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O I N R

Abstract: Land cover change detection (LCCD) with remote-sensed images plays an important role
in observing Earth’s surface changes. In recent years, the use of a spatial-spectral channel attention
mechanism in information processing has gained interest. In this study, aiming to improve the
performance of LCCD with remote-sensed images, a novel spatial-spectral channel attention neural
network (SSCAN) is proposed. In the proposed SSCAN, the spatial channel attention module and
convolution block attention module are employed to process pre- and post-event images, respectively.
In contrast to the scheme of traditional methods, the motivation of the proposed operation lies in
amplifying the change magnitude among the changed areas and minimizing the change magnitude
among the unchanged areas. Moreover, a simple but effective batch-size dynamic adjustment strategy
is promoted to train the proposed SSCAN, thus guaranteeing convergence to the global optima of
the objective function. Results from comparative experiments of seven cognate and state-of-the-art
methods effectively demonstrate the superiority of the proposed network in accelerating the network
convergence speed, reinforcing the learning efficiency, and improving the performance of LCCD. For
example, the proposed SSCAN can achieve an improvement of approximately 0.17-23.84% in OA on
Dataset-A.

Keywords: change detection; deep learning; attention module; remote-sensed images

1. Introduction

Obtaining land cover change detection (LCCD) with bitemporal remote-sensed images
is important for monitoring geological disasters [1,2], evaluating the health of ecosys-
tems [3], assisting the determination of urban development [4], capturing forest large-scale
deformation [5], and land-use management [6]. To date, various LCCD methods have
been developed and applied in practical applications, such as change detection with serial
long-term Landsat images [7], change detection with synthetic aperture radar images [8],
high-resolution optical images [9], hyperspectral images [10,11], change detection with
heterogeneous images [12-16], and pixel/object-based change-detection approaches [17].
However, given the uncertainty factors involved in capturing a pair of bitemporal images
for LCCD, including imaging atmospheric conditions and phenological differences, achiev-
ing LCCD with bitemporal remote-sensed images remains a challenge, and improvements
are required for practical applications [18].

In recent years, deep-learning techniques have achieved profound success in the do-
main of remote-sensing image applications [19-21], especially LCCD [22-24]. In the process
of distinguishing between changed and unchanged areas, deep-learning-based LCCD meth-
ods automatically discover and learn complicated, hierarchical, and nonlinear features from
araw dataset, with the motivation of overcoming the limitations of traditional methods [25].
For example, Yang et al. [26] proposed an unsupervised change-detection approach based
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on the guidance of time distance, which is effective for change detection in irregularly
collected images. LCCD with heterogeneous remote-sensed images that are acquired by
different remote-sensed sensors is extremely popular in practical applications [21]. For
example, Lv et al. [27] proposed a simple but effective neural network for change de-
tection with heterogeneous remote-sensed images. Consequently, deep-learning-based
LCCD methods have also become increasingly investigated, attracting major attention and
yielding good results in the remote-sensing sector.

One of the most popular deep-learning techniques for LCCD with remote-sensed
images is the convolutional neural network (CNN)-based approach. Daudt et al. [28]
proposed two classical Siamese extensions of fully CNN networks for change detection,
which is a simple but effective approach on any available change-detection dataset. Inspired
by the work of Daudt et al. [28], many similar studies based on CNN and a Siamese structure
have been promoted for LCCD [29-31]. In addition, learning robust features by means
of CNN for LCCD is helpful to address the uncertain difference in bitemporal remote-
sensed images. For instance, Zhang et al. [32] used CNN to learn the deep features from
remote-sensed images and performed transfer learning to compose a two-channel network
and subsequently generate multiscale and multi-depth difference feature maps for change
detection. Mou et al. [33] learned spectral-spatial-temporal features by using a recurrent
CNN for change detection with multispectral images. From the abovementioned literature
review, CNNs have been widely used as a basic but classical artificial neural network; the
motivation for CNN being used for LCCD lies in learning deep features for smoothing
pseudo changes and reducing noise from bitemporal images [34,35].

Apart from the classical CNN-based approaches for LCCD, various modified CNNs
have been promoted to enhance the performance of LCCD. For example, multiscale fea-
ture extraction with CNN was proposed to explore other targets of various shapes and
sizes for LCCD [36-38]. Enhancing a sample is also simple and intuitive in the perfor-
mance improvement of CNN-based LCCD methods, such as Gao et al.’s [39] proposed
convolutional-wavelet neural network (CWNN). Moreover, Ji et al. [40] suggested creating
simulated samples and coupling them with CNN to achieve building change detection.
Numerous studies have also recommended fusing the traditional image processing ap-
proach with CNN owing to its merits of improving the performance of LCCD. For example,
Zhang et al. [41] promoted a deep supervised information fusion network (DSIEN) for
change detection with bitemporal images. Lee et al. [42] developed a local similarity
Siamese network for achieving LCCD in an urban area. Wu et al. [43], aiming to avoid the
requirement of annotated samples to train a deep-learning network, proposed an unsu-
pervised model called the kernel PCA convolutional mapping network (KPCA_CMN) for
LCCD with VHR remote-sensed images. The abovementioned reviewed literature indicates
that various methods based on CNNs have been developed and widely applied for achiev-
ing LCCD. However, no method can be marked as “good” or “bad.” An improvement
space for LCCD may still exist in practical applications [25,34,44].

In recent years, the attention mechanism embedded in neural networks has become
popular for achieving LCCD tasks [34]. In these approaches, attention modules are embed-
ded in the different neural networks to strengthen the network by paying extra attention
to the changed area. For example, Liu et al. [45] introduced a dual attention module to
exploit interdependencies between spectral channels and spatial positions, subsequently
enhancing feature representation for capturing changes. Fang et al. [46] embedded a
channel attention module in a densely connected Siamese network for change detection.
Shi et al. [47] proposed a deeply supervised attention metric-based network (DSAMNet)
for LCCD with aerial images. Liu et al. [48] promoted a super resolution-based change-
detection network with a stacked attention module. Many of the aforementioned studies
indicate that the motivation of the attention mechanism is for the network to enhance its
focus on small but important parts of the data. For the specific task of detecting land cover
change with remote-sensed images, a changed area can be regarded as an important part of
the whole area. However, various networks for LCCD are centered on using novel attention
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mechanism-based neural networks. Nonetheless, learning which part of the data is more
important than others depends on the network itself and the training progress.

In this study, a novel spatial-spectral channel attention neural network (SSCAN) is
proposed to achieve the LCCD task for bitemporal remote-sensed images. The proposed
network has two objectives: (i) to improve the detection performance with remote-sensed
images and (ii) to construct a simple but effective training strategy for enhancing the
learning progress. On this basis, the proposed SSCAN is designed as follows: First, an
encoder-decoder subnetwork is embedded for extracting deep features from bitemporal
images. Then, pre- and post-event images are fed into the spatial channel attention module
(SCAM) and convolution block attention module (CBAM), respectively, to amplify the
change magnitude between change areas and reduce the change magnitude between
unchanged areas. Finally, an optimized training strategy is constructed to train the network
and obtain a trained module for prediction. The main contributions of this study can be
summarized as follows:

(i) A novel neural network, SSCAN, is proposed to enhance LCCD with remote-sensed
images, including images with very high spatial resolution and low median resolution.
Moreover, the results obtained by the proposed SSCAN are superior to those of other
approaches under limited training sample scenarios.

(if) In the proposed SSCAN, two typical modules, namely, SCAM and CBAM, are com-
bined to extract the different deep features from the pre- and post-event images, respec-
tively. The aims of this combined operation lie in amplifying the change magnitude
between changed areas and reducing the change magnitude between unchanged areas,
which is beneficial for smoothing noise and enhancing change-detection performance.

(iii) A batch-size dynamic adjustment (BDA) strategy is promoted to train the proposed
SSCAN. This strategy can improve the convergence speed of the proposed neural net-
work. If we assume that gradual learning is more effective than stepwise learning, then
training a neural network with BDA also allows for learning to gradually progress.

The remainder of this article is organized as follows: Section 2 presents the details of
our proposed neural network. Section 3 describes the comparative experiments that were
conducted to verify the performance and superiority of the proposed neural network. The
conclusion is drawn in Section 4.

2. Materials and Methods

This section provides a brief overview of the proposed SSCAN. Then, it presents a
detailed description for each main part of the proposed SSCAN.

2.1. Overview

The proposed SSCAN (Figure 1) consists of three parts: convolutional autoencoders
(CAEs), SCAM, and CBAM. On the basis of the backbone of U-Net, CAEs are used to
extract deep features from bitemporal images. Then, SCAM and CBAM are applied crossly
to amplify the change magnitude between bitemporal images in terms of changed areas.
Subsequently, a cross-entropy loss function and a dynamic batch-size adjustment are used
to train the proposed model. Finally, the Argmax function is used to determine the label of
each pixel and output a binary change-detection map.

2.2. CAEs

CAEs are designed for deep feature extraction in our proposed SSCAN because they
can obtain robust features without the need for additional training; furthermore, robust
features are beneficial for subsequent change detection [49,50]. Apart from the broad
applications of autoencoders, the input size of CAEs is flexible, and the structure of CAEs
is similar to the classical autoencoder (i.e., they are symmetrical). In our proposed SSCAN,
the encoder and decoder consist of a series of convolutional layers, and the number of
convolutional layers depends on the inputs of the network.
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Figure 1. (a) Flowchart of the proposed SSCAN; (b) SCAM, and (c) CBAM.

2.3. Different Attention Modules

After extracting the deep features from bitemporal images with CAEs, different atten-
tion modules are designed in our proposed SSCAN network to refine the deep feature maps
and capture the change areas. Attention plays an important role in human perception [51],
and one of the important properties of attention mechanisms is capturing the structure of
the whole image and focusing on the target area [52]. In our proposed SSCAN network, the
motivation for using different attention modules for each data item of bitemporal images
lies in amplifying the change magnitude between changed areas while simultaneously
reducing the change distance between unchanged areas. The details of this scheme can be
described as follows:

SCAM: This module was first used for scene segmentation in [53]. As illustrated in
Figure 1b, SCAM contains two branches, namely, spatial attention and channel attention. In
the promoted module, a latent feature f € RC*H*W is first fed into the convolution layer.
Then, the convolutional layer creates three new feature maps denoted as f4 € R&*H*W,
fg € ROH*XW ‘and fc € RE*HXW_ The new feature is reshaped into f4 € RE*N, fp €
RE*N and fc € RE*N, where N = W x H. Consequently, a matrix is multiplied between
fz € R&Nand fc € RE*N, and a softmax layer is applied to generate the spatial attention

exp | fB; fc;
H\](—]])/ Where
X:i;l exp (fBl' fC])

iji measures the relationship between the i position and the j* position; a greater iji

feature map fs € RN*N. Each value of fs is calculated by fs;i =

means a tighter correlation between them. Furthermore, fc € R“*N is multiplied with a
matrix to reshape the result, R“*N*W. Finally, a scale parameter a is employed to multiply
fc € RN>*W and sum up the original feature f € RE*H*W to obtain the final feature
Ef c RCExHXW.

Efj = szi fS/,i fe + i 1)

where « is a hyperparameter initialized as 0; it gradually learns to assign a dynamic
weight. According to Equation (1), the final feature Ef is constructed by a position weight
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map (fs) and original feature (f); therefore, it can give an overview of the global context
and selectively aggregate context according to the spatial attention map. The changed
and unchanged areas gradually achieve similar gains based on the guide of the training
sample set. Consequently, the homogeneity of the intraclass (changed or unchanged areas)
is improved.

CBAM: If SCAM processes the pre-event image in our proposed SSCAN, then CBAM
processes the latent feature of the post-event image. As shown in Figure 1c, given a latent
feature f € ROM*W a5 input, CBAM is sequentially composed of a channel attention
submodule and a spatial attention submodule. Here, M¢ € RE*IX1 and Mg € RPXH*W
symbolize the channel and spatial attention maps, respectively. The whole attention process
can be expressed as follows: ,

fl=Mc(f)®f )

fr=Ms(f)ef
where ® denotes elementwise multiplications, and Mc(+) is given by

Mc(f) = o(MLP(AvgPool(f)))+ MLP(MaxPool(f))

(W1 (Wo(fiog) ) + M1 (W) g

where o is the sigmoid function, and W; and Wj are the weights of the multilayer perceptron.
In our proposed approach, W; and Wy are shared by both inputs and the ReLu activation
function. Distinct from the motivation of the channel attention submodule for exploiting the
interchannel relationships of input features, the spatial attention submodule concentrates
on mining the interspatial relationship of features. Mc(-) is given by

Ms(f) = o(f>*3([AvgPool(f); MaxPool (f)]))
— 3x3 S . fS 4
= (572 ([fiog foos]))

where ¢ is the sigmoid function, and f3*3 denotes a convolution operation with a 3 x 3 filter.

Two 2D maps (fg, € RPHXW and fs € RP*H>*W) are generated by pooling operations.

Then, these maps are concatenated and convolved by a basic convolutional layer to produce

a spatial attention map M;(f).

Therefore, channel attention focuses on “what” is meaningful in an input image, while
spatial attention concentrates on providing “where” the informative part of the input image
is located. In the employed SCAM and CBAM, channel attention and spatial attention are
complementary to each other in different ways, thereby enhancing learning performance.
In the proposed SSCAM network, SCAM and CBAM are used many times to process pre-
and post-event images. In theory, if input image pairs depict an unchanged area, then
SCAM and CBAM will focus on the same position and similar information, and the change
magnitude will be narrowed. By contrast, if input image pairs depict a changed area, then
the change magnitude will be amplified with the different attention maps from SCAM
and CBAM.

2.4. Loss Function and Training Progress

Training a neural network with a suitable function is important in performance im-
provement. The most popularly used loss function for binary change detection contains
the softmax loss function, contrastive loss function, and cross-entropy loss function. In our
proposed SSCAN, the cross-entropy loss function is selected for training because it can
measure the similarity between two probability distributions. Meanwhile, change detection
with remote-sensed images can be used for measuring the change magnitude between
the pixel distributions of bitemporal images. The cross-entropy loss can be formulated
as follows:

1 =N » IS
Loss =~ ) 5, [yulog#u + (1 = yalog(1—7u))] ®)
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where N is the total number of training samples, y, is equal to 0 or 1 (unchanged or
changed status, respectively), and §, is the corresponding prediction for an unchanged or
changed label.

Batch size is one of the most important hyperparameters used for tuning modern
deep-learning systems, and many studies have demonstrated its obvious effect on learning
performance [54-56]. In further optimizing the training progress of the proposed SSCAN, a
simple but effective strategy called BDA is applied in the training of the proposed network.
In BDA, bjypase = bi + b; x 0.5, where b; is the batch size for the ith epoch, b; s is the next
(i % base) epoch in the iterative training progress, b; is initialized with a small value of 4,
and the default value of base is close to 30. The BDA formula can be explained intuitively,
as smaller batch sizes allow the model to start learning before viewing all of the data. Then,
the batch size is increased gradually to allow the model to capture the global information
and converge to the global optima.

3. Experiment

Two experiments were designed to verify the performance of the proposed SSCAN:
(i) an experimental investigation of the superiority of the proposed approach over seven
cognate and state-of-the-art methods, namely, FC_EF [28], FC_Conc [28], FC_Diff [28],
CWNN [39], DSIEN [41], KPCA_CMN [43], and DSAMNet [47], and (ii) an ablation experi-
ment with the view of promoting the widespread use of the proposed SSCAN. The details
of the experiments can be summarized as follows.

3.1. Dataset Description

Four pairs of remote-sensed images for change detection were used in the experiment
(Figure 2). The details of these datasets are presented below, and the description for each
dataset is summarized in Table 1.

Table 1. Descriptive summary for each dataset.

Data Size Spatial Resolution Change Events Acquisition Date Location
Dataset-A 1117 x 803 0.5 m/pixel Landslide change September 2017 and October 2019 Hong Kong, China
Dataset-B 694 x 754 0.5 m/pixel Landslide change September 2017 and October 2019 Hong Kong, China
Dataset-C 1250 x 950 0.62 m/pixel Land-use change June 2000 and December 2005 J iN;?OSii;}é’j}&aﬁgsng
Dataset-D 400 x 400 30.0 m/pixel Crop change August 2001 and August 2002 Liaoning, China

First, we considered two pairs of remote-sensed images with very high spatial resolu-
tion and denoted them as Dataset-A and Dataset-B. As shown in Figure 2, these datasets
represent the aerial orthophotos with a resolution of 0.5 m/pixel, and they depict landslide
change events in Lantau Island, Hong Kong, China. The landslide occurred in a mountain
area covered by forested and outcrop rock, a situation that typically hinders landslide
inventory mapping with binary change-detection techniques.

The third dataset (Dataset-C) refers to a land-use change event that occurred in a
countryside area in JiNan City, ShanDong Province, China. These images were acquired
by the QuickBird satellite with a resolution of 0.62 m/pixel. As shown in Figure 2, the
pre- and post-event images differ considerably in phenology seasons, which may cause
pseudochange in the change-detection results.

The fourth dataset (Dataset-D) depicts the land-cover change events in a crop area.
The two scenes were acquired by Landsat-7 Enhanced Thematic Mapper Plus (ETM+) in
August 2001 and August 2002 in Liaoning Province of China. The ground reference map
was obtained manually (Figure 2d).
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Figure 2. Testing datasets: (a—c) are pre-event image, post-event image, and the ground reference map
for Dataset-A, respectively; (d—f) are pre-event image, post-event image, and the ground reference
map for Dataset-B, respectively; (g-i) are pre-event image, post-event image, and the ground reference
map for Dataset-C, respectively; (j-1) are pre-event image, post-event image, and the ground reference
map for Dataset-D, respectively.

In addition, seven popular measurements were adopted to quantitatively evaluate
the performance of each approach for comparison: overall accuracy (OA), average accu-
racy (AA), kappa coefficient (Ka), false alarm (FA), missing alarm (MA), total error (TE),
precision, and F-score. Further details about these measurements can be read from [18].
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3.2. Parameter Optimization and Training Samples

Seven classical and widely used change-detection methods were selected for compari-
son. The parameters of each approach can be detailed as follows: FC_EF [28] (epoch = 300,
Ir = 0.0004, Ir_decay = 0.00005, batch_size = 8), FC_Siam_Conc [28] (epoch = 300, Ir = 0.0004,
Ir_decay = 0.00005, batch_size = 8), FC_Siam_Diff [28] (epoch = 300, Ir = 0.0004, Ir_decay
= 0.00005, batch_size = 8), CWNN [39] (Sam_num = 6000, Pos_num = 1000, epoch = 50,
batch_size = 50, batch_size = 7), IFN [41], KPCA_CMN [43] (Sam_num = 100), DSAM-
Net [47] (epoch = 300, Ir = 0.0004, Ir_decay = 0.00005, batch_size = 8). In addition, a widely
used approach named stochastic gradient descent was adopted for parameter optimization.

The training samples were prepared as follows: First, the bitemporal remote-sensed
images and the corresponding ground reference map was divided into n x n image blocks,
where 1 was equal to 16, 28, or 56. Second, half of the divided image block pairs were ran-
domly selected for training a deep-learning module, whereas the other half of the divided
image blocks were used to evaluate the performance of the trained deep-learning modules.

3.3. Visual Performance and Quantitative Comparison

On the basis of the abovementioned parameter settings, visual performance and
quantitative comparisons were conducted.

Figures 3 and 4 show the results of applying the proposed method on Dataset-A
and Dataset-B, respectively. The analysis of visual performance, which concentrated on
the presentation of the detection results in terms of false alarm (cyan in the results) and
missed alarm (red in the results), indicates the advantages of using the proposed SSCAN
in landslide inventory mapping with change-detection techniques. For example, our
proposed approach had the fewest false alarms among the compared methods. Moreover,
the noise in the detection map achieved by our proposed approach was less than that of
other methods. The corresponding quantitative results in Tables 2 and 3 support the visual
observation conclusion. For example, apart from AA and MA for Dataset-A in Table 2, the
proposed SSCAN has the best accuracy performance in terms of AA, Ka, FA, TE, precision,
and Fl-score.

Table 2. Comparison of other methods with the proposed approach on Dataset-A, ka € [0,1]; other
values are presented as percentages (%).

Methods OA AA KA FA MA TE Precision F-Score
FC_EF [28] 98.94 97.16 0.92 0.79 4.89 1.06 89.65 92.3
FC_Siam_Conc [28] 98.61 98.17 0.90 1.32 2.33 1.39 84.18 90.42
FC_Siam_Diff [28] 96.85 92.92 0.77 2.54 11.62 3.15 71.44 79.01
CWNN [39] 75.27 70.54 0.17 24.00 34.93 24.73 16.30 26.07
IEN [41] 98.91 98.87 0.92 1.08 1.19 1.09 86.79 92.41
KPCA_CMN [43] 97.47 95.60 0.82 2.23 6.57 2.52 75.02 83.22
DSAMNet [47] 97.83 89.78 0.82 0.93 19.51 217 86.24 83.26
Proposed SSCAN 99.11 9591 0.93 0.40 7.78 0.89 94.35 93.27

Apart from comparing the proposed approach with other methods in terms of achiev-
ing landslide inventory mapping tasks (Dataset-A and Dataset-B), the proposed approach
was also investigated on Dataset-C, which represents the land-use change events. Figure 5
shows the comparative results of the different methods. Some of these could not obtain
satisfactory detection results due to the large phenological difference between the bitem-
poral images. CWNN [39] and KPCA_CMN [43] incorrectly detected several pixels as
changed areas, while FC_Siam_Diff [28] missed a substantial amount of changed area (red
parts in Figure 5c). The proposed SSCAN clearly outperformed the other methods. Table 3
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summarizes the quantitative comparative results, which convincingly support the visual
comparative conclusion.
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Figure 3. Binary change-detection map acquired using different methods on Dataset-A: (a) FC_EF [28],
(b) FC_Siam_Conc [28], (¢) FC_Siam_Diff [28], (d) CWNN [39], (e) IFN [41], (f) KPCA_CMN [43],
(g) DSAMNet [47], (h) proposed method, and (i) ground truth. (CC: correct change; UC: unchanged;
FD: false detection; MD: missed detection).
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Figure 4. Binary change-detection map acquired using different methods on Dataset-B: (a) FC_EF [28],
(b) FC_Siam_Conc [28], (¢) FC_Siam_Diff [28], (d) CWNN [39], (e) IFN [41], (f) KPCA_CMN [43],
(g) DSAMNet [47], (h) proposed method, and (i) ground truth. (CC: correct change; UC: unchanged;
FD: false detection; MD: missed detection).

Table 3. Comparison of other methods with the proposed approach on Dataset-B, ka € [0,1]; other
values are presented as percentages (%).

Methods OA AA KA FA MA TE Precision F-Score
FC_EF [28] 98.19 93.51 0.82 1.28 11.69 1.81 78.62 83.18
FC_Siam_Conc [28] 98.15 92.62 0.82 1.23 13.53 1.85 79.06 82.60
FC_Siam_Diff [28] 98.22 89.76 0.81 0.82 19.64 1.78 83.86 82.07
CWNN [39] 88.07 78.11 0.312 10.80 32.99 11.93 2492 36.33
IEN [41] 98.28 96.91 0.84 1.56 4.62 1.72 76.58 84.95
KPCA_CMN [43] 95.61 94.08 0.66 4.22 7.62 4.39 53.93 68.11
DSAMNet [47] 97.36 82.93 0.71 1.01 33.14 2.64 78.05 72.02
Proposed SSCAN 98.48 91.67 0.84 0.75 15.90 1.52 85.76 84.92
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Figure 5. Binary change-detection map acquired using different methods on Dataset-C: (a) FC_EF [28],
(b) FC_Siam_Conc [28], (c) FC_Siam_Diff [28], (d) CWNN [39], (e) IFN [41], (f) KPCA_CMN [43],
(g) DSAMNet [47], (h) proposed method, and (i) ground truth. (CC: correct change; UC: unchanged;

FD: false detection; MD: missed detection).

The proposed SCAN and state-of-the art methods were also compared for land-use
change detection by using remote-sensed images with low median resolutions. As shown
in Figure 6, our proposed approach outperformed the other methods in terms of noise,
false detection pixels, and missed detection pixels, among others. The quantitative results

were summarized in Tables 4 and 5.



Remote Sens. 2023, 15, 87 12 of 17

CC=26,789 y C = " P ec=26758
 UC=124,610 g - . UC=126,120
) i - FD=3584

M])=‘}543\ ) .
- D

CC=19,424
Juc= 124 648
FD—~0~6

Legend [ cc I vc [ v [ MD

Figure 6. Binary change-detection map acquired using different methods on Dataset-D: (a) FC_EF [28],
(b) FC_Siam_Conc [28], (¢) FC_Siam_Diff [28], (d) CWNN [39], (e) IFN [41], (f) KPCA_CMN [43],
(g) DSAMNet [47], (h) proposed method, and (i) ground truth. (CC: correct change; UC: unchanged;
FD: false detection; MD: missed detection).

Table 4. Comparison of other methods with the proposed approach on Dataset-C, ka € [0,1]; other
values are presented as percentages (%).

Methods OA AA KA FA MA TE Precision F-Score
FC_EF [28] 97.08 96.89 0.91 2.80 3.41 2.92 89.46 92.89
FC_Siam_Conc [28] 94.06 96.02 0.83 7.22 0.75 5.94 77.20 86.85
FC_Siam_Diff [28] 96.89 93.81 0.90 1.10 11.27 3.11 95.20 91.85
CWNN [39] 72.77 71.81 0.34 26.61 29.76 27.23 39.39 50.48
IEN [41] 97.85 97.89 0.93 2.18 2.04 2.15 91.73 94.74
KPCA_CMN [43] 72.18 76.86 0.38 30.88 15.39 27.82 40.29 54.58
DSAMNet [47] 97.50 95.77 0.92 1.38 7.07 2.51 94.31 93.61

Proposed SSCAN 97.86 96.02 0.93 0.95 7.01 215 96.03 94.48
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Table 5. Comparison of other methods with the proposed approach on Dataset-D, ka € [0,1]; other
values are presented as percentages (%).

Methods OA AA KA FA MA TE Precision F-Score
FC_EF [28] 94.62 92.25 0.83 3.93 11.58 5.38 84.02 86.17
FC_Siam_Conc [28] 93.58 91.77 0.80 5.32 11.13 6.43 79.59 83.97
FC_Siam_Diff [28] 95.55 92.77 0.86 2.76 11.69 4.45 88.19 88.25
CWNN [39] 91.03 79.34 0.67 1.85 39.47 8.97 88.42 71.87
IEN [41] 97.28 96.36 091 2.16 5.12 2.72 91.14 92.97
KPCA_CMN [43] 90.04 80.11 0.65 3.90 35.89 9.96 79.35 70.92
DSAMNet [47] 95.74 92.35 0.86 2.19 13.11 4.26 90.28 88.55
Proposed SSCAN 97.53 95.48 0.92 1.22 7.82 2.47 94.63 93.39

The aforementioned comparative studies entailing four pairs of remote-sensed images
related to real land-cover change events indicate the superiority of the proposed SSCAN in
terms of visual performance and quantitative observations.

3.4. Ablation Experiment and Discussion

We first investigated how the BDA in our proposed SSCAN network would influence
the detection performance of each dataset. Figure 7 shows the detection accuracies, with
BDA and without BDA, of the proposed SSCAN and their comparison with those of other
methods in terms of OA, AA, Ka, FA, MA, and TE. The bar chart trends in Figure 7 clearly
show that the proposed SSCAN with the BDA strategy offers a better approach in improving
detection performance on all datasets and enhancing the accuracy measurements.
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Figure 7. Bar chart comparisons of the proposed SSCAN with and without the suggested BDA strategy.

The loss value is commonly used as a parameter to reflect the learning performance of
a neural network. Here, the advantage of using our proposed SSCAN for change detection
was further demonstrated by investigating the relationship between the loss value and
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epoch of SSCAN. As shown in Figure 8, the loss value of SSCAN sharply decreased to a
lower value compared with those of other methods, and then it is gradually maintained with
increasing training epochs. Thus, the proposed SSCAN had a better learning performance
at the same training time for a given dataset. Detailed comparisons of the training time are
summarized in Table 6. All of the experiments were conducted on a computer with RTX
2080 Ti GPU, 64G DDR, and Intel Core i7 CPU specifications.

FC_EF - FC_Siam_Diff == FC_Siam_Conc == DSIFN DSAMNet Proposed SSCAN

Dataset-A Dataset-B

Dataset-C Dataset-D

300 0 50 150 200 250 300

Epoch

1(‘)0 150 260 250
Figure 8. Relationship between loss value and epoch with respect to the application of the proposed
SSCAN on each dataset.

Table 6. Training time summary for each approach and dataset (in seconds.)

Method Dataset-A Dataset-B Dataset-C Dataset-D
FC_EF [28] 817.94 501.76 1545.08 248.72
FC_Siam_Conc [28] 1157.99 705.45 1600.87 325.4
FC_Siam_Diff [28] 2554.42 1114.83 2562.74 384.41
CWNN [39] / / / -
IFN [41] 195620.47 7749.83 20520.47 1587.93
KPCA_CMN [43] / / / /
DSAMNet [47] 1526.7904 856.24 1752.26 683.81
Proposed 4508.47 3054.7 4823.6 913.86

Notes: CWNN [39] and KPCA_CMN [43] do not require a training process.

4. Conclusions

In this study, a novel SSCAN was proposed to improve the performance of LCCD

with remote-sensed images. To achieve the objective, two attention modules, namely, the
SCAM and CBAM, were employed to process pre- and post-events, respectively. Then, the
BDA strategy was developed to train the proposed SSCAN. The proposed SSCAN was
implemented with four pairs of remote-sensed images, allowing for the depiction of real
land-cover change events. The proposed SSCAN achieved better performance and higher
detection accuracies than the state-of-the-art methods. The advantages of the proposed
SSCAN can be briefly summarized as follows:
(i) Advanced change-detection results were obtained by SSCAN, especially for the three
real land-cover change events with four pairs of remote-sensed images, including
high-resolution and low-median resolution images. The experimental results indicate
that the SSCN outperformed seven widely used LCCD methods, namely, FC_EF [28],
FC_Siam_Conc [28], FC_Siam_Diff [28], CWNN [39], IFEN [41], KPCA_CMN [43], and
DSAMNet [47], in the visual observation and quantitative evaluation criteria.
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(if) The quick and effective learning performance of the proposed SSCAN may be achieved
and easily promoted in practical engineering applications. The findings on the rela-
tionship between the loss value and epoch indicate the quick learning effect of SSCAN.
In other words, SSCAN can be easily trained, and the convergence speed of obtaining
the optical model is rapid. These characteristics are acceptable and even preferred in
practical applications.

The proposed SSCAN is a promising neural network for achieving LCCD tasks with
remote-sensed images. In our future studies, we plan to collect large-area datasets with
other types of change-detection methods and apply the proposed network to them to
further test its robustness and adaptability.
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