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Abstract: Mosaic of apple leaves is a major disease that reduces the yield and quality of apples, and
monitoring for the disease allows for its timely control. However, few studies have investigated the
status of apple pests and diseases, especially mosaic diseases, using hyperspectral imaging technology.
Here, hyperspectral images of healthy and infected apple leaves were obtained using a near-ground
imaging high spectrometer and the anthocyanin content was measured simultaneously. The spectral
differences between the healthy and infected leaves were analyzed. The content of anthocyanin in
the leaves was estimated by the optimal model to determine the degree of apple mosaic disease. The
leaves exhibited stronger reflectance at a range of 500–560 nm as the degree of disease increased.
The correlation between the spectral reflectance processed by the Gaussian1 wavelet transform and
anthocyanin was significantly improved compared to the corresponding correlation results with
the original spectrum. The VPs-XGBoost anthocyanin estimation model performed the best, which
was sufficient to monitor the degree of the disease. The findings provide theoretical support for
the quantitative estimation of leaf anthocyanin content by remote sensing to monitor the degree of
disease; they lay the foundation for large-scale monitoring of the degree of apple mosaic disease by
remote sensing.

Keywords: hyperspectral images; anthocyanin; machine learning; mosaic disease; apple trees

1. Introduction

Apple trees, belonging to the rose family, are one of the most widely cultivated
fruit trees in the world, and the fruits have high nutritional value and great economic
benefits. China is the world’s largest apple producer, accounting for 50% of the global
apple production in recent years [1]. Mosaic is a common viral disease that occurs during
the growth of apple trees and is characterized by strong infectivity, fast transmission, and
wide distribution. Mosaic disease may cause serious yield loss [2,3]. Apple leaves infected
with mosaic virus show chlorotic (yellow) spots or mosaic patterns that develop along the
veins or form amorphous chlorosis zones between veins [4].

Anthocyanins are one of the main pigments in plants and usually exist in the cyto-
plasm. As an osmoregulatory substance, anthocyanins—with their unique antioxidant
effect—protect the photosynthetic system of plants from excessive light radiation, especially
ultraviolet radiation [5,6]. Anthocyanin is also a secondary metabolite of plants subjected
to environmental and biological stresses such as high temperature, water shortage, high
salt, diseases, and insect pests. Studies have shown that anthocyanin concentrations in-
crease significantly when plants are subjected to biological or abiotic stresses [7]. Therefore,
dynamic information on the anthocyanin content in apple leaves can serve as an important
basis for judging the degree of leaf disease.

However, traditional methods for measuring the anthocyanin content in vegetation
can be destructive, time-consuming, and laborious, rendering them difficult to implement
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in agricultural production [8–10]. Therefore, it is necessary to develop an effective and
nondestructive method to estimate the anthocyanin content. Hyperspectral imaging is an
extensive and automated measurement technology that can capture the fine spectral data
of plants and provide nondestructive and real-time monitoring of aspects of crops such as
nutrient, disease, and insect status [11–13]. Based on the hyperspectral data, scholars have
proposed a number of spectral pretreatment methods and hyperspectral vegetation indices
including the Savitzky–Golay smoothing method (S–G smoothing), successive projections
algorithm (SPA), red-edge parameter, and new vegetation indices, which are usually
used to detect diseases and pigment content and monitor physiological and biochemical
parameters and growth information in crops and vegetation [14–19]. Liu found that S–G
smoothing is an ideal method for reducing noise when exploring the application status
of NDVI time series data [20]. Ruffion believed that the spectrum after S–G smoothing
was more conducive to the subsequent extraction of the spectral characteristics of plants
and soil [21]. Wang (2016) suggested that the performance of the three-band vegetation
index constructed based on the wavelength selected by SPA was higher than that selected
by the genetic algorithm, indicating that SPA has great potential in crop monitoring [22].
The study by Ding (2022) showed that SPA-ELM can quickly and accurately evaluate the
chlorophyll content and hardness of cucumber [23]. Gitelson believed that the 510–560 nm
and near-infrared bands could accurately and nondestructively estimate the anthocyanin
content in plant leaves; however, specific parameters would vary for different types of
vegetation [24]. Steele pointed out that the near-infrared/green (AIR) index and improved
anthocyanin reflectance index (MARI) are effective tools for estimating the anthocyanin
content of grape leaves [9]. Luo established the anthocyanin content of single- and multi-
class variable inversion models, and the results showed that the modeling accuracy of the
multi-class variable model significantly improved [25]. Other studies have shown that
continuous wavelet transform captures more spectral information than the previously
used transform methods in the context of vegetation hyperspectral remote sensing [26,27],
which also demonstrates the advantages of wavelet transform in spectral smoothing, noise
reduction [28,29], classification recognition [26,30,31], and the estimation of the leaf pigment
content [32,33].

Hyperspectral imaging is a new nondestructive detection technology that combines
traditional imaging technology with spectral technology [34] and has been widely used
in monitoring crop diseases and pests in recent years. The captured images have the
characteristics of atlas integration, and every pixel in the image contains rich spectral
information, which compensates for the limitations of traditional imaging technology and
spectral analysis [35]. Zhang combined hyperspectral images with the photochemical re-
flection index (PRI) to effectively distinguish the degree of disease in wheat yellow rust [36].
Xie identified the early blight of eggplant leaves using a GLCM based on hyperspectral
images [37]. Koushik proposed that the preprocessing of hyperspectral images and the
extraction of sensitive bands combined with deep learning could classify charcoal rot and
thus monitor the health status of soybeans [38]. Gerrit Polder used hyperspectral images
instead of visual observation to monitor potato virus diseases in the early cultivation stage,
thus reducing the planting cost for farmers [39]. Yuan suggested that the automated and
accurate detection of anthracnose-infected tea leaves was possible by using hyperspectral
imaging for practical tea-plant protection [40]. Wu combined machine learning algorithms
with hyperspectral image features to monitor rice bacterial blight, achieving recognition
accuracies as high as 97.41% [41]. The use of hyperspectral data to monitor crop growth
or their health consists of two main approaches: standard statistical models and machine
learning-based regression models [42]. Tao directly constructed a yield prediction model
by analyzing the patterns of the spectral characteristics of crops [43]; Ta used the vegetation
index and standard linear estimation to estimate the leaf nitrogen content, but the accu-
racy was not very good [44] as these statistical models are usually more suitable for data
with narrow attributes. The use of regression models based on machine learning greatly
improved the speed of data processing and emphasized the effectiveness of the models.
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Luo believed that partial least square regression (PLSR) and support vector machine re-
gression (SVMR) were significantly better than ordinary linear regression in estimating the
anthocyanin content in maize leaves [25]. Wei successfully identified the characteristics of
different crops in the early growing stage by combining RF and vegetation index [45].

Most of these studies have focused on the estimation of crop parameters, the clas-
sification and identification of crop diseases and pests, while few have investigated the
status of apple pests and diseases using hyperspectral imaging technology, especially
mosaic diseases. In this study, we applied wavelet transform to the surveillance of apple
mosaic disease and proposed comprehensive indicators to estimate the severity of apple
mosaic disease for the first time. Therefore, this study aimed to: (1) analyze the spectral
characteristics of apple leaves under mosaic stress; (2) compare the inversion performance
of characteristic bands, vegetation indices, wavelet coefficients, and effective parameters
on anthocyanin, and use the optimal anthocyanin inversion model to obtain a map of leaf
anthocyanin content and to evaluate the degree of mosaic disease.

2. Materials and Methods
2.1. Sample Collection and Data Acquisition

The experiment was conducted in June 2021 in an orchard in the Shaozhai Village,
Xinglin Town, Fufeng County, Shaanxi Province (Figure 1). During an epidemic of mosaic
disease, 180 samples containing healthy apple leaves and leaves with different degrees
of disease (based on visual characteristics) were collected and placed in sealed bags. The
leaves were placed in an incubator with a built-in ice pack to keep them fresh and then
quickly brought back to the laboratory for follow-up measurements.
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Figure 1. Location of the experimental area and pictures of the experiments.

The anthocyanin content in the apple leaves was measured using a portable plant
leaf measuring instrument (Dualex Scientific+, Force-a, Orsay Cedex, France) that uses
plant fluorescence technology to achieve real-time, nondestructive, and accurate measure-
ment of anthocyanin content in plant leaves and obtain dimensionless relative values of
anthocyanin, namely, the anthocyanin value [23]. Each healthy leaf was measured 10 times
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(unmeasured veins), and the mean value was denoted as the representative value of antho-
cyanins. In the infected leaves, measurements were taken only at the diseased spots.

Hyperspectral images of the apple leaves were captured using a SOC-710 portable
hyperspectral spectrometer (Surface Optics Corp, San Diego, CA, USA), a hyperspectral
spectrometer with built-in translation, a push-and-sweep device, and a dual CCD detec-
tor, which can quickly acquire hyperspectral image data at 400–1000 nm with a spectral
resolution of 4.7 nm. After measuring the anthocyanin content, apple leaves were placed
horizontally on a black curtain with the absorption side up (Figure 1). Hyperspectral
images were captured outdoors from 12:00 to 13:30, when the weather was clear with no
wind or clouds.

2.2. Data Pre–Processing
2.2.1. Hyperspectral Data Preprocessing

Hyperspectral images were processed using ENVI 5.3 (Exelis, McLean, VA, USA),
and the ROI tool was used to draw a region of interest corresponding to the measurement
point of the leaf anthocyanin and extract the spectral reflectance. To obtain more spectral
information, the spectral reflectance was linear interpolated to a 1 nm resolution from the
native 4.7 nm resolution of the instrument following standard practice to standardize the
data [33,46]. After removing the outliers, a Savitzky–Golay smoothing method in MATLAB
R2021 b (MathWorks, Natick, MA, USA) was used to denoise the spectrum. The quadratic
term was set to 5, and a continuous smooth reflection spectrum was finally obtained, which
was used as the original spectrum for subsequent research.

2.2.2. Vegetation Indices

Vegetation indices improve the efficiency of data utilization through normalization
and derivative processing to reduce the impact of sensors and their surroundings on
the measurement target [16,47]. Based on previous experience and knowledge of the
characteristic spectral reflectance of apple leaves, this study selected 15 vegetation indices
that have good correlations with the pigment content of plants for the analysis of their
correlations with the anthocyanin content. Seven three-band vegetation indices and eight
two-band vegetation indices were included (Table 1). The two-band vegetation indices
were further classified into vegetation indices of specific two-band combinations (VIS) and
vegetation indices of any two-band combination (VIA).

Table 1. Vegetation indices and equations.

Vegetation Indices Bands Equation Reference

NDSI
Any two bands

Ri−Rj
Ri+Rj

[48]

RSI Ri/Rn [48]
DSI Ri − Rn [48]

TVI

Three specific bands

0.5(120 ∗ (R750 − R550)− 200(R670 − R550)) [14]
VARI (R550 − R660)/(R550 + R660 − R470) [45]

MTVI1 1.2(1.2(R800 − R550)− 2.5(R670 − R550)) [15]
MCARI1 1.2(2.5(R800 − R670 )− 1.3(R800 − R550 )) [15]
MCARI2 1.5 ∗ (2.5 ∗ (R800−R670)−1.3 ∗ (R800−R550))√

(2 ∗ R800+1)2−(6 ∗ R800−5 ∗
√

R670)−0.5
[15]

TCARI 3[(R700 − R670)− 0.2(R700 − R550) ∗ (R700/R670)] [40]
MTCI (R745 − R709)/(R709 + R681) [49]

GNDVI

Two specific bands

R801 − R550
R801 + R550

[25]

OSAVI (1 + 0.16) ∗ (R800 − R670)/(R800 + R670 + 0.16) [50]
GRVI R800/R550 [51]
SAVI 1.5 ∗ (R800 − R670)/(R800 + R670 + 0.5) [50]
CARI (R700 − R670)− 0.2(R700 + R670) [52]

where Ri and Rj are the reflectance at i and j nm over the entire reflectance spectrum, respectively.
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2.3. Variable Selection Methods
2.3.1. Successive Projections Algorithm (SPA)

SPA was originally proposed for the construction of multivariate calibration models,
and designed to select variables for use in multiple regression models. In this case, the
collinearity avoidance mechanism embedded in the SPA reduced the propagation of mea-
surement noise during calibration [53]. SPA uses the projection analysis of vectors. By
projecting the wavelength onto other wavelengths, it compares the size of the projection
vector, takes the wavelength with the largest projection vector as the selected wavelength,
and then selects the final characteristic wavelength based on the correction model [42]. This
study used SPA-GUI for implementation [54], and the steps are described as follows:

Assume that the initial iteration vector is Xk(0), the variable to be extracted is N, and
the spectral matrix is J column:

Step 1: One column (the jth column) of the spectral matrix was randomly selected,
and the jth column of the modeling set was assigned to xj, denoted as Xk(0), j = 1, . . . , J;

Step 2: Denoted s as the collection of the column positions that were not selected,

s = {j, 1 ≤ j ≤ J and j /∈ {k(0), k(1), . . . . . . , k(n− 1)}} (1)

Step 3: Compute the projection of xj onto the remaining column vectors separately,

pxj = xj−
(

xT
j xk(n−1)

)
xk(n−1)

(
xT

k(n−1)xk(n−1)

)−1
(j ∈ s) (2)

Step 4: Extract the spectral wavelength of the maximum projection vector,

k(n) = arg
(
max

(
‖ pxj ‖, j ∈ s

)
(3)

Step 5: Let
xj = pxj, j ∈ s (4)

Step 6: Accumulate n, if n < N, then, it can be calculated in accordance with Equation (1).
Finally, the extracted variable is

{
xk(n) = 0, 1, . . . , N − 1

}
. Multiple linear regression

analysis models were established respectively for K(0) and N in each cycle, and the root
mean square error of the interactive verification of the modeling set was obtained, cor-
responding to different candidate subsets. According to the F test (α = 0.25), this is the
position where RMSE is not significantly greater than the minimum RMSEmin [53].

2.3.2. Continuous Wavelet Transform

Wavelet transform is a linear transformation method that uses wavelet basis functions
to decompose complex signals into wavelet signals of different scales or frequencies, ef-
fectively extracting weak information parts of the signal, and fully highlighting its local
characteristics [55]. Wavelet transform is divided into the continuous wavelet transform
(CWT) and discrete wavelet transform. In this study, 10 different parent wavelet bases
(Table 2) were used to transform the smoothed spectral reflectance into a series of wavelet
coefficients. The formulas [56] are given below (Equations (5) and (6)). As wavelet de-
composition that occurs on a continuous possible scale (a = 1, 2, . . . , m) can lead to high
computational cost and large data volume, the reflection spectrum was decomposed on a
binary scale 21, 22, . . . , 210, proportional to the effective length of the wavelet compression
or stretching at this scale.

W f (a, b) =
∫ +∞
−∞ f (λ)Ψa,b(λ)dλ (5)

Ψa,b(λ) =
1√
a Ψ
(
λ−b

a

)
(6)
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where W f (a, b) is the wavelet coefficients; f (λ) is the original hyperspectral reflectance; λ
is the wavelength; Ψa,b(λ) is the mother wavelet function; a is the scale factor that defines
the width of the wavelet (21, 22, . . . , 210); b is the shifting factor determining the position,
which shifted from 400 to 988 nm in this study.

Table 2. Mother wavelet functions and applications.

Mother Wavelet Functions Applications Reference

Gaussian 1 Chlorophyll content [57]
Rbio 5.5 Chlorophyll content [56]

Mor l Chlorophyll content [58]
Db 5 Nitrogen content and classification [28]

Bior 3.3 Pigment content [27]
Sym 8 Water content [59]
Mexh Water and chlorophyll content [60]
Meyr Classification [29]
Haar Chlorophyll content [61]
Coif 2 Chlorophyll content [62]

The wavelet function provided by MATLAB software in this study was as follows:
coefs = cwt (x, scales, ‘wname’), where x is the spectral reflectance of 400–988 nm, scales is
a in the above equations, and wname is the mother wavelet function.

2.4. Regression Models
2.4.1. Partial Least-Square Regression (PLSR)

PLSR integrates the advantages of multiple linear regression (MLR), canonical correla-
tion analysis, and principal component analysis (PCA) [63]. In the process of establishing
the regression model, the algorithm considers the correlation between the principal compo-
nent in the feature matrix and the proposed principal component to maximize, which can
effectively eliminate multiple correlations among the independent variables and improve
the accuracy and overall explanatory ability of the model [64]. In this study, partial least
squares regression was used to train the model. The samples were randomly divided into
the training group (66.67% of the sample) and the test group (33.33% of the sample). The
principal components of different factors were determined by observing the changes in the
MSE value of the calibration set after 10-fold cross-validation.

2.4.2. Random Forest (RF) Regression

The RF algorithm is an integrated machine learning algorithm based on the regression
tree proposed by Breiman in 2001 [65]. As a bagging integration algorithm with a decision
tree as its basic unit, it relies on the assumption that different independently predicted val-
ues predict errors in different regions. Therefore, by combining the results of independent
predicted values, the overall prediction accuracy can be improved, and it performs well
in the training and learning of high-dimensional data such as hyperspectral remote sens-
ing [66,67]. In Python, implemented by the sklearn library, we set the number of trees = 100,
the maximum depth of the tree = 8, the number of features of the tree = 5, min_samples_leaf
= 1, the number of random seeds = 1, and evaluated using 10-fold cross validation.

2.4.3. Artificial Neural Network (ANN)

The ANN is based on a gradient learning method. It is a nonparametric nonlinear
model that uses a neural network layer extension to simulate the human brain receiver
and information processing. ANN includes the input, hidden, and output layers, network
initialization (i.e., the number of neurons is determined by the input and expected output to
initialize the weight between neurons), the hidden layer and output layer calculations, and
updating of the error value and weight to obtain the final weight [68]. A neural network is a
learning classification method based on large samples, influenced by the network structure
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and sample complexity, and it is easy to overlearn and reduce its generalization ability.
The most important parameter in the neural network regression model is the number of
neurons. The greater the number of neurons, the higher the learning accuracy and the
stronger the generalization ability [69]. In Python, implemented by the sklearn library, we
set the solver = ‘lbfgs’, alpha = 0.001, hidden_layer_sizes = (14, 1), activation = ‘logistic’,
learning_rate_init = 0.001, max_iter = 200, and random_state = 600.

2.4.4. Extreme-Gradient Boost (XGBoost) Regression

XGBoost is an enhancement algorithm proposed by Chen in 2016 [70] based on a
supervised gradient. In general, the ability of the algorithm to solve a problem is improved
by using a custom gradient loss function to improve the framework, which forms new
decision trees to constantly fit the residuals of previous predictions to reduce the residual
between the actual and predicted values. Compared with previous algorithms, this method
controls overfitting better by using a more regularized model. In this study, a tree-based
model was used for the lifting calculations. Then, ‘xgboost library’ was imported into
Python, class Dmatrix was used to read the data, ‘max_depth’ = 6 was set, eta = 0.1,
‘silent’ = 1, ‘objective’ = ‘reg:squarederror’, ‘subsample’ = 0.5, ‘colsample_bytree’ = 1,
‘min_child_weight’ = 3, num_boost_round = 1000, ‘reg_alpha’ = 0.5, and ‘reg_ lambda = 0.5′.

2.5. Test of Accuracy

We calculated the determination coefficient (R2), root mean square error (RMSE),
and relative percentage deviation (RPD). R2 is used to evaluate the degree of correlation
between the predicted and actual values. The closer R2 is to 1, the better the degree of
correlation between the predicted and real values. The RMSE is used to test the predictive
ability of the model; the smaller the value, the stronger the predictive ability of the model,
and the closer the predicted value to the real value. RPD is used to evaluate the stability
and prediction ability of the established model. A RPD of less than 1.4 indicates that the
model is unstable and has poor prediction ability. A RPD between 1.4 and 2.0 indicates an
acceptable model, which can be used for a rough estimation of the target variables and can
be improved. When the RPD is 2.0–2.5, the model has good quality and can be used for the
quantitative prediction of target variables; when it is greater than 2.5, the model is stable,
accurate, and can be used in practice [71].

R2 = 1−
∑m

I=1

(
ŷi−

−
y i

)2

∑m
i=1

(
yi−

−
y i

)2 (7)

RMSE =

√
m
∑

i=1
(yi−ŷi)

2

m
(8)

RPD = SD
SEP (9)

where yi is the measured Anth; ŷi is the predicted Anth;
−
y i is the average of measured

Anth; m is the number of samples. SD is the standard deviation of the analyzed sample,
SEP is the root mean square error of the analyzed sample.

3. Results
3.1. Spectral Characteristics of Leaves

The degree of leaf infection, rated as mild, moderate, and severe, was indicated by
a small range of yellow and white spots, large yellow and white spots, and whole-leaf
whitening symptoms, respectively. The anthocyanin content was positively correlated with
the disease severity (correlation coefficient = 0.784, p < 0.01). The spectral curves of leaves
with different degrees of disease (Figure 2) showed that the significant differences were
mainly observed in the visible wavelength. With an increase in the degree of disease, the
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chlorophyll content of the leaves decreased, the photosynthetic capacity of the leaves was
relatively weakened, the absorption of red and green light was reduced, and the absorption
capacity was significantly enhanced. The stronger reflectance was exhibited at the range
of 500–560 nm and the range of 620–640 nm, and an obvious absorption valley was found
near 680 nm. For the red edge characteristics, compared with the healthy leaves, the red
edge position λr showed an obvious phenomenon named “blue shift”.
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Figure 2. Spectral characteristics of the leaves with different degrees of disease.

3.2. Correlation between Spectral Characteristics and Anthocyanin and Select
Modeling Parameters
3.2.1. Correlation between Spectral Reflectance and Anthocyanin Content

The correlation between the original spectrum and the leaf anthocyanin content is
shown in Figure 3. In the wavelength range of 922–988 nm, the spectral reflectance was
significantly negatively correlated with the leaf anthocyanin content, and in the wavelength
range of 400–737 nm, the spectral reflectance was significantly positively correlated with the
leaf anthocyanin content. Overall, the degree of correlation was higher than that of the NIR
above 922 nm, and the correlation coefficient of the 518–602 nm band was above 0.8, with a
maximum correlation coefficient of 0.84 at 693 nm. In general, the leaf anthocyanin content
was significantly correlated with the spectral reflectance in the visible range, however, in
the range of 738–921 nm, it was not significantly correlated, therefore, it is necessary to
consider selecting characteristic bands to participate in the modeling.
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3.2.2. Characteristic Bands Selected by SPA

In this study, we used SPA to select feature wavelengths from high-spectral data that
had been smoothed by Savitzky–Golay. Based on the internal cross-validation RMSE,
11 feature bands were obtained: 654 nm, 673 nm, 720 nm, 741 nm, 792 nm, 877 nm, 899 nm,
942 nm, 959 nm, 953 nm, and 964 nm. The positions of the selected wavelengths are
shown in Figure 4a. Among them, 654 nm, 673 nm, and 720 nm were located in the
interval where the original reflectance was highly correlated with anthocyanin, which is
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the difference interval of the spectral characteristics between healthy and diseased leaves.
The remaining sensitive bands were located at the inflection points of the spectral curve.
Therefore, the selected wavelengths contain spectral feature information and reflect the
differences between healthy and diseased leaves. After internal cross-validation, they can
be used to construct the subsequent anthocyanin estimation model.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 20 
 

 

3.2. Correlation between Spectral Characteristics and Anthocyanin and Select Modeling Parame-
ters 
3.2.1. Correlation between Spectral Reflectance and Anthocyanin Content 

The correlation between the original spectrum and the leaf anthocyanin content is 
shown in Figure 3. In the wavelength range of 922–988 nm, the spectral reflectance was 
significantly negatively correlated with the leaf anthocyanin content, and in the wave-
length range of 400–737 nm, the spectral reflectance was significantly positively correlated 
with the leaf anthocyanin content. Overall, the degree of correlation was higher than that 
of the NIR above 922 nm, and the correlation coefficient of the 518–602 nm band was above 
0.8, with a maximum correlation coefficient of 0.84 at 693 nm. In general, the leaf antho-
cyanin content was significantly correlated with the spectral reflectance in the visible 
range, however, in the range of 738–921 nm, it was not significantly correlated, therefore, 
it is necessary to consider selecting characteristic bands to participate in the modeling. 

 
Figure 3. Correlation between the anthocyanin content and original spectrum. 

3.2.2. Characteristic Bands Selected by SPA 
In this study, we used SPA to select feature wavelengths from high-spectral data that 

had been smoothed by Savitzky–Golay. Based on the internal cross-validation RMSE, 11 
feature bands were obtained: 654 nm, 673 nm, 720 nm, 741 nm, 792 nm, 877 nm, 899 nm, 
942 nm, 959 nm, 953 nm, and 964 nm. The positions of the selected wavelengths are shown 
in Figure 4a. Among them, 654 nm, 673 nm, and 720 nm were located in the interval where 
the original reflectance was highly correlated with anthocyanin, which is the difference 
interval of the spectral characteristics between healthy and diseased leaves. The remaining 
sensitive bands were located at the inflection points of the spectral curve. Therefore, the 
selected wavelengths contain spectral feature information and reflect the differences be-
tween healthy and diseased leaves. After internal cross-validation, they can be used to 
construct the subsequent anthocyanin estimation model. 

 
Figure 4. (a) Characteristic bands selected by SPA; (b) RMSE of SPA. Figure 4. (a) Characteristic bands selected by SPA; (b) RMSE of SPA.

3.2.3. Correlation between Vegetation Indices and Anthocyanin Content

The correlation and absolute value of the correlation coefficient (|r|) of various vege-
tation indices and anthocyanins are shown in Table 3. Except for TVI, MTVI1, and MCARI1,
the other vegetation indices were significantly correlated with the leaf anthocyanin con-
tent. Among the three-band spectral indices, VARI was significantly correlated with the
anthocyanin content at a level of 0.05, and the |r| was the lowest (|r| = 0.06). The others
were significantly correlated with the anthocyanin content at a level of 0.01, among which
the |r| of MTCI was the highest (|r| = 85), followed by that of TCARI (|r| = 0.83). All
two-band vegetation indices were significantly correlated with the anthocyanin content
at a level of 0.01, the |r| of which were all greater than 0.45. The GNDVI had the best
correlation with the anthocyanin content, with an |r| of 0.90, whereas the GRVI had a
weaker correlation with the anthocyanin content (|r| = 0.83).

Table 3. R2 between the vegetation indices and anthocyanin content.

Vegetation Index Bands Coefficient of Determination Vegetation Index Bands Coefficient of Determination

TVI

Three

0.06 MTCI Three 0.85 **
VARI 0.16 * GNDVI

Tow

0.90 **
MTVI1 0.05 OSAVI 0.45 **

MCARI1 0.05 GRVI 0.83 **
MCARI2 0.35 ** SAVI 0.77 **
TCARI 0.83 ** CARI 0.46 **

Note: * indicates p < 0.05, ** indicates p < 0.01.

Figure 5 shows a contour map of the |r| of any two bands combined with the vege-
tation indices NDSI, RSI, DSI, and the anthocyanin content. The overall results showed
that compared with the vegetation indices constructed with the specified band, the whole-
band pairwise combination had more advantages in terms of selecting the effective band
combinations to construct vegetation indices. The maximum values of the |r| of the
three vegetation indices were all greater than 0.90, and the distributions of the |r| of the
RSI and NDSI were very similar. Regions with high correlation were mainly located in
the combination of near-infrared and green-yellow-red bands, and a small distribution
was found in the combination of blue-violet and green bands. However, the ratios were
slightly different at 930–980 and 490–690 nm. The overall correlation between the DSI
and anthocyanin content was weaker than that between the NDVI and RSI. The figure
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shows that a high correlation was mainly located in the combinations of 400–500 nm and
490–650 nm. The best combination of each vegetation index was selected according to the
correlation level: the correlation between the anthocyanin content and NDSI (at R694, R720)
was the best, the highest |r| was 0.922. The |r| of RSI was 0.916, and the corresponding
combined wavelengths were R696 and R748. The maximum |r| of the DSI was located
at R472 and R580, where the value of |r| was 0.911. In addition, all were significantly
correlated according to Pearson’s test.
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3.2.4. Correlation between Wavelet Coefficients and Anthocyanin

In MATLAB, the CWT package was used and ten mother wavelet functions were
respectively inputted to perform continuous wavelet transform (CWT) on the reflectance
curve of the sample points. Then, the correlations between the wavelet coefficients and
anthocyanin content were analyzed to obtain the |r| matrix, and an |r| contour map was
formed. The overall correlation between the wavelet coefficient obtained by the Gasussian1
transformation and anthocyanin content was the best, with an |r| of up to 0.91. The isoline
map of its corresponding |r| is shown in Figure 6, in which the yellow and black blue
regions represent strong and weak correlations, respectively.
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Figure 6 shows that the correlation between the leaf spectrum after Gaussian1 transfor-
mation and anthocyanin content was significantly higher than that of the original spectrum.
Among them, the correlation coefficient was the highest at a scale of 6, the sensitive region
of anthocyanin was mainly concentrated at 493–543 nm, and the corresponding scales were
5–7, |r|∈(0.89,0.91). This implies that hidden information can be mined effectively using
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continuous wavelet analysis and by moderately increasing the decomposition scale. In
order to deal with the redundancy of wavelet coefficients, after Pearson correlation testing
(p > 0.01), the remaining features were arranged in descending order according to |r|, then,
a threshold of |r| was applied to delineate the top 2‰ features that were most strongly
correlated with the anthocyanin content. Finally, 12 wavelet features were selected.

3.3. Regression Models and Accuracy Evaluation
3.3.1. Models Based on SPA Selected Bands

Characteristic bands screened by the SPA method (λspa) were used as input variables
of the estimation model. PLSR, RF, ANN, and XGBoost were used to construct an inversion
model for apple leaf anthocyanins. Table 4 presents the results. The R2 of the λspa-PLSR
and λspa-ANN models was less than 0.8, and the RPD values of the models were low; in
particular, the RPD value of the PLSR model was less than 2.0, which implies that the
prediction power of the model was poor. In contrast, the modeling accuracy of the λspa-RF
and λspa-XGBoost models was higher; the R2 of the models was as high as 0.9. However, the
verification accuracy of the two was low and the RPD values of the verification models were
less than 2.0, indicating overfitting. In conclusion, the predictive ability of the anthocyanin
estimation models based on multi-feature bands was weak.

Table 4. Training and validation statistics for the anthocyanin estimation models for λspa.

Model
Modeling Set Verification Set

R2 RMSEc RPD R2 RMSEv RPD

PLSR 0.713 0.055 1.873 0.828 0.042 2.345
RF 0.965 0.022 4.717 0.736 0.051 1.918

ANN 0.788 0.047 2.183 0.828 0.045 2.196
XGBoost 0.900 0.033 3.124 0.757 0.053 1.865

3.3.2. Models Based on Vegetation Index

Three arbitrary 2-band vegetation indices (VIA), specific 2-band and 3-band vegetation
indices (VIS), and overall vegetation indices (VI = VIA + VIS) with high correlation coeffi-
cients with the anthocyanin contents were used as input variables to construct anthocyanin
content inversion models, and the results are shown in Table 5.

Table 5. Training and validation statistics for the anthocyanin estimation models for VIS.

Model
Modeling Set Verification Set

R2 RMSEc RPD R2 RMSEv RPD

VIA

PLSR 0.843 0.040 2.536 0.840 0.040 2.440
RF 0.970 0.019 5.448 0.805 0.044 2.257

ANN 0.844 0.040 2.544 0.861 0.039 2.542
XGBoost 0.890 0.034 3.014 0.840 0.039 2.496

VIS

PLSR 0.823 0.043 2.387 0.757 0.053 1.846
RF 0.974 0.018 5.676 0.730 0.057 1.719

ANN 0.834 0.042 2.463 0.749 0.055 1.778
XGBoost 0.897 0.033 3.099 0.735 0.058 1.711

VI
(VIA + VIS)

PLSR 0.833 0.042 2.460 0.800 0.048 2.049
RF 0.977 0.017 6.075 0.838 0.041 2.415

ANN 0.857 0.039 2.651 0.831 0.041 2.379
XGBoost 0.918 0.029 3.483 0.853 0.038 2.568

For the vegetation indices of any two bands, the modeling R2 were greater than
0.8, and the RPD were greater than 2. The modeling and verification R2 values of the
VIA-XGBoost model were greater than 0.85, and the model RPD value was 3.014, which
indicated that the established model estimated the anthocyanin content accurately. Based
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on the vegetation indices (VIS) of the specified bands, the R2 of the model was greater than
0.8, all of the verification R2 values were less than 0.8, and the RPD of the verification model
was less than 2.0, which implies that the model had poor generalization ability and could
not estimate the anthocyanin content in apple leaves precisely.

Two types of vegetation indices were combined for modeling; that is, seven vegetation
indices (VI) were used as independent variables to construct the anthocyanin content
inversion models. Except for the PLSR model, the modeling accuracy of the other three
models improved to varying degrees; among them, the R2 of the VI-RF model was the
largest, with a RPD of 6.075. The modeling R2 of the VI-XGBoost model increased by
3.15%, and the RDP reached 3.483. The R2 and RPD values of the two methods were also
high, reaching a significant level, indicating that the model can be used to estimate the
anthocyanin content in apple leaves.

3.3.3. Construction of Wavelet Transform Model

The wavelet coefficients (λCWT) were used as independent variables to construct the
model. As can be seen from the modeling results (Table 6), the modeling accuracy of
the λcwt-RF model was the highest, with R2 up to 0.975; however, its validation R2 was
0.827, which was far from the R2, possibly caused by the phenomenon of overfitting in the
modeling process of the RF method. The modeling accuracy of the λCWT-XGBoost model
was higher than those of λCWT-PLSR and λCWT-ANN (R2 = 0.904), and the RPD value of
the verification set reached 2.328, indicating that the model had strong power. All figures
in Supplementary Materials are the scatter plots of the models from Sections 3.3.1–3.3.3

Table 6. Training and validation statistics for the anthocyanin estimation models for λCWT.

Model
Modeling Set Verification Set

R2 RMSEc RPD R2 RMSEv RPD

PLSR 0.839 0.041 2.505 0.795 0.048 2.048
RF 0.975 0.017 5.919 0.827 0.042 2.316

ANN 0.832 0.042 2.451 0.853 0.043 2.301
XGBoost 0.904 0.032 3.22 0.818 0.042 2.328

3.3.4. Multi-Parameter Model

Based on the above characteristic bands, vegetation index, and wavelet transform
coefficient, parameters whose importance was greater than that of the overall mean plus
square difference were selected for the statistical analysis. The parameters were ranked in
order of importance from high to low: the sensitive bands were 654, 942, 792, and 673 nm,
and the vegetation indices were NDVI, TCARI, and RSI. The decomposition scales and
bands of the wavelet coefficients were scale 1, 499 nm; scale 5, 539 nm; and scale 6, 536 nm.

According to the above analysis, 10 effective parameters were extracted as independent
variables to participate in the construction of the anthocyanin inversion model, and the
results are shown in Table 7. Compared with the model constructed separately with various
parameters, the modeling, validation accuracy, and RPD of the multiparameter VPs-model
were improved. The highest modeling and validation accuracies were obtained for the
VPs-RF model, whose modeling R2 was up to 0.97 and the validation R2 was up to 0.84.
The second best was the VPs-XGBoost model, whose modeling R2 was greater than 0.9, and
higher than the single category index modeling R2, with an average increase of 2%. The
modeling R2 of the PLSR method was 0.858, an increase of 6.33%. Figure 7 also showed that
for the high value interval, the predicted values of VPs-XGBoost model were the closest to
the measured values.
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Table 7. Training and validation statistics for the anthocyanin estimation models for λVPS.

Model
Modeling Set Verification Set

R2 RMSEc RPD R2 RMSEv RPD

PLSR 0.852 0.039 2.606 0.829 0.042 2.348
RF 0.977 0.017 5.979 0.842 0.040 2.471

ANN 0.854 0.039 2.626 0.836 0.044 2.254
XGBoost 0.923 0.026 3.875 0.849 0.038 2.572
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3.4. Inversion of Degree of Mosaic Disease in Hyperspectral Images

In the Envi environment, a mask tool was used to remove the background and extract
the hyperspectral images of the leaves. The hyperspectral image of apple leaves was solved
pixel-by-pixel using the VPs-XGBoost model to obtain the anthocyanin content distribution
in apple leaves. The value of each pixel represents the anthocyanin content at a point
on the leaf. Next, according to the relationship between the anthocyanin content and the
degree of apple leaf mosaic disease, the degree of mosaic disease inversion mapping was
performed to obtain a distribution diagram of the apple leaf mosaic disease grade. Finally,
the disease degree of the entire leaf was evaluated based on the disease degree of each pixel
on each leaf.

In this study, three leaves were randomly selected for inversion, and the results are
shown in Figure 8. The inversion maps of the three leaf groups were highly similar to their
true color images. Among them, outliers appearing in the inversion map of group (a) (at the
position of the main vein, removed during the statistical period) were found to be caused
by strong reflection at the leaf veins caused by excessively strong light when shooting.
Leaves were judged to be mildly diseased based on the proportion of diseased pixels. For
the leaves of group (b), although the affected area of the leaves was widely distributed
according to the true color image, severe pixels accounted for only 5.52%, and diseased
pixels accounted for 70.97% of the total; therefore, this could be judged as moderately
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diseased. It can be seen from Table 8 that the anthocyanin content in the leaves in group
(c) was as high as 0.84, and the pixels that belonged to the severe infection group (content
of anthocyanin >0.71) accounted for 20.30% of the total number of pixels. Therefore, based
on the combination of anthocyanin content and spot proportion in the infection map, it
was determined that it belonged to severely infected leaves. The results showed that it is
feasible to invert the anthocyanin content based on VPs-XGBoost to determine the degree
of mosaic disease in apple leaves.
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Figure 8. Leaf tricolor images and hyperspectral inversion map. (a–c) represent mildly, moderately,
severely infected apple leaves, respectively.

Table 8. Anthocyanin content: characteristics of the pixels.

Min Max Average Number of
Pixels

Healthy
Pixels %

Slight
Pixels % Moderate Pixels % Severe Pixels %

(a) 0.429 0.550 0.490 11949 56.87 41.98 1.15 0.00
(b) 0.442 0.764 0.581 6880 29.03 25.23 40.36 5.52
(c) 0.423 0.860 0.612 10432 13.60 31.93 34.16 20.30

4. Discussion
4.1. Spectral Reflectance of Leaves Closely Relates to Degree of Mosaic Disease

Hyperspectral remote sensing has become an automatic, objective, and rapid method
for automated monitoring of photosynthetic pigments, diseases, and insect pests in crops.
Previous studies have shown that the red-edge region is less sensitive to the environment
and soil background [72] and can provide more accurate information for detecting the
crop stress state, light, and pigment absorption [73]. To use spectral reflectance measure-
ments effectively for disease detection, it is crucial to identify the most important spectral
wavelengths that are closely associated with a particular disease. In this study, when the
anthocyanin content was <0.49, the reflectance characteristics of the diseased and healthy
leaves showed little difference in the visible range, and the spectral characteristics were
similar. This result is consistent with that of a study by Luo L [25] that showed no sig-
nificant differences in the spectra of healthy maize leaves and those mildly infected with
dwarf mosaic disease. When the anthocyanin content was higher than 0.49, that is, when
the disease was more serious, the spectra of the infected leaves and healthy leaves were
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significantly different in the visible and near-infrared regions, which is also consistent with
the conclusion by Luo L. To effectively apply spectral reflectance measurements to crop
disease monitoring, this study found that the wavelength closely related to mosaic infection
was 518–702 nm, and the correlation coefficient was up to 0.84, according to the type and
application range of the mosaic disease.

4.2. Vegetation Index and Wavelet Coefficients of any Two Bands have Higher Accuracy for
Monitoring Mosaic Disease

Compared with VIS, the traditional vegetation indices constructed using specific
wavelengths and VIA constructed with any two bands had a higher correlation with the
leaf anthocyanin content, indicating that their accuracy in monitoring the degree of mosaic
disease was higher. This conclusion is consistent with that of the following study: Mahlein
drew a contour map of the correlation coefficient of leaf spot, rust, and powdery mildew
disease severity in sugar beets based on any 2-band NDVI and used it to identify and
monitor plant diseases [74]. Wang proposed that the red-edge normalized vegetation index
(DVI) could be used to monitor corn big spot disease [75]. Deng proposed that NDVI, TVI,
MTVI1, and MCARI2 constructed with all bands performed better in monitoring citrus
yellow dragon disease [14]. The core bands in these studies were 500–750 nm, which were
close to the optimal band range obtained in the present study.

The correlations between the wavelet coefficients and anthocyanin in the character-
istic curves of the reflection spectra obtained by the transformation of different parent
waves were slightly different; however, the sensitive bands were similar, concentrated at
480–550 nm and 760–800 nm. Compared to the characteristic bands and VIS, the correlation
between the wavelet coefficients and leaf anthocyanin content was significantly stronger.
Consequently, the prediction accuracy of the anthocyanin content was improved by the
decomposition of wavelet coefficients obtained from the spectral data [29,33]. Nonetheless,
this result differs from the sensitive bands of 470–485 nm, 520–600 nm, and 630–760 nm
proposed by Shi in a study of wheat yellow rust [28]. This difference may be because of
the different responses of plants and diseases to the spectrum. In the established model,
the accuracy of the λCWT-models improved significantly compared with the feature-band
models and the single species vegetation index models, which was consistent with the
conclusion obtained by Guo [58] when inverting the chlorophyll content of the six plant-
coverts. Except for the λCWT-PLSR model, the accuracy of other λCWT-models was lower
than that of the VI-models, which may be caused by the redundancy of wavelet information.
In future, an optimal factor selection of the wavelet coefficient should be conducted to
obtain a more accurate estimation model [76].

4.3. Application of Machine Learning Algorithm to Monitoring Mosaic Disease

Hyperspectral remote sensing methods for estimating plant physiological and bio-
chemical parameters primarily include physical radiation transfer and empirical statistical
models [25]. Most empirical statistical models are built based on vegetation indices, and
their structures are simple and diverse. These models are sensitive to vegetation type, light
conditions, canopy structure, and soil background; therefore, their versatility is poor. The
advantage of the machine learning model is that it can realize the high-precision prediction
of leaf pigments by analyzing the relationship between leaf nutrient drivers and pigment
content without relying on specific crop parameters. In particular, the prediction and prac-
tical performance of the models in this study were improved using multiple parameters
(VPs). We conclude that the use of S–G to pretreat the spectrum and select effective variables
for optimizing the model and improving the prediction accuracy is feasible. VPs-XGBoost
has strong potential for monitoring the degree of apple mosaic disease. However, this study
was conducted at the apple leaf scale, which will have limitations when other datasets or
crops are encountered. Therefore, the model should continue to be optimized in the future
to create a model suitable for the canopy scale or different crops.
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5. Conclusions

Healthy and diseased apple leaves were investigated and the reflection spectrum and
anthocyanin content of different degrees of mosaic disease were observed. Differences
between the healthy and diseased leaves were analyzed and the characteristics of leaves
with different degrees of mosaic disease were compared. Then, the anthocyanin estimation
models were constructed using the PLSR, RF, ANN, and XGBoost methods according to
the selected feature bands, vegetation indices, wavelet coefficients, and multiple parameter
combinations. Finally, the anthocyanin content of the apple leaves was estimated using
the optimal model and the degree of mosaic disease was monitored and evaluated. Our
conclusions are as follows:

• The spectral difference between the healthy and diseased leaves was concentrated
in the range of 470–750 nm, with the largest difference appearing near 702 nm. With
the increase in the severity of mosaic disease, the anthocyanin content increased, the
absorption characteristics gradually disappeared at 500–560 nm, and the phenomenon
called “blue shift” appeared at the reflection spectrum of the red edge.

• Wavelets transformed the decomposed spectral information and effectively improved
the correlation between the reflectance spectrum and anthocyanin content. Moreover,
the accuracy of the anthocyanin regression models constructed using wavelet coeffi-
cients was significantly improved compared to the anthocyanin regression models
constructed using characteristic bands and vegetation indices.

• The VPs-XGBoost estimation model based on multiple parameters (R2
v = 0.849,

RPD = 2.572) was more accurate and reliable than the other methods. The VPs-
XGBoost method, based on hyperspectral images, may be a rapid, accurate, and
simple method to monitor the degree of mosaic disease in apple leaves.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15102504/s1, All the figures are the scatter plots of the models.
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