positioning [24].
The results show that using multi-GNSS systems data, including the BDS, can effectively
improve positioning performance. Additionally, The Smartphone Decimeter Challenge
has already been held at the ION in 2021 and 2022. The Google Smartphone Decimeter
Challenge (GSDC) is a contest focused on achieving positioning accuracy by utilizing raw
GNSS data from smartphones. Smartphone GNSS data exhibit lower signal levels and
increased noise in comparison to commercial GNSS receivers, making it challenging to
directly apply high-precision positioning methods. The Google Smartphone Decimeter
Challenge 2022 (GSDC2022) aimed to advance research in smartphone GNSS positioning
accuracy. Dai’s group introduced a global optimization method using gradient descent,
accounting for pseudorange, pseudorange rate, accumulated carrier phase (ADR), phone
speed, and acceleration constraints at each time epoch on a track. This approach demon-
strated superiority over other methods, such as precise point positioning and real-time
kinematic. The solution achieved a final score of 1.499 on the private leaderboard, earning
second place in GSDC2022 [25]. To sum up, the pedestrian smartphone positioning is a
hot topic and worthy of investigation. In our strategy, we utilize the multi-GNSS systems,
including the BDS and GPS, to realize the smartphone pedestrian positioning.

2.2. The Factor Graph Optimization

The smartphone GNSS positioning poses great challenges due to the degraded nature
of the data in urban environments (e.g., multi-path, poor satellite visibility). The GNSS
measurements are highly environmentally dependent and time-correlated [26,27]. How-
ever, conventional GNSS positioning methods (e.g., EKF and LSM) cannot simultaneously
explore the time correlation among historical measurements and perform poorly in smart-
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phone GNSS positioning. Recently, the FGO is developed for applications with a large
number of constraints [28,29]. FGO is well known for its robustness against outliers [30].
Meanwhile, FGO constructs a global cost function to estimate a series of states, compre-
hensively exploring the correlation among the historical measurements and states [31].
Wen et al. tested the EKF and FGO for GNSS/INS integration in the typical urban scenario
in Hong Kong. The results indicate that FGO potentially outperforms the EKF. This re-
search concluded that the effectiveness of FGO can be attributed to two primary factors:
(1) FGO employs multiple iterations in the estimation process, resulting in a more robust
estimation; and (2) FGO efficiently examines the time correlation between measurements
and states, relying on a batch of historical data when the measurements deviate from
the Gaussian noise assumption [32]. Ng Hoi-Fung et al. integrated multi-constellation
L5-band measurements into 3DMA GNSS to enhance positioning performance in urban
canyons, resulting in the L1-L5 3DMA GNSS. Additionally, the study compares various
approaches for estimating receiver clock biases in 3DMA GNSS. The integration of different
3DMA GNSS systems is also presented. The FGO method was introduced into 3DMA
GNSS to estimate the solution iteratively rather than distributing candidates. Experiments
conducted using smartphone data demonstrate that L1-L5 3DMA GNSS provides superior
position solutions compared to 3DMA GNSS with only the L1-band, achieving an average
positioning accuracy of within 10 m [33]. The 2021 Google Smartphone Decimeter Chal-
lenge (GSDC) took place from May to August, 2021. Suzuki’s group proposed a method
for estimating a smartphone’s position by using FGO and accumulated delta range (ADR)
observations from the smartphone. The incorporation of ADR allows for the estimation of
highly accurate relative positions, while precise absolute positions are determined using
pseudorange observations corrected with GNSS reference stations as constraints for FGO.
By employing the proposed method, they assessed the smartphone’s location and partici-
pated in the competition. Their final public score was 2.86 m, securing 2nd place, while the
final private score was 1.62 m, earning the 1st place [34]. Thus, it is promising to apply FGO
to GNSS-based pedestrian smartphone positioning. Furthermore, the smartphone-based
pedestrian positioning without outer assistance is also worthy of research. In addition,
based on the traditional FGO framework, there is enormous potential for the exploration
and improvement of multi-GNSS-system-based smartphone positioning.

3. The BDS Signal Quality Analysis

To capture data for signal quality analysis, we performed a static experiment using
the Huawei Mate40 Pro smartphone and the GEO++RINEX Android app. The experiment
involved collecting static data for BDS/GPS/Galileo/GLONASS signals at one-second
intervals. The observed data were then saved in RINEX 3.03 format on the phone.

We conducted the static experiment at Aalto University near the seaside. The place-
ment of the smartphone and surrounding environments are shown in Figure 1. During the
experiment, we placed the smartphone in an open environment and collected GNSS data
for three hours from 10:16:30 to 13:17:00 (UTC time). By processing the GNSS raw data, we
were able to extract various features and perform an analysis of the signal quality for BDS.

The Huawei Mate40 Pro, utilized as the test smartphone, was capable of receiving
satellite signals from GPS, Galileo, GLONASS, and BDS. During the static experiment,
19 BDS satellites were tracked and their details are presented in Table 1. Additionally,
Figure 2 intuitively illustrates the sky plot of the observed BDS satellites over the three-
hour duration of the experiment, while Figure 3 depicts their visibility. It is evident that the
BDS satellites exhibited excellent visibility in Nordic regions.

This section aims to evaluate the quality of static BDS data observations, along with
comparative analyses of other constellations’ signals. The signal quality assessment encom-
passes parameters, such as Signal-to-Noise Ratio (SNR), the number of satellites tracked by
the smartphone, and dilution of precision (DOP) [35].
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Figure 1. The placement of the smartphone and surrounding environments of the static experiment.
(a) The placement of the Huawei Mate40 Pro. (b) The environment of the experiment.

Figure 2. The sky plot of the observed BDS satellites. The gray circles indicate different elevating
angle from 0° to 90°. The gray lindicate different azimuth angle from 0° to 360°. N, E, S, and W means
the north, east, south, and west, respectively. The format of time is GPS time.
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Figure 3. The visibility of BDS satellites. The format of time is GPS time.

Table 1. The BDS satellites details tracked by Huawei Mate40 Pro.

PRN Common Name Int. Sat. ID Orbit

C02 BDS-2 GEO-6 2012-059A 80.3°E
C05 BDS-2 GEO-5 2010-036A 58.75°E
C08 BDS-2 IGSO-3 2011-013A 117°E
C13 BDS-2 IGSO-6 2016-021A 94°E
C14 BDS-2 MEO-5 2012-050B between slots B-3 and B-4
C20 BDS-3 MEO-2 2017-068B Slot B-8
C26 BDS-3 MEO-12 2018-067A Slot C-2
C27 BDS-3 MEO-7 2018-003A Slot A-4
C28 BDS-3 MEO-8 2018-003B Slot A-5
C29 BDS-3 MEO-9 2018-029A Slot A-2
C30 BDS-3 MEO-10 2018-029B Slot A-3
C32 BDS-3 MEO-13 2018-072A Slot B-1
C33 BDS-3 MEO-14 2018-072B Slot B-3
C36 BDS-3 MEO-17 2018-093A Slot C-4
C38 BDS-3 IGSO-1 2019-023A 110.5°E
C41 BDS-3 MEO-19 2019-090A Slot B-2
C42 BDS-3 MEO-20 2019-090B Moving to Slot B-4
C45 BDS-3 MEO-23 2019-061B Slot-C3
C46 BDS-3 MEO-24 2019-061A Slot C-5

C/N0 is a crucial parameter for determining the quality of global navigation satellite
system signals, as it represents the normalized SNR, which is the ratio of signal power
to noise power density. Vector receivers can use C/N0 as a priori information to verify
observations and estimate observation noise. Higher C/N0 values indicate better GNSS
signal quality.

In order to analyze the C/N0 of BDS, we computed their mean values and standard
deviations (STD). The analysis results are presented in Table 2. The average C/N0 value
of BDS was found to be 32.9915 dB-Hz, which is lower than GPS but higher than Galileo.
However, this difference can be attributed to inconsistent C/N0 measurements among
satellites at varying elevation angles. Nonetheless, the STD values of 5.7309 dB-Hz were
found to be lower than those of GPS, GLONASS, and Galileo.

However, the C/N0 value for a specific satellite is also influenced by the elevation
angle and environmental factors. To further analyze the satellites signals, we also provided
the details of each satellite, which is over 20°. Table 3 illustrates the relationship between
the elevation angles and the C/N0 values. Generally, the probability of high C/N0 values
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decreases as the elevation angle decreases. Additionally, the numbers of the BDS and GPS
satellates with high C/N0 values (over 30 dB-Hz) are more than Galileo and GlONASS,
which indicates that BDS and GPS has more satellites suitable for the SPP positioning.

Table 2. The mean values and standard deviations of C/N0 values of different constellations.

Constellation Mean (dB-Hz) STD (dB-Hz)

BDS 32.9915 5.7309
GPS 35.3457 6.0886

Galileo 30.0272 6.1583
GLONASS 35.9885 5.8280

Table 3. The mean values and standard deviations of C/N0 values of different satellites.

Constellation PRN Elevation Angle (°) Mean (dB-Hz) STD (dB-Hz)

C08 47.9∼22.2 31.5002 4.4961
C13 54.8∼35.2 37.3910 1.8184
C27 80.3∼20.0 34.5171 4.9459
C28 34.8∼20.0 32.9846 6.5131
C29 20.0∼52.3 35.9722 4.3560
C30 34.5∼83.4 33.6805 5.2821

BDS C32 20.0∼43.3 31.3789 5.9250
C33 20.4∼25.6 31.3565 6.1090
C36 45.9∼20.0 35.9820 4.0039
C38 35.4∼20.0 29.2391 4.6902
C41 31.9∼37.2 29.0289 3.5818
C45 20.0∼32.5 35.2199 4.6683
C46 39.5∼20.0 36.1796 5.0112
G05 33.1∼20.0 36.7451 4.7027
G08 20.0∼26.9 35.1775 3.8554
G10 20.0∼41.0 39.3837 2.6044
G15 20.0∼26.2 37.0806 3.6709
G16 20.0∼56.4 39.2454 4.7941
G18 42.1∼75.8 35.3325 3.6929

GPS G20 20.0∼40.9 32.6049 4.6311
G23 20.0∼59.6 34.3010 4.8063
G25 28.5∼20.0 32.4971 4.1494
G26 20.0∼58.8 40.8628 4.2843
G29 74.1∼20.0 36.7590 4.3347
G31 29.6∼20.0 38.9876 1.8416
E01 32.1∼31.6 23.2340 4.1922
E07 20.0∼22.9 27.3001 5.4657
E12 20.0∼75.7 27.9136 4.5362
E24 31.4∼52.8 34.6085 5.4665

Galileo E25 20.0∼35.4 30.4673 6.9783
E26 59.2∼20.1 36.2810 3.4519
E31 67.3∼20.0 33.4713 4.4128
E33 57.3∼79.6 29.4240 4.2281
R01 26.3∼25.0 37.8000 1.1353
R07 22.0∼20.0 31.9132 4.7945
R08 21.7∼27.1 33.3159 5.7961
R09 20.0∼36.6 32.1362 4.3685
R14 41.3∼20.0 38.6520 1.7602

GLONASS R15 61.8∼20.0 39.8010 3.7695
R17 41.1∼84.1 39.1089 3.2452
R18 20.0∼80.7 38.2912 4.3538
R19 25.0∼34.5 25.4738 4.5936
R23 30.5∼20.0 34.5310 2.0161
R24 79.2∼20.0 39.5584 2.2728
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In GNSS navigation and positioning, DOP is employed to assess the impact of the
spatial distribution of observed satellites on positioning accuracy. Generally, a better
distribution of satellites in the sky results in higher positioning accuracy. Therefore, lower
DOP values indicate better satellite geometry and a high probability of achieving high
accuracy. DOP is categorized into geometric dilution of precision (GDOP), position dilution
of precision (PDOP), horizontal dilution of precision (HDOP), and vertical dilution of
precision (VDOP). Table 4 shows the DOP values for each constellation during the three-
hour static experiment. The number of satellites being tracked with elevation angles above
10° for each constellation during the static experiment is shown in Figure 4. BDS has
the highest visibility in this scenario, with more than 10 satellites visible for the majority
of the time. GPS has over 8 visible satellites for most of the time as well. On the other
hand, Galileo and GLONASS have inferior visibility compared to both BDS and GPS. The
ascending order of the average GDOP values is as follows: BDS (1.8), GPS (2.4), Galileo
(2.5), and GLONASS (3.1). These findings indicate that BDS exhibited the best distribution
of satellites in the sky during the static experiment, while GPS came in second.

Table 4. The average DOP of different constellations during the static experiment.

Constellation GDOP PDOP HDOP VDOP

GPS 2.4 2.1 1.1 1.7
BDS 1.8 1.6 0.8 1.4

Galileo 2.5 2.3 1.3 1.8
GLONASS 3.1 2.8 1.8 2.1

Figure 4. The tracked satellites’ number of different constellations with elevation angles above 10°
during the static experiment. (a) The number of tracked satellites for BDS. (b) The number of tracked
satellites for Galileo. (c) The number of tracked satellites for GPS. (d) The number of tracked satellites
for GLONASS. The format of time is GPS time.
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4. Extended Kalman Filter for GNSS Positioning

The EKF is wildly used for data fusion, which is a mature method for GNSS data
filtering. To realize the data fusion of the GPS/BDS signals, the position and velocity are
used to realize the one-step prediction of the state vector. The system model of the EKF is
described as follows:

X̂k,k−1 = f (X̂k−1) + Wk

Zk = h(X̂k,k−1) + Vk (1)

where X̂k = [x, y, z, vx, vy, vz, ctr]T is the state vector, which contains the position and the
velocity in an ECEF (Earth-Centered Earth-Fixed Coordinate System) coordinate. tr is the
receiver clock bias. The state vector is predicted by the nonlinear function f (·) during the
adjacent sampling periods. The measurement vector Zk is the pseudo-range received from
the GPS/BDS multi-system, which will be calculated by the nonlinear observation function
h(·). The process noise and measurement noise, denoted by Wk and Vk, respectively, are
modeled as zero-mean Gaussian noise and are associated with covariance matrices. The
statistical properties of the noise terms are described as follows:

Wk ∼ N(0, Qk)

Vk ∼ N(0, Rk) (2)

where the process and measurement noise covariance matrices Qk and Rk are positive
symmetric matrices. The filtering process of EKF is shown as Equation (3):

X̂k,k−1 = f (X̂k−1) + Wk

Pk,k−1 = FkPk−1FT
k + Qk

Kk = Pk,k−1HT
k (HkPk,k−1HT

k + Rk)
−1

ỹk = yk − h(X̂k,k−1)

X̂k = X̂k,k−1 + Kk ỹk

Pk = (1− Kk Hk)Pk,k−1 (3)

In the EKF method for the GNSS data fusion, Fk = ∂ f
∂X |X=X̂k−1

= diag[1 T; 0 1] is the
linearized state dynamic matrix of f (·). T denotes the position updating duration. The
value of T is one second.

Since we choose the pseudo-range as the observation, the observation matrix h(·) is
different from the position-velocity model (PVT) and needs to be linearised. The pseudo-
range positioning principle is:

ρ =
√
(Xs − X0)2 + (Ys −Y0)2 + (Zs − Z0)2 + cδt (4)

where [Xs, Ys, Zs] is the position of the satellites in the ECEF coordinate, [X0, Y0, Z0] is the
position of the GNSS receiver, and ρ is the pseudo-range observation. Assume that there
the number of the satellite-to-receiver pseudo-range measurement is N. The measurement
matrix H is:

H =


∂ρ1
∂X

∂ρ1
∂Y

∂ρ1
∂Z 0 0 0 1

∂ρ2
∂X

∂ρ2
∂Y

∂ρ2
∂Z 0 0 0 1

...
... · · ·

...
...

...
...

∂ρN
∂X

∂ρN
∂Y

∂ρN
∂Z 0 0 0 1

 (5)
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The partial derivatives in the above matrix are:

∂ρi
∂X

= − Xi − X0√
(Xi − X0)2 + (Yi −Y0)2 + (Zi − Z0)2

∂ρi
∂Y

= − Yi − X0√
(Xi − X0)2 + (Yi −Y0)2 + (Zi − Z0)2

∂ρi
∂Z

= − Zi − X0√
(Xi − X0)2 + (Yi −Y0)2 + (Zi − Z0)2

(6)

where i = 1, 2 . . . , N.

5. Weighted Factor Graph Optimization

To utilize the historical measurements and their inner correlation of GNSS data, FGO
has gained much attention as an alternative method. To further improve the position-
ing accuracy, we improve the conventional FGO framework by introducing an adaptive
weighting model.

5.1. The Factor Graph Optimization for Pedestrian Navigation

An overview of the factor graph of GPS/BDS positioning with the constraints of
the pseudo-range, the velocity, and the height is shown in Figure 5. Unlike the EKF, the
past states are also regarded as unknowns in the optimization method [36]. The state
propagation model establishes a strong correlation between these states and measurements.

Figure 5. The factor graph of GPS/BDS positioning with the constraints of the pseudo-range, the
velocity, and the height.

As shown in Figure 5, the FGO module consists of three kinds of factors. Firstly, the
pseudo-ranges obtained from different satellites. Secondly, the location predicated by the
previous state based on the velocity. Last but not least, we also use the heights between
consecutive epochs as a constraint. The pedestrian navigation addressed in this paper
mainly considers the daily walking patterns of pedestrians. As pedestrians’ daily walking
typically occurs on flat ground, on the same floor, and in similar situations, there is little
significant change in the height over a short period. Even in special situations such as slopes
or stairs, the limited walking speed of pedestrians ensures that height information does not
change abruptly between adjacent sampling periods. Therefore, this section uses the height
information from the adjacent moments in the ENU coordinate system as a constraint to
construct the error function, aiming to further enhance the optimization results.
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In our strategy, we take the past five state vectors into account and construct the cost
function. The cost function can be expressed as follows:

f (X, ρ, h) = arg min(
k
∑

i=k−4
(Xi+1 − Fi,i+1 · Xi) ·Q−1

i+1 · (Xi+1 − Fi,i+1 · Xi))

+arg min(
k
∑

i=k−4
(Zi+1 − Hi+1 · Xi+1) · R−1

i+1 · (Zi+1 − Hi+1 · Xi+1))

+arg min(
k
∑

i=k−4
(Heighti+1 − Heighti) · I−1

i+1 · (Heighti+1 − Heighti) (7)

where Zi = (ρi
1, ρi

2, · · · , ρi
m), m is the number of satellites tracked by the smartphone at the

epoch i, X means the state vector including the position and velocity, ρ is the pseudo-range,
h indicates the height, I means the confidence coefficient matrix, and Hi is the measurement
matrix shown in Equation (5).

The FGO aims to find the minimal value of the cost function f (X, ρ, h). The Leven-
berg–Marquart (LM) algorithm is utilized to solve the optimal estimations [31,36,37]. The
steps of the LM algorithm can be summarized as follows.

Step 1: Expanding the cost function
By expanding the function f (·) and ignoring high order terms, we can obtain Equation (8):

‖ Φi+1(Xi)− Xi+1 ‖2
Q−1

i+1
=̃ (ε(X̃i+1) + JacbΦ

i+1 · 4X) ·Q−1
i+1 · (ε(X̃i+1) + JacbΦ

i+1 · 4X)T

= ε(X̃i+1) ·Q−1
i+1 · ε(X̃i+1) + 2 · ε(X̃i+1) · JacbΦ

i+1 · 4X

+ (4X)T · (JacbΦ
i+1)

T ·Q−1
i+1 · JacbΦ

i+1 · 4X

‖ hi+1(Xi)− Zi+1 ‖2
R−1

i+1
=̃ (σ(X̃i+1) + Jacbobs

i+1 · 4X) · R−1
i+1 · (σ(X̃i+1) + Jacbobs

i+1 · 4X)T

= σ(X̃i+1) · R−1
i+1 · σ(X̃i+1) + 2 · σ(X̃i+1) · Jacbobs

i+1 · 4X

+ (4X)T · (Jacbobs
i+1)

T · R−1
i+1 · Jacbobs

i+1 · 4X

‖ heighti − heighti+1 ‖2
I−1
i+1

=̃ (ς(X̃i+1) + Jacbh
i+1 · 4X) · I−1

i+1 · (ς(X̃i+1) + Jacbh
i+1 · 4X)T

= ς(X̃i+1) · I−1
i+1 · ς(X̃i+1) + 2 · ς(X̃i+1) · Jacbh

i+1 · 4X

+ (4X)T · (Jacbh
i+1)

T · I−1
i+1 · Jacbh

i+1 · 4X (8)

where Jacbi+1 denotes the Jacob matrix of the cost function. It can be calculated based on
Equation (9):

Jacb =
∂ f (X, ρ, h)
(∂X, ∂ρ, ∂h)

(9)

Equation (8) can be simplified as follows:

f (X +4X) = A + 2 · B · 4X + (4X)T · C · 4X (10)

Step 2: Deviating the cost function
By differentiating Equation (10) for4X, and assuming that the value of the deviated

equation equals zero, we can obtain Equation (11):

C · 4X = −B (11)

Based on Equation (11), we can obtain4X and update X̃:

X̃ = X̃ +4X (12)
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Step 3: Repeat step 1 and step 2 until the iteration count reaches the predefined
threshold or the increment4X reaches a predefined threshold.

5.2. The Adaptive Weighting Model

To further improve the positioning accuracy, we proposed the W-FGO algorithm by
introducing a weighting model into the conventional FGO. The weighting model consists of
two parts: the C/N0-based weighting model, and the adaptive model for the cost function.
The C/N0-based weighting is used to evaluate the signal importance of each satellite.
The adaptive model is used to choose the proportion of different components in the cost
function adaptively, as well as to consider the time fading factor.

5.2.1. The C/N0 Weighting

Generally, the observation weight matrix Wobs can be depicted as [38]:

Wobs = diag(σ−2
1 , σ−2

2 , σ−2
3 , · · ·, σ−2

m ) (13)

where m is the number of observations and σ is the observation variance.
The C/N0 value can be generally used as the criteria to weigh an observation. For

example, Figure 6 shows the single-differenced pseudo-range residuals against the C/N0
for some selected GNSS satellites. It can be seen that the pseudo-range residuals become
larger correspondingly with the decrease of the C/N0 values. It denotes that we can use
C/N0 values to evaluate the quality of the pseudo-range observations.

Figure 6. Receiver pseudo-range residuals (PR) against the satellite C/N0 for the selected BDS satellites.

The C/N0-based weighting model applied in this work is given as follows:

σ2
C/N0 = σ2

0,C/N0 × 10
max(C/N0max − C/N0, 0)

10 (14)

where σ0,C/N0 is the standard deviation of the pseudo-range observations, of which the
value is obtained from the numerical analysis and field tests, which is 9.0 m for pseudo-
range, C/N0 means the current C/N0 value of the satellite signal tracked by the smart-
phone, max(·) is the maximum function, and C/N0max is a threshold which is set to
40 dB-Hz.

The observation weight value is the reciprocal of the observation variance. If the
observation variance is determined according to Equation (14), the observation weight
can be acquired based on Equation (13). Then, we utilized the observation weight Wobs to
replace R−1

i+1 in Equation (7).
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5.2.2. The Adaptive Weighting for Cost Function

The DOP, which represents the satellite formation, is widely utilized in satellite naviga-
tion performance prediction. DOP is derived from the error covariance, which is calculated
from the LSM. According to the general definition of DOP, we can obtain Equation (16):

D = (HT · H)−1 (15)

DOP =
√

∑ Dii, i = 1, 2, 3, 4 (16)

where Dii is the ith row and the column diagonal element of matrix D. WDOP, proposed
by [39], considers the individual error characteristics of the measurements based on their
weight, which is more reliable and accurate than DOP. The weighting of DOP can be
depicted as Equation (17):

WDOP = diag(w1, w2, w3, · · ·, wN), wi = (
εi

σ2
UERE

)−1 (17)

where N is the index of satellites, εi is the covariance value of pseudo-range observations,
which includes both effects of range errors concerning elevation angle and inherent random
noise, and σUERE means the user equivalent range error (UERE), which is set to a constant
value. By applying Equation (17) to Equation (15), we can obtain the weighted least squares
equation and calculate the WDOP:

DWDOP = (HT ·W · H)−1 (18)

According to Equation (16), we can utilize the diagonal components of matrix DWDOP
to compute the WDOP.

WDOP is a performance index that indicates the quantity of positioning errors based
on the geometrical deployment of all measurements. As mentioned above, WDOP is used
to determine the proportion of the components in the cost function adaptively. According
to Equation (7), the cost function of the FGO contains three factors. These three factors
can be divided into two parts. One consists of f (X, F) and f (X, Height), which are based
on the state differences between the current epoch and the previous epoch. That is, the
difference between the predicted state based on the transition matrix F and the current
state, as well as the difference between the previous height and the current height. Another
one, f (X, Z), is based on pseudo-range observations. That means the difference between
the pseudo-range observations obtained from GNSS and the pseudo-range calculated by
observation matrix h(·). Introducing the WDOP into the conventional FGO function, the
adaptive cost function can be derived as Equation (19). β is an empirically determined
value. By utilizing the WDOP, we can adjust the proportion between the predicted state
f (X, F), the height state f (X, Height) and the observations f (X, Z). The proportion of
f (X, F) will increase when the geometric formation of the satellite is poor. In contrast,
f (X, Z) will play a more important role in the cost function.

f (X, ρ) = (1− e−WDOP/β) · ( f (X, F) + f (X, Height)) + e−WDOP/β · f (X, Z) (19)

Despite the WDOP, since we take the historical data into account, the weight of the
data from different epochs should also be considered. Generally, we utilized the time
fading factor λ to adjust the effect of the data from different epochs. By introduced the time
fading factor, Equation (19) can be improved as:

fi(X, ρ) = λi · ((1− e−WDOP/β) · ( fi(X, F) + fi(X, Height)) + e−WDOP/β · fi(X, Z)) (20)

λi = (1− kth/Wlength), kth = 0, 1, 2, · · ·, Wlength − 1 (21)
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where Wlength means the number of the historical epochs considered in the FGO cost function.

6. Experiments and Results
6.1. Ground Tests in Urban Areas

We implement the kinematic pedestrian experiments in urban areas with the smart-
phone Huawei Mate40 Pro, which is shown in Figure 7b. We utilize the GnssLogger, which
is an open-source software announced by Google, to realize the satellite data collection.
The experimental box designed by ourselves, which is shown in Figure 7a, contains four
parts: the Novatel SPAN-CPT, the antenna, a laptop, and the battery. Novatel SPAN-CPT
is a commercial GNSS/INS integration system. The laptop is employed to collect the raw
SPAN-CPT measurements. By utilizing the Inertial Explorer (IE) software pronounced by
the Novatel company, we can process the Novatel raw measurements and obtain the RTK
trajectory as the reference, of which the accuracy can reach the centimeter level, to analyze
the positioning accuracy of the proposed method. In the pedestrian experiments, we hold
the Huawei Mate40 Pro and carry our experimental box, walking in different scenes in
urban areas.

Figure 7. The kinematic pedestrian experiments in urban areas. (a) The experimental box. (b) The
example of kinematic pedestrian experiments.

After data collection, we utilize the open-source code pronounced by Google, which
goes with the GnssLogger, to process the GNSS raw data and calculate the position, velocity,
and time (PVT). This open-source code utilizes the LSM to realize the single point position-
ing (SPP), based on the single frequency data (1575.42 MHz for GPS and 1561.098 MHz for
BDS). In addition, we also used the EKF method to calculate the PVT results as the compar-
ison. For the kinematic pedestrian experiments, we implemented four tests (test 1∼test 4)
and collected the different datasets in complex urban areas. The trajectories of test 1∼test 4
contain different scenes, which indicate different levels of the environmental severity.
Based on these datasets, we can verify the performance of the proposed method in GNSS-
degrade environments. The reference trajectories of these tests are shown in Figure 8.
Surrounded buildings and forests will influence the GNSS signal propagation and decrease
the smartphone positioning accuracy.
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As shown in Figure 8, test 1∼test 4 are conducted in complex urban areas surrounded
by trees and buildings. The severity of the positioning environment varies in different tests.
test 1 is conducted alongside the road, which is closer to the GNSS-blocked side. In the test 1,
around half of the sky is blocked. Test 2∼test 4 is conducted in a community environment.
Both sides of the trajectories are surrounded by forests and buildings, especially in the
test 4. The features of these tests are also different. Test 2 and test 4 contain more complex
and varied scenes. Different sections in the trajectories represent different environments.
Some of them are surrounded by trees or buildings, while some of them are not. In contrast,
test 1 and test 3 indicate the single scene. Test 1 represents the street scene, which has fewer
blockages for the signals. Test 4 represents the alley scene, which is almost full of buildings
and trees.

Figure 8. Trajectories of ground tests drawn by Google Earth Pro.

6.2. Results

The statistical analysis results of the horizontal position errors are presented in Table 4.
To evaluate the performance of the BDS-based LSM, GPS-based LSM, GPS/BDS-based LSM,
EKF, the conventional FGO method, and the proposed method W-FGO, we utilize the mean
errors and the standard deviations of the horizontal positions as the evaluation indicators.

According to Table 5, as an emerging satellite system, the positioning performance of
the BeiDou satellite system is comparable to that of GPS. By utilizing both BDS and GPS
satellite signals, single-point positioning accuracy can be further improved. Compared with
the BDS LSM, the mean values of the horizontal positioning error of the GPS/BDS LSM
decreased by 28.09%, 45.67%, 20.68%, and 14.29% for test 1∼test 4, respectively. The STD
values of the horizontal positioning of the GPS/BDS LSM compared with the BDS LSM
decreased by 8.57%, 20.77%, 36.44%, and 29.01% for test 1∼test 4, respectively. On the other
hand, compared with the GPS LSM, the mean values of the horizontal positioning error
of the GPS/BDS LSM decreased by 13.81%, 36.40%, 7.40%, and 10.03% for test 1∼test 4,
respectively. The STD values of the horizontal positioning of the GPS/BDS LSM compared
with the GPS LSM decreased by 4.76%, 31.97%, almost the same, and 11.22% for test 1∼test 4,
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respectively. Additionally, it can be seen that the positioning accuracy of the LSM is much
worse than the EKF, FGO, and W-FGO. The mean positioning errors and the STD of W-FGO
are significantly lower than other algorithms, that is, the filtering performance and the
positioning accuracy of W-FGO are the best among these algorithms. Figures 9 and 10 can
also intuitively illustrate the positioning performance of the BDS-based LSM, GPS-based
LSM, GPS/BDS-based LSM, EKF, the FGO method, and W-FGO.

Figure 9. The horizontal positioning errors for test 1∼test 4 based on the LSM methods.

Figure 10. The horizontal positioning errors for test 1∼test 4 between the GPS/BDS-based LSM, EKF,
FGO, and W-FGO.
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Table 5. The horizontal errors for the pedestrian tests.

Dateset Method Mean (m) STD (m)

BDS-LSM 6.0199 3.5744
GPS-LSM 5.0221 3.4315

GPS/BDS LSM 4.3285 3.2680
test 1 EKF 2.8675 2.3140

FGO 2.5886 1.4571
W-FGO 1.8729 1.1016

BDS-LSM 6.1050 3.3940
GPS-LSM 5.2150 3.9528

GPS/BDS LSM 3.3169 2.6891
Test 2 EKF 2.4750 2.3051

FGO 2.0902 1.3024
W-FGO 1.5704 0.8973

BDS-LSM 5.7422 3.9868
GPS-LSM 4.8661 2.4944

GPS/BDS LSM 4.5547 2.5342
test 3 EKF 2.7858 2.0991

FGO 2.5551 1.5375
W-FGO 1.9408 1.5290

BDS-LSM 6.5474 2.9093
GPS-LSM 6.2373 2.3262

GPS/BDS LSM 5.6119 2.0653
test 4 EKF 3.4884 1.5254

FGO 2.7083 1.3474
W-FGO 1.8792 0.9530

According to Table 5 and Figures 9 and 10, it can be illustrated that the W-FGO can
significantly increase positioning accuracy. Compared with the GPS/BDS LSM, the mean
values of the horizontal positioning error of the W-FGO decreased by 56.73%, 52.65%,
57.39%, and 66.51% for test 1∼test 4, respectively. The STD values of the horizontal posi-
tioning of the W-FGO compared with the the GPS/BDS LSM, decreased by 68.33%, 66.63%,
39.67%, and 53.86% for test 1∼test 4, respectively. In terms of the EKF, the mean values of
the horizontal positioning error of the W-FGO decreased by 34.69%, 36.55%, 30.33%, and
46.1% for test 1∼test 4, respectively. The STD values of the horizontal positioning of the
W-FGO decreased by 52.39%, 74.09%, 27.16%, and 37.52% for test 1∼test 4, respectively.
Regarding the FGO method, the average horizontal positioning error for W-FGO decreased
by 27.65%, 24.97%, 24.04%, and 30.61% for test 1∼test 4, respectively. Additionally, the STD
values of the horizontal positioning for W-FGO decreased by 24.40%, 31.10%, almost the
same, and 29.27% for test 1∼test 4, respectively.

Excepting the superior positioning performance of W-FGO compared with other
methods, the positioning results also demonstrate that data processed by the W-FGO are
smoother and less volatile. That is, the W-FGO method enables stable positioning.

The cumulative distribution functions (CDF) of the horizontal positioning errors for
test 1∼test 4 are given in Figure 11. It can be obviously demonstrated that the proportions of
the W-FGO method with horizontal errors less than 3 m are over 80%, which are significant
degradations compared to the FGO, EKF, GPS LSM, BDS LSM, and GPS/BDS LSM.

To further evaluate the positioning performance of the proposed method, the boxplots
of horizontal positioning errors for test 1∼test 4 are given in Figure 12. The median
horizontal errors of the BDS LSM are 5.7437 m, 5.9088 m, 4.7720 m, and 6.8595 m for
test 1∼test 4, while that of the GPS LSM are 4.8565 m, 4.3361 m, 4.9419 m, and 5.9458 m,
respectively. The median horizontal errors of the GPS/BDS LSM are 3.0627 m, 2.4849 m,
3.8506 m, and 5.1796 m for test 1∼test 4, while that of the EKF method are 2.7981 m,
1.5499 m, 1.9923 m, and 3.5386 m, respectively. The median horizontal errors of the FGO
are 2.4470 m, 1.7958 m, 2.3276 m, and 2.5271 m for test 1∼test 4, respectively. As for the
proposed W-FGO method, the median horizontal errors are 1.6221 m, 1.3983 m, 1.4529 m,
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and 1.8103 m, with improvements of (47.04%, 43.73%, 37.73%, 65.05%), (42.03%, 9.78%,
27.07%,48.84%), and (33.71%, 22.13%, 37.58%, 48.84%) without the outliers for the GPS/BDS
LSM, EKF, and the FGO, respectively.

Figure 11. Cumulative distribution functions (CDF) of horizontal positioning errors for test 1∼test 4.

Figure 12. Boxplots of horizontal positioning errors for test 1∼test 4.

7. Discussion

Note that the iterative initial value of the first epoch is set as the reference value.
Except for the first epoch, the iterative initial values are set as follows. For all of the LSM
methods, the iterative initial values are set as the iterative result of the previous epoch. For
other methods (EKF, FGO, W-FGO), the iterative initial values are set as the combination
of the iterative result of the previous epoch and the result of LSM at the same epoch.
The experimental results demonstrated the superior performance of the W-FGO method.
However, there are still some limitations that need to be developed and further investigated.

(1) For some extremely severe and varied urban scenes, such as test 4, the positioning
accuracy based on GPS/BDS signals is not satisfied. By utilizing the GPS/BDS LSM
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method pronounced by Google, the mean error of test 4 is even over 5 m. That is,
there are still various challenges to the improvement of raw data processing, which
will significantly influence the optimization performance of the W-FGO method.

(2) The LM algorithm is used to solve the nonlinear least squares problem and obtain
the position. However, this method leads to a local optimum rather than a globally
optimum solution. Thus, the iterative initial value has a significant influence on the
accuracy of the results. In this study, we utilize the combination of the iterative result
of the previous epoch and the results of the LSM method as the iterative initial value.
However, due to the problem of low accuracy of the LSM we mentioned above, the
positioning accuracy of the W-FGO cannot be guaranteed in some specific scenes.
Obtaining the global optimum solution and enhancing the constraint of the initial
value need to be further investigated.

In addition, there are still potential investigation values and prospects in the aspect of
smartphone-based pedestrian positioning.

(1) Since we focus on the investigation of pedestrian positioning, the characteristics of
human beings will also make sense. The features of the specific person (e.g., height,
step length, and stride frequency) are the potential constraints worthy of research.

(2) In this study, we pay attention to single-user pedestrian positioning. Collaborative
pedestrian positioning is possible due to the information exchange between our smart-
phones in the future. With the increase of the collaborative network, more constraints
can be introduced into the W-FGO, which may be positive for the improvement of the
positioning accuracy.

8. Conclusions

Pedestrian navigation based on smartphones plays an increasingly important role in
modern life. The positioning accuracy is easily affected by complex urban environments
(e.g., multi-path and non-line-of-sight). Since the BDS navigation system has realized
worldwide deployment. It is possible to implement pedestrian navigation based on the BDS
signals, which has not been thoroughly investigated. In this study, we utilize the GPS/BDS
multi-constellation system to realize the smartphone-based pedestrian navigation. An
adaptive W-FGO method is proposed to realize the data fusion of GNSS signals and
pedestrian positioning. The W-FGO is derivate from the conventional FGO, considering
the historical GNSS data and their inner correlation as well as the time fading factor. Firstly,
we utilize the C/N0-based factor to estimate the signal quality of the observations. Then,
the adaptive factor can indicate the proportion of different components in the cost function,
as well as consider the influence of time fading. That is, newer data make more sense. We
conducted several ground tests with the Huawei Mate40 Pro and simultaneously obtain the
RTK results as the reference. The experimental results illustrate that the W-FGO method
performs better than other filtering methods. This method can be further improved and
extended to more complicated pedestrian navigation systems in our future research.
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