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Abstract: Monitoring marine contamination by floating litter can be particularly challenging since
debris are continuously moving over a large spatial extent pushed by currents, waves, and winds.
Floating litter contamination have mostly relied on opportunistic surveys from vessels, modeling and,
more recently, remote sensing with spectral analysis. This study explores how a low-cost commercial
unmanned aircraft system equipped with a high-resolution RGB camera can be used as an alternative
to conduct floating litter surveys in coastal waters or from vessels. The study compares different
processing and analytical strategies and discusses operational constraints. Collected UAS images
were analyzed using three different approaches: (i) manual counting (MC), using visual inspection
and image annotation with object counts as a baseline; (ii) pixel-based detection, an automated
color analysis process to assess overall contamination; and (iii) machine learning (ML), automated
object detection and identification using state-of-the-art convolutional neural network (CNNs). Our
findings illustrate that MC still remains the most precise method for classifying different floating
objects. ML still has a heterogeneous performance in correctly identifying different classes of floating
litter; however, it demonstrates promising results in detecting floating items, which can be leveraged
to scale up monitoring efforts and be used in automated analysis of large sets of imagery to assess
relative floating litter contamination.

Keywords: unmanned aircraft systems (UASs); drones; deep learning (DL); artificial intelligence (AI);
machine learning (ML); convolutional neural networks (CNNs); floating litter debris; marine pollution

1. Introduction

Over the last few decades, marine litter has increasingly captured the attention and
concerns of scientists, decision makers, and civil society [1,2]. The persistent nature of
plastic materials and their increasing global presence in both aquatic [3] and terrestrial
ecosystems [4] has resulted in the conception of a new era—“The Plasticene” [5]. The
incessant and growing delivery of plastic litter and debris to our oceans has become one
of the most significant forms of marine pollution [6,7]. While there are bans on single-use
plastics and improved recycling practices (e.g., usage of straws), the COVID-19 pandemic
has resulted in an immediate increase in personal protection equipment (e.g., discarded face
masks), further polluting the aquatic environments [8,9]. Indeed, marine litter has become
critical to global sustainability, as it affects marine ecosystems and human health [10–12].
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Tackling plastic pollution in the marine environment requires concerted strategies
and strong actions from policymakers and stakeholders on a global scale [13,14]. In fact,
several efforts are already in place at the international, national, and regional levels (e.g., the
United Nations Convention on the Law of the Sea (UNCLOS) (United Nations Convention
on the Law of the Sea (UNCLOS)—The Faculty of Law Available online: https://www.
jus.uio.no/english/services/library/treaties/08/8-01/unclos.xml (accessed on 25 October
2022)), United Nations Environment Programme (UNEP) (Environment, U.N. UNEP—UN
Environment Programme Available online: http://www.unep.org/node (accessed on
25 October 2022)), Regional Sea Programme (RSP) (Environment, U.N. Regional Seas
Programme Available online: http://www.unep.org/explore-topics/oceansseas/what-
we-do/regional-seas-programme (accessed on 25 October 2022)), and the European Union
Marine Strategy Framework Directive (MSFD) (European Commission. Joint Research
Centre.; MSFD Technical Group on Marine Litter. Monitoring of Floating Marine Macro
Litter: State of the Art and Literature Overview; Publications Office: LU, 2022)), with several
instruments being recently developed to reduce and manage marine litter [15]. Despite
growing concerns, current efforts in tackling marine litter pollution are still (mostly) focused
on diagnosing the problem, namely, establishing standard protocols to detect, monitor, and
characterize marine litter distribution, including identifying major sources and assessing
multiple impacts of various types of marine litter [16,17].

Most consolidated data on marine litter derive from beached litter monitoring pro-
grams and sampling, while seafloor and floating litter data is mostly from isolated or
discrete efforts [18,19]. Ocean surface litter contamination assessments still greatly rely on
opportunistic reporting from sea vessels [20–23], complemented with the use of ingested
items from target species as a proxy [24] and by a few dedicated protocols used to assess mi-
crolitter contamination of surface waters [25–27]. Floating macrolitter monitoring has been
mostly dependent on vessel-based observers [28,29] (i.e., opportunistically reporting sight-
ings), which makes it difficult to standardize effort, methods, and produced datasets, and
is often geographically biased, as most marine observing programs are linked to fisheries
(European Commission. Joint Research Centre.; MSFD Technical Group on Marine Litter.
Monitoring of Floating Marine Macro Litter: State of the Art and Literature Overview.;
Publications Office: LU, 2022). Additionally, these methods remain time-consuming and
entail numerous difficulties associated with vessel size and type, weather, light, and sea
conditions. Another issue in the present monitoring of floating litter is related to the fact
that floating debris constantly moves due to weather and currents, providing an additional
dynamic dimension and adding complexity to the problem [30,31]. On occasions, numerous
factors may cause the accumulation of marine litter in oceanic convergence zones [32,33],
which can be detected from vessels, aerial remote sensing, and even satellites [34–36].
However, these convergence areas are geographically discrete, and floating litter outside
these areas is often in low densities [18,23], making it challenging to detect by vessel-based
observers or to be collected by current sampling devices. Similarly, their small sizes and
low concentrations outside convergence areas make floating litter items difficult to detect
from satellite remote sensing platforms [37–39].

The use of satellite data could potentially enable the development of cost-effective,
repeatable, and fast methods that estimate floating marine litter contamination and dis-
tribution over large spatial scales [34,36,40]. However, despite recent efforts to develop
analytical sensing methods, most of these applications face challenges with poor detectabil-
ity of small objects from space [35,39,41]. Advances in spectral profiling using hyperspectral
sensors [16] and advances in satellite technology are expected to be soon able to detect
and even monitor high-concentration areas such as the Pacific Garbage Patch and other
gyres [42–44]. However, monitoring contamination levels in non-accumulation areas will
remain challenging.

Remote sensing from aerial platforms, combined with advanced imagery processing
and artificial intelligence (AI) provides unique opportunities to advance the monitoring
of plastic and litter pollution [45,46]. The application of AI in different areas of oceanic
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studies is constantly growing. Still, the open challenge in automating imagery analysis
is to reduce labor time in identifying and classifying target objects, and ultimately, have
a better understanding of the distribution and sources of marine litter items. However,
when compared to human inspection and annotation, automated object detection and
classification in imagery by AI often lacks flexibility in contextual interpretation, and
rely on well-established predetermined object categories. In addition, the computing
power and the technical skills required to implement automated object detection based
on AI can be considerably more demanding than those required for human-supervised
imagery annotation.

The growing availability and the development of inexpensive commercial off-the-shelf
(COTS) drones and other advanced unmanned aerial systems (UASs) are making high-
tech aerial imagery platforms more accessible [47–49]. The use of custom-designed UASs is
becoming increasingly popular for recreational, industrial, topographic surveying, monitoring,
and research purposes due to their relatively low cost, operational flexibility, and simplicity
[50–54]. With low-altitude flight, UASs produce aerial imagery with higher resolution than that
achieved by current satellites or by manned aerial platforms [37,55,56]. Additionally, most
modern UASs include automated flight capabilities, pre-planned mission controls, high-
resolution camera systems, and geotagged logs that enhance their operational capabilities
and their range of applications [57,58].

The use of UAS-based remote sensing has already demonstrated a variety of research
applications in coastal areas [47,49,51,59–71]. Operation flexibility and simplicity make
UASs promising platforms for developing remote sensing protocols and monitoring litter
using systematic approaches. There have been a growing number of studies focusing on
the use of UAS-based remote sensing and AI to monitor litter pollution; however, most of
them have focused on beached litter [51,54,65,67,70,72–75], and only a few have explored
their use for floating litter [38,46,73,76,77]. A recent critical review on beached litter survey
studies using UAS remote sensing [65] summarizes the findings of recent studies and
outlines basic guidelines for developing and implementing monitoring programs. Despite
some of their conclusions being transferable to floating litter monitoring, these studies
do not account for the dynamic nature of open waters, the lack of matching references
to construct orthophotos, and differences in image background contrasts and complexity.
Other studies have focused on the use of UAS aerial images to monitor floating litter
using color-based image processing [78], deep learning [45,79], and other remote sensing
analytical techniques [39]. However, these studies are descriptive of technical advances
using a single approach or focus on comparing different AI algorithms and classifiers,
lacking an overall evaluation of how to implement a floating litter monitoring program that
relies on UAS aerial imagery, and missing a critical comparison of different image analysis
strategies and options. As such, this study fills some of the current gaps by outlining some
of the specificities in floating litter monitoring, including UAS operational constraints, a
comparison of MC, PBD, and ML image analysis, and an overall guideline to design and
implement a monitoring program.

Detecting and monitoring floating litter using aerial photography and UAS-based
remote sensing pose specific challenges. On land, structure from motion photogrammetry
uses unique and discrete references in overlapping images to construct a mosaic and
estimate position, slope, and other topographic features along the survey area [80,81]. Over
open water, the lack of discrete or unique reference points, the homogeneity of images,
and the dynamic surface make it virtually impossible to reconstruct orthophotomosaics
systematically [82,83]. In theory, one could fly at high enough altitude to simultaneously
include land features (to include discrete matching points) and coastal waters. However,
this is generally not a practical solution as the survey area will be greatly constrained to
near-shore areas due to safety, resolution would reduce with altitude, and due to regulations
that prohibit or limit the maximum altitude for UAS operations [84,85].

Tackling limitations in photogrammetry mosaic generation from overlapping aerial
images over the ocean, we explore the use of a COTS UAS platform to collect multiple (non-
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overlapping) individual aerial images to assess floating litter contamination. Leveraging
specific flight altitudes and information on the camera field of view and sensor dimensions,
it is possible to estimate the surface area for individual images. This strategy allows one
to conduct aerial surveys, collecting multiple images that can be processed and analyzed
independently to produce overall assessments over meaningful spatial extents (e.g., 1 km2).

In order to assess the feasibility of such a strategy for floating litter monitoring, we
designed an experimental trial where floating litter items were deployed and multiple
individual aerial images were collected with a UAS to compare three imagery processing
and analysis strategies: (i) manual counting (hereinafter abbreviated as MC), an image
inspection with object supervised identification and annotation; (ii) pixel-based detection
(hereinafter abbreviated as PBD), an automatic color detection of pixels from floating items;
and (iii) machine learning (hereinafter abbreviated as ML), an automated object detection
and classification. The general objective of this experimental trial was to provide answers
to two main questions: (i) can floating litter items be detected from RGB aerial imagery
collected by a UAS? (ii) are automated image processing and analysis strategies practical
reliable solutions that can replace human image inspection and litter items classification?
Ultimately, this study assesses the operational advantages and disadvantages of different
aerial imagery processing strategies for floating litter item detection and provides guidelines
for optimising and implementing floating litter monitoring programs that rely on UAS-
based remote sensing using low-cost, COTS quadcopters equipped with high-resolution
RGB cameras.

2. Materials and Methods
2.1. Data Collection

Conducted in Madeira Island (Portugal) coastal waters, this study was developed to
assess the feasibility of using UAS aerial imagery for detecting and monitoring floating
litter by designing an experimental trial with dummy floating litter objects. Preliminary
test flights were conducted (using a DJI Phantom 2 Vision+ and a DJI Mavic 2 PRO) from
land and vessels to test and assess UAS flight capabilities (e.g., wind speed limit, range,
flight time) as well as optimal take-off and landing techniques and optimal imagery sensor
settings (compiled in Supplementary Materials S1). Once flight capabilities and operations
were tested, an experimental trial flying a Mavic 2 PRO quadcopter from the sea vessel and
using selected “dummy” litter items was carried out.

During the experiment, common floating litter items were deployed from a boat while
flying a UAS at 10–30 m of altitude, set up to collect images (with 5472 × 3648 px) of the
sea surface area every 10 s where litter items had been deployed (Figure 1A). There was
a total of 28 objects, and the majority of the items were made of floating plastic. These
objects were categorized into nine classes: Cleaner Bottles and Containers (one item);
Drink Bottles—Green (six items); Drink Bottles—Transparent (two items); Drink Bottles—
Large (>5 L) (two items); Floating Fishing Gear (seven items); Other Containers (one item);
Other Floating Debris (no items); Plastic Bags (five items); and Tetra Pak (four items) (see
Supplementary Materials S2, Table S1). As litter items scattered across the water, the vessel
was repositioned to be outside of the image frame (Figure 1A), and the UAS position was
adjusted to capture as many items as possible inside the live feed frame. Deployed objects
naturally drifted at different speeds and directions, for which after some hovering time
collecting imagery (5–10 min), the UAS (Figure 1B) was recovered, and all litter items
were successfully collected. The procedure was repeated using different exposure settings,
specifically, a normal exposure (EV 0) and a low exposure (EV −3), to produce two sets of
images a Blue Set and a Dark Set, respectively (Figure 1C,D). The two image sets were used
to compare object detectability under two contrasting. The collection of imagery with low
exposure values (EVs) was included to enable a major reduction in light backscatter on the
sea surface (i.e., homogenizing the background), while maintaining the ability to detect
floating objects by visual inspection and based on RGB profiles.
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Figure 1. From top to bottom, left to right: (A) example of an aerial image of the experimental
trial where floating litter objects were deployed from the boat to collect aerial imagery; (B) an UAS
operator using the commercial DJI Phantom Series UAV; (C,D) example of two types of collected
aerial images with normal exposure (Blue Set—(C)) and exposure for low EV (Dark Set—(D)).

A total of 148 individual images, with objects and no vessel in the frame, were selected
for analysis, which were further divided into 2 different collections of individual images:
a “Blue Set” (Figure 1C) with 74 images normally exposed, with a blue background and
normal sun glint and backscatter; and a “Dark Set” (Figure 1D) with 74 underexposed
images, with a dark background and reduced sun glint and backscatter. For selected
individual images, ground sampling distance (GSD) ranged between 0.26 and 0.7 cm/px,
with estimated areas of 117 to 988 m2, respectively. The two collections were compiled and
labeled for individual image analysis using three different strategies to assess floating litter
contamination: (i) a visual inspection with manual annotation of detected litter items; (ii) a
pixel-based detection color analysis; and iii) the use of CNN for automated object detection.

2.2. Comparison of Analytical Procedures

Keeping a rationale of assessing the pros and cons of different analytical and classifica-
tion approaches, in order to design floating litter monitoring programs with UAS-based
remote sensing that are feasible in different conditions, training, and available resources,
we compared the three methods by considering (i) the average time required to inspect and
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process each image; (ii) the ability to adequately assess floating litter contamination; and
(iii) the skills and logistical requirements for implementing a monitoring program using
each method.

Visual inspections and annotations for single images were considered as reference data to
assess and compare the performance of automated methods. Simple descriptive statistics were
applied to compare the outputs of the three methods tested, including time for processing,
correlations, and standard metrics to assess deep learning classification performance.

2.2.1. Visual Inspection and Manual Classification

Two independent annotations were performed: one to identify and count all floating
objects, labeling them with an all-inclusive category “floating litter item” during annotation;
and a second one where floating objects were classified and labeled using nine different
categories (see Supplementary Materials S2, Table S1). All images from both Blue and Dark
datasets were visually inspected and annotated using DotDotGoose (DotDotGoose Available
online: https://biodiversityinformatics.amnh.org/open_source/dotdotgoose/ (accessed on
25 July 2022)) [86]. For each image, all objects were identified/classified, and collected data
were exported as .CSV files and compiled into a summary table that included information
on image file identification, image dataset (Blue or Dark), number of floating items, number
of items per category, the time for inspection and annotation using a single object class, and
the time for inspection and annotation using the nine classes of floating items.

2.2.2. Color- and Pixel-Based Detection Analysis

Images of both Blue and Dark datasets were compiled for analysis using pixel color
differences to estimate overall floating debris in each image using a color- and pixel-
based analysis [78,87] to detect pixels with different color profiles than the background
(e.g., seawater color) (see Supplementary Materials S2, Figure S1). The method consists
in generating an image of the color difference between the debris and surrounding wa-
ter in the CIELuv color space and detecting the debris pixels from the color difference
image [78]. The color difference is expressed by the Euclidean distance between two
points in the CIELuv color space [78]. The fundamental steps for extracting the “debris
pixel” from the color difference images were as follows: (i) generating an image which is
smoothed from each original image using the median box filter with a 200 × 200 px window;
(ii) computing the color difference between the denoised and smoothed images in the
CIELuv color space converted from the RGB color space; (iii) extracting the pixels of
floating macro debris using an appropriate constant threshold value. In this study, the
threshold value was set at 60 by trial and error during empirical tests. The percentage of
“debris pixels” was calculated for each image and included on the compiled summary table.
Performance was assessed using linear regressions, assuming that automated selection of
pixels was proportional and correlated with the number of litter items in each image.

2.2.3. Machine Learning for Automated Object Detection and Classification

Blue and Dark image sets were also used in automated object detection and classifi-
cation using state-of-the-art CNN architecture combining MobileNetV2 [88] with Sigle-
Shot Detection (SSD) algorithm [89]. All images from each dataset were visually in-
spected and manually annotated with Supervise.ly, an online image annotation tool dedi-
cated to model training (Supervisely: Unified OS for Computer Vision Available online:
https://supervise.ly/ (accessed on 25 July 2022)). Target litter items were identified with
bounding boxes and classified within the nine litter categories (see Supplementary Materi-
als S2, Table S1) previously established.

Two models were trained to classify floating objects into the nine pre-established
categories (see Supplementary Materials S2, Table S1): one using the Blue Set (normally
exposed imagery), and a second using the Dark Set (underexposed imagery). The latter
used a total of 4041 images, while the former used 7597 training images after applying
traditional data augmentation techniques (flip, noise, blur) [90]. All 74 images from both
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Dark and Blue datasets (with original full-size resolution) were used for model inference.
Training and testing procedures involved single- and multiclass identification using object
detection, based on ground truth annotation (bounding boxes made by the research authors
as annotators) and the bounding boxes predicted by the models. Both models were trained
using NVIDIA Tesla P100 PCI-E 16GB GPU on Google Collab, using TensorFlow 1.15.2,
in 12 h. Model training was with 200 k epochs using default hyperparameters, ReLU6
activation function and initial learning rate of 0.004. For performance, a batch size of
12 images was used with down-sampled imagery of 300 × 300 px. Overall model perfor-
mance was assessed by computing model precision (P), recall (R), and F1 score (F1) [91]. For
each model, a stopwatch was used to assess the time which fir data upload (ground truth
imagery, annotations, trained model), runtime of the model inference script using Jupyter
Notebook, computation resource allocation time on the free GPU instances, and results
download time. For each image, information from both models (i.e., number of items
per category, object classification time) was included in the compiled summary table (see
above) for comparison and analysis. Performance was assessed using linear regressions,
assuming that the number of overall items classified as litter objects would be proportional
and correlated with the number of manually labeled items. Additionally, average over-
and underestimations of ML automated classification for each of the nine categories were
computed for each of the image sets (i.e., Blue and Dark sets), in order to assess the ML
ability to correctly classify floating items in each of the nine selected categories. Standard
deviations were also calculated to assess variance in differences between reference data
(i.e., number of items manually classified) and the number of items detected by ML for
each of the nine categories (see Supplementary Materials S2, Figure S2).

3. Results
3.1. Performance Assessment

Visual inspections and manual classification were assumed to have 100% detectability,
and were used as reference data to assess the performance of automated approaches. An
inspection of a linear regression using the number of identified objects in each image
illustrates that the color difference selection of pixels from normally exposed imagery
was inadequate in estimating floating litter contamination, with poor correlation with the
actual number of items in each image (Figure 2, top-left panel). The methods performance
improved when using underexposed imagery, with less backscatter and sun glint (Figure 2,
bottom-left panel). However, it still lacked a strong linear correlation with the number
of floating items in each image, as one would expect if the automatically selected pixels
corresponded to floating debris. Automated floating object detection using ML had a good
overall performance in matching human detection and labeling, especially with normally
exposed imagery (Figure 2, top-right panel). Assuming the null hypothesis that two
samples (MC and ML for Blue dataset) have equal variances, a two-tailed t-test using the
critical value 1.9763 did not show statistical significance (p > 0.05). Such a result indicates
that the machine learning method is performing to a similar level as the manual counting
method when predicting the Blue dataset. Overall, the lack of strong collinearity with the
number of floating items renders the color difference detection of debris pixels from RGB
imagery an unreliable method for estimating contamination by floating debris.



Remote Sens. 2023, 15, 84 8 of 18

Remote Sens. 2023, 15, 84 8 of 19 
 

 

that two samples (MC and ML for Blue dataset) have equal variances, a two-tailed t-test 
using the critical value 1.9763 did not show statistical significance (p > 0.05). Such a result 
indicates that the machine learning method is performing to a similar level as the manual 
counting method when predicting the Blue dataset. Overall, the lack of strong collinearity 
with the number of floating items renders the color difference detection of debris pixels 
from RGB imagery an unreliable method for estimating contamination by floating debris. 

 
Figure 2. Linear regressions between the number of items per image (i.e., visually identified) and 
automated analysis using pixel-based detection (left panels) and automated object detection using 
machine learning (right panels) for the Blue Set (top) and Dark Set (bottom) of images. Machine 
learning has a greater correlation (R2 = 0.88 and R2 = 0.64 for Blue and Dark datasets, respectively) 
than that found for pixel-based detection (R2 = 0.002 and R2 = 0.25 for Blue and Dark datasets, 
respectively). 

ML automated object classification performed differently in discriminating different 
litter categories across both datasets (Figure 3). Using the manual counts as a reference, 
the automated object classification using ML had an average under- and overestimation 
that ranged between −2.95 and 3.32 objects in Blue Set (Figure 3, left panel) and ranged 
between −4.18 and 7.43 in the Dark Set (Figure 3, right panel). Unlike the performance of 
pixel-based detection of marine debris (Figure 2), automated classification of floating 
items overall performs better in normally exposed images (Blue Set) than in underexposed 
images (Dark Set). An inspection of the average under- or overestimation values and 
respective standard deviations (Figure 3) illustrates that in normally exposed imagery 

Figure 2. Linear regressions between the number of items per image (i.e., visually identified) and
automated analysis using pixel-based detection (left panels) and automated object detection using
machine learning (right panels) for the Blue Set (top) and Dark Set (bottom) of images. Machine
learning has a greater correlation (R2 = 0.88 and R2 = 0.64 for Blue and Dark datasets, respectively) than
that found for pixel-based detection (R2 = 0.002 and R2 = 0.25 for Blue and Dark datasets, respectively).

ML automated object classification performed differently in discriminating different
litter categories across both datasets (Figure 3). Using the manual counts as a reference, the
automated object classification using ML had an average under- and overestimation that
ranged between −2.95 and 3.32 objects in Blue Set (Figure 3, left panel) and ranged between
−4.18 and 7.43 in the Dark Set (Figure 3, right panel). Unlike the performance of pixel-based
detection of marine debris (Figure 2), automated classification of floating items overall
performs better in normally exposed images (Blue Set) than in underexposed images (Dark
Set). An inspection of the average under- or overestimation values and respective standard
deviations (Figure 3) illustrates that in normally exposed imagery (Blue Set), the classes
of Cleaner Bottles and Containers, Green Drinking Bottles, Floating Fishing Gear, and Plastic
Bags were underestimated, whereas Transparent Drinking Bottles, Other Containers, and Other
Floating Debris were overestimated (Figure 3, left panel). The categories Cleaner Bottles
and Containers and Large Drink Bottles were the ones more accurately detected with low
average difference and low standard deviations, whereas the category Other Floating Debris
appears to be the most challenging, with an average overestimation of 3.22 and the highest
standard deviation. In underexposed imagery (Dark Set), ML had better success in correctly
classifying items in the categories Cleaner Bottles and Containers and Transparent Drink Bottles,
underestimating these with low average differences and relatively low standard deviations
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(Figure 3, right panel). Floating items in the categories Drink Bottles—Large (>5 L), Other
Containers, and Other Floating Debris were significantly overestimated with relatively high
standard deviations, illustrating a poor performance of ML in classifying items in these
categories in underexposed imagery.
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Figure 3. Average differences and respective standard deviations per category in the number of
classified objects between manual counting and machine learning using the Blue Set of normally
exposed images (A) and Dark Set of underexposed images (B). Negative values represent an overall
underestimation shaped by false negatives (i.e., the number of non-detected objects in average), and
positive values represent an overall overestimation shaped by false positives (i.e., the number of
falsely identified objects on average).

Average differences and respective standard deviations illustrate to what degree ML
can accurately detect and classify a floating object. With lower averages and variances, ML
has a better overall performance in classifying floating litter items in normally exposed
images (Figure 3). However, it is noteworthy to mention that, in some specific categories
(e.g., Transparent Drink Bottles, Floating Fishing Gear), the use of underexposed imagery
outperformed the use of normally exposed image sources.

3.2. Comparing Processing Times and Requirements

One additional relevant aspect in automation of litter detection and/or classification
relates to processing times (Table 1). On average, visual inspection and user annotation
took 26 s to detect e and 52 s to classify all visible objects in a single image. Interestingly,
user annotation was slightly faster when inspecting underexposed images (Figure 4). Color-
and pixel-based detection had comparable processing times, averaging 43 s to process
normally exposed images and 26 s to process underexposed images (Figure 4). As expected,
image processing times for ML object classification and detection using deep learning
were significantly longer than remaining methods (i.e., visual inspection and color- and
pixel-based detection). Interestingly, and similar to other methods, processing times were
faster when dealing with underexposed images (Figure 4).
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Table 1. Summary comparison of different performance indicators for the use of manual counting,
pixel-based detection, and machine learning to detect and assess floating litter contamination using
UAS-based remote sensing to collect aerial imagery (Blue and Dark Sets). Legend: µ, average; σ,
standard deviation; Precision, the ratio of the correctly segmented classes that are positive for each
class; Recall (sensitivity), ratio of the correctly classified positive classes; F1, harmonic mean indicating
the extent of the alignment of the predicted boundary with the ground truth boundary, evaluates the
balance between precision and recall values. For Precision, Recall, and F1, the higher the value, the
better the performance.

Methods Manual
Count Pixel Base Detection Machine Learning

DataSet Blue Dark Blue Dark Blue Dark

Performance
Evaluation

Average
Process
Times (s)

Identification 26 s 22 s
Classification 52 s 40 s

Processing 43 s 26 s
Object Classification 159 s 135 s

Number of
Objects
Classified

µ 141 117 152 157
σ 112 112 116 187

% of pixels detected 0.0025% 0.000049%
Estimated area 5.31 0.089

Performance from ML method
P: 63.59%
R: 78.27%

F1: 56.33%

P: 77.62%
R: 77.71%

F1: 66.15%

Work Interface DotDotGouse Workflow who to
generate new Algorithm.

- Supervisely
- Goolge Collab GPU
- Python AID

Requests Informatic
skills

- Programming
skills.

- Knowledge in
processing color
images.

- Programming skills.
- Knowledge in deep

learning.
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4. Discussion

Based on a custom-designed experimental trial, this case study assesses the detectabil-
ity of floating litter items from aerial imagery, appraises the advantages and disadvantages
in different imagery processing strategies, and sets guidelines for optimizing and imple-
menting floating litter monitoring programs relying on UAS-based remote sensing.
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There are numerous challenges in operating UAS for systematic monitoring of the sea
surface; namely, the unpredictability of weather conditions (i.e., wind, clouds); the limited
flight operations, i.e., geozones and maximum radio range operating of the drone; the risk
of losing the drone, i.e., experience in piloting UAS from vessels; how the varying light
(i.e., sun glint, cloud shadows, sea conditions (e.g., waves)) can affect the image collected,
subsequently affecting image processing and litter detection. Flat ocean conditions offer a
homogeneous background where floating items are easily identified [92]. One important
factor that can be compounded by sea conditions is related to lighting and light backscat-
ter [83]. Ideal light conditions include clear skies, during a period where the sun is at a low
angle (i.e., high angles increase backscatter for nadir imagery), and with sea conditions flat
without bright elements (i.e., white caps, foam, waves, and ripples) that will also influence
light backscatter on the water surface. Determining light conditions by choosing the time of
day, from 8 to 10 am and/or 16 to 18 pm, plus the direction of flight paths helps to enhance
image quality by minimizing the sun reflection and backscatter over the sea [83]. In turn,
this minimizes the spots of undefined shapes that create visual noise and hamper manual
and automated analysis. Overcast conditions, high sun, waves, and floating items partially
submerged in the water column can easily decrease image quality for object detection and
potentially lead to the need of discarding a large portion of each image. The use of the
multispectral sensors can reduce some of the negative impacts of poor conditions, as some
channels generally produce outputs that are less sensitive to light backscatter over the
sea surface (i.e., infrared, near-infrared) [36,77]. Thermal sensors can also be adequate to
detect large objects that have a large proportion that is air-exposed [93]; however, they are
typically unable to detect objects that are frequently submerged and cooled by waves and
sea spray. Another constraint using UAS-based remote sensing relates to their flight range
and the compromise between surveyed area and image resolution. Operational range can
greatly vary depending on the UAS. Fixed-wing drones have the advantage of being able
to cover larger areas (more battery and longer radio signal range) [94]. However, they tend
to require specific conditions for taking off and landing, which makes them less suitable for
monitoring surveys from small vessels.

Similar to other studies using UAS aerial imagery to monitor litter, flight parameters
selected for this case study have influenced the final result and the detection capability, since
flight height, light exposure, and even the orientation of the camera in relation to the light
source (among other factors) affect the image quality and the perception of some physical
characteristics of the objects to be classified, including (i) color reflectance (translucid vs.
opaque objects or reflected spectral profile of the material); (ii) the definition of object
contours (well-defined vs. blurred); and (iii) the “size” of objects (number of pixels). As
such, most parameters were not variable, with the exception of altitude, which varied
between 10–30 m (which provides a range of GSD from 0.26 to 0.7 cm/px and a range of
surface area covered from 117 to 988 m2), ensuring that objects were visually identifiable
in all selected images. Exposure was purposely set to capture normally exposed images
(EV set to 0) and underexposed images (EV set to −3) to enable sun glint and backscatter
reduction, and assess whether it affected object detectability. The main reason for carrying
out this experiment with two image sets using different light exposures—Blue Set vs. Dark
Set—was to understand how differences in exposure and contrast affect the reliability of the
automated pixel selection and object detection models. Indeed, one of the biggest problems
with nadir images collected over the ocean is the glare from sunlight backscatter, resulting
in “specs” of high reflectance that can be misidentified as white floating objects [95]. The
use of these contrasting exposure settings were expected to have a major influence on color-
and contrast-based analysis and identification of floating items due to the homogenization
of the background (i.e., seawater) in underexposed images [36,78].

The conducted experimental trial also allowed to ascertain how well two different
autonomous analytical methods (i.e., color- and pixel-based detection and ML object
classification) could assess floating litter contamination in comparison to human-supervised
annotation of aerial images. Theoretically, the pixel-based detection method would allow
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one to know the percentage of general contamination of a given area based on the number
of “debris” pixels. This method could be useful in scenarios where it is necessary to find
places of concentration or sources of contamination by marine litter in a large volume
of images and/or with different areas. However, our findings illustrate that the use of
color difference “debris” pixel selection to detect floating litter still requires significant
improvement. Sun glint and wave crests greatly affect the accuracy of this method, and
result in numerous false positives and, even though it performs better in underexposed
images, the computed correlation between selected pixels and number of litter items was
still rather low (Figure 2). Ultimately, the use of color difference debris pixel detection
requires additional optimization and development to reduce error; namely, by integrating
additional multispectral data; hyperspectral data; and/or by reducing false-positive pixels
in each image by masking all items by bounding boxes that are automatically detected by
the machine learning technique (see Supplementary Materials S2, Figure S2).

Similar to other studies [45,73,76,79], the automated classification of floating objects
using ML in this case study also showed promising results in detecting floating items
(Figure 2). However, similar to previous studies, it showed mixed results in accurately dis-
criminating different types of floating items (Figure 3). The categories Drink Bottles—Green
and Plastic Bags had comparable underestimation in both datasets. The similarity of the
light reflectance vs. the spectrum between the blue sea and the translucent green of the
bottles could have hampered the detection and classification of these items [34,35,96,97].
In the class Plastic Bags, as they present different shapes in each image, automated de-
tection may have been negatively affected, as the shape of an object can be a relevant
criterion for classification success [98]. The flexibility and mutable shape of Plastic Bags
create a handicap for the automatic detection of this item class. Other Containers and
Other Floating Debris categories, in both datasets, were overestimated with many false
positives being classified within these two categories. Other Containers overestimation
may be an artefact from the use of a single object within this category, a black container
that would float under the sea surface. The use of a single object, combined with the
lensing effect of water over the partially submerged object, may have contributed for the
misclassification of shadows and areas of images with high contrast as an object. Other
Floating Debris category, was a category created to enable the algorithms to identify floating
objects that could not be classified as one of the existing categories. These generated false
positives, mostly produced by high-reflectance backscatter that produces white “false ob-
jects” at the sea surface. Transparency of the objects classified as Drink Bottles—Transparent
has likely influenced the overestimation of these objects in the Blue Set, as differences in
light and color profiles are reduced by transparency. The use of low-exposure images
(i.e., Dark Set) appears to produce some mitigating effects, producing a lower underesti-
mation than the overestimation produced with imagery and training sets from the Blue
Set. The comparison in performance and accuracy between the Blue and Dark Set also
highlights relevant findings concerning the type of object vs. the environment in which it
exists. For some object categories, such as Cleaner Container Bottles and Fishing Gear, using
low-exposure, high-contrast images in training and analysis seems to perform better and
produce lower errors (under or overestimation) than normally exposed imagery. These
findings suggest that further research is needed to combine the use of multiple sensors
producing contrasting exposure images or multiple spectral data to increase the accuracy
in discriminating different objects and materials.

One additional and essential indicator for determining the adequate method and
analytical approach to use is the average time required for each image to be processed
when using different methods. Despite the short times required for the manual counting
method (visual inspection and classification of floating objects), this method requires
human supervision through the whole process with 100% dedication of the user, which
may hamper scaling up imagery collection and efforts. The dedication and time spent by
users will be proportionally and constantly increased by the number of images to process.
However, despite being a tedious and repetitive task, the level of expertise required by
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the user is minimal, as it only needs the user to inspect each image and tag visible litter
items. Color difference pixel selection average processing times are comparable to those
required for human-supervised annotation (Figure 4); however, it requires more expertise
from the user (i.e., advanced image processing and familiarity with programming) and it
lacks accuracy in the automated outputs (Figure 2). In the machine learning method, the
model requires considerably more time to provide information on the number of different
objects than that taken by a user to visually classify an image and tag the multiple objects
(Figure 4); however, an important consideration is the fact that the classification process
can mostly run with no human supervision required. Indeed, AI algorithms have already
been used to automate marine litter recognition from aerial imagery, where the common
algorithms applied are typically based on random forest algorithms [64,68,99] or deep
learning approaches [45,46,79,98]. The main factor that encourages the development of
AI algorithms for automatic identification of floating marine litter is that, after the first
initial effort of classification and validation, it is a process that can be replicated for future
studies without human supervision, which creates less time-consuming workflows. The
time and effort dedicated, the knowledge, and the skills required to optimize and routinely
apply machine learning is often compensated for by it being a single initial effort to acquire
knowledge and train the model. After this laborious process, the model is continuously
self-training, and is fed by the images that the user asks the model to use, that is, if it
keeps the classification classes constant. This is one of the most significant differences to be
highlighted between the compared methods.

5. Conclusions

Overall, the obtained analysis results suggest that UAS remote sensing can be ef-
fectively used for floating litter monitoring in two ways: (i) by visually inspecting each
image and identifying or classifying images, or (ii) using deep learning to detect floating
items without classifying them. Our findings suggest that ML can be used for process-
ing large numbers of images autonomously for assessing contamination with acceptable
error; however, when implementing a floating-litter-dedicated monitoring program, it is
important to consider the level of output detail required. The European Marine Strategy
Framework Directive and OSPAR litter monitoring standards require monitoring activities
to report litter items classified according to extensive standardized lists. The highly detailed
categories of these standard lists are often challenging to discriminate, making current
automated classification a target for the future. Automated classification will most certainly
become more accurate and reliable as research and development progress, and with the
introduction of multicamera and multispectral systems, optimizing model training and
creating a multistep workflow for the classification. Many of the constraints regarding
the use of UAS-based remote sensing to detect, map, or monitor litter contamination are
related to the aerial imagery processing requirements. Georeferenced individual images or
mosaics collected with regular RGB cameras or with additional channels, require process-
ing and analysis to manually or autonomously detect litter or assess contamination levels.
The careful visual inspection of imagery and manual annotations is the simplest solution,
but more laborious, especially if dealing with large numbers of images and in long-term
programs. Opposingly, automated object detection can potentially reduce user interaction
needs, but typically requires higher computational power and programming expertise. In
fact, the success of any monitoring program relying on remote sensing will greatly depend
on the analysis process and the associated operational costs, processing times, accuracy,
and reliability, which can be substantiated by the findings of this case study.

Monitoring programs that aim to use UAS-based remote sensing in the near future
should also consider the frequency and total number of images that will be processed
when selecting which analytical method suits them best. Special consideration should
also be given to available human resources and their skillset. Annual programs with
0−1000 images to process can consider using visual inspection and manual identification
or categorization, as they will require low expertise and a total processing time of 9−18 h
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per year. Large-scale efforts with thousands of images from different sources or with
higher frequency should consider implementing an automated classification system using
deep learning.

Finally, the findings of this study have not only enabled us to produce recommenda-
tions for the selection of imagery processing solutions, and to produce general operational
guidelines for floating litter monitoring with UAS-based remote sensing (CROSSREF),
but also to underline the importance of continued investment and research in improving
light-weight remote sensing UAS payloads and in advancing deep learning and artificial
intelligence in accurately detecting and classifying litter to automate imagery and remote
sensing data processing and analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15010084/s1, Supplementary Materials S1: Remote sensing
and aerial surveys for monitoring floating litter with unmanned aerial systems (UASs): general
protocol guidelines for vessel- and shore-based operations. Supplementary Materials S2: Examples
of applied methods and the table of floating litter category classes used in image annotation and
automated object classification.
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47. Monteiro, J.G.; Jiménez, J.L.; Gizzi, F.; Přikryl, P.; Lefcheck, J.S.; Santos, R.S.; Canning-Clode, J. Novel Approach to Enhance
Coastal Habitat and Biotope Mapping with Drone Aerial Imagery Analysis. Sci. Rep. 2021, 11, 574. [CrossRef]

48. Olivetti, D.; Roig, H.; Martinez, J.-M.; Borges, H.; Ferreira, A.; Casari, R.; Salles, L.; Malta, E. Low-Cost Unmanned Aerial
Multispectral Imagery for Siltation Monitoring in Reservoirs. Remote Sens. 2020, 12, 1855. [CrossRef]

49. Ventura, D.; Bonifazi, A.; Gravina, M.F.; Belluscio, A.; Ardizzone, G. Mapping and Classification of Ecologically Sensitive Marine
Habitats Using Unmanned Aerial Vehicle (UAV) Imagery and Object-Based Image Analysis (OBIA). Remote Sens. 2018, 10, 1331.
[CrossRef]

50. Whitehead, K.; Hugenholtz, C.H.; Myshak, S.; Brown, O.; LeClair, A.; Tamminga, A.; Barchyn, T.E.; Moorman, B.; Eaton, B. Remote
Sensing of the Environment with Small Unmanned Aircraft Systems (UASs), Part 2: Scientific and Commercial Applications. J.
Unmanned Veh. Syst. 2014, 2, 86–102. [CrossRef]

51. Papakonstantinou, A.; Batsaris, M.; Spondylidis, S.; Topouzelis, K. A Citizen Science Unmanned Aerial System Data Acquisition
Protocol and Deep Learning Techniques for the Automatic Detection and Mapping of Marine Litter Concentrations in the Coastal
Zone. Drones 2021, 5, 6. [CrossRef]

52. Gupta, S.G.; Ghonge, M.; Jawandhiya, P.M. Review of Unmanned Aircraft System (UAS). Int. J. Adv. Res. Comput. Eng. Technol.
2013, 2, 1646–1658. [CrossRef]

53. Tatum, M.C.; Liu, J. Unmanned Aircraft System Applications in Construction. Procedia Eng. 2017, 196, 167–175. [CrossRef]
54. Escobar-Sánchez, G.; Haseler, M.; Oppelt, N.; Schernewski, G. Efficiency of Aerial Drones for Macrolitter Monitoring on Baltic Sea

Beaches. Front. Environ. Sci. 2021, 8, 560237. [CrossRef]
55. Udin, W.S.; Ahmad, A. Assessment of Photogrammetric Mapping Accuracy Based on Variation Flying Altitude Using Unmanned

Aerial Vehicle. IOP Conf. Ser. Earth Environ. Sci. 2014, 18, 012027. [CrossRef]
56. Gray, P.; Ridge, J.; Poulin, S.; Seymour, A.; Schwantes, A.; Swenson, J.; Johnston, D. Integrating Drone Imagery into High

Resolution Satellite Remote Sensing Assessments of Estuarine Environments. Remote Sens. 2018, 10, 1257. [CrossRef]
57. Rovira-Sugranes, A.; Razi, A.; Afghah, F.; Chakareski, J. A review of AI-enabled routing protocols for UAV networks: Trends,

challenges, and future outlook. Ad Hoc Netw. 2022, 130, 102790. [CrossRef]
58. Al-Rawabdeh, A.; Al-Gurrani, H.; Al-Durgham, K.; Detchev, I.; He, F.; El-Sheimy, N.; Habib, A. A robust registration algorithm

for point clouds from uav images for change detection. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B1,
765–772. [CrossRef]

http://doi.org/10.3389/fmars.2017.00167
http://doi.org/10.1016/j.rse.2021.112414
http://doi.org/10.1038/s41598-020-62298-z
http://www.ncbi.nlm.nih.gov/pubmed/32327674
http://doi.org/10.1016/j.marpolbul.2021.112675
http://www.ncbi.nlm.nih.gov/pubmed/34225193
http://doi.org/10.1016/j.marpolbul.2021.112347
http://doi.org/10.1016/j.jag.2019.03.011
http://doi.org/10.3390/rs12162648
http://doi.org/10.1080/1755876X.2016.1273446
http://doi.org/10.3390/rs11202443
http://doi.org/10.1007/s11270-014-2184-6
http://doi.org/10.1364/OE.440380
http://www.ncbi.nlm.nih.gov/pubmed/34808966
http://doi.org/10.1038/s41598-018-22939-w
http://www.ncbi.nlm.nih.gov/pubmed/29568057
http://doi.org/10.1007/s11356-019-05148-4
http://www.ncbi.nlm.nih.gov/pubmed/31001770
http://doi.org/10.1016/j.envpol.2021.116490
http://doi.org/10.1038/s41598-020-80612-7
http://doi.org/10.3390/rs12111855
http://doi.org/10.3390/rs10091331
http://doi.org/10.1139/juvs-2014-0007
http://doi.org/10.3390/drones5010006
http://doi.org/10.2139/ssrn.3451039
http://doi.org/10.1016/j.proeng.2017.07.187
http://doi.org/10.3389/fenvs.2020.560237
http://doi.org/10.1088/1755-1315/18/1/012027
http://doi.org/10.3390/rs10081257
http://doi.org/10.1016/j.adhoc.2022.102790
http://doi.org/10.5194/isprs-archives-XLI-B1-765-2016


Remote Sens. 2023, 15, 84 17 of 18

59. Madurapperuma, B.; Lamping, J.; McDermott, M.; Murphy, B.; McFarland, J.; Deyoung, K.; Smith, C.; MacAdam, S.; Monroe, S.;
Corro, L.; et al. Factors Influencing Movement of the Manila Dunes and Its Impact on Establishing Non-Native Species. Remote
Sens. 2020, 12, 1536. [CrossRef]

60. Rossiter, T.; Furey, T.; McCarthy, T.; Stengel, D.B. Application of Multiplatform, Multispectral Remote Sensors for Mapping
Intertidal Macroalgae: A Comparative Approach. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 30, 1595–1612. [CrossRef]

61. Casella, E.; Collin, A.; Harris, D.; Ferse, S.; Bejarano, S.; Parravicini, V.; Hench, J.L.; Rovere, A. Mapping Coral Reefs Using
Consumer-Grade Drones and Structure from Motion Photogrammetry Techniques. Coral Reefs 2017, 36, 269–275. [CrossRef]

62. Nahirnick, N.K.; Reshitnyk, L.; Campbell, M.; Hessing-Lewis, M.; Costa, M.; Yakimishyn, J.; Lee, L. Mapping with Confidence;
Delineating Seagrass Habitats Using Unoccupied Aerial Systems (UAS). Remote Sens. Ecol. Conserv. 2019, 5, 121–135. [CrossRef]

63. Rossi, L.; Mammi, I.; Pelliccia, F. UAV-Derived Multispectral Bathymetry. Remote Sens. 2020, 12, 3897. [CrossRef]
64. Gonçalves, G.; Andriolo, U.; Pinto, L.; Duarte, D. Mapping Marine Litter with Unmanned Aerial Systems: A Showcase

Comparison among Manual Image Screening and Machine Learning Techniques. Mar. Pollut. Bull. 2020, 155, 111158. [CrossRef]
[PubMed]

65. Gonçalves, G.; Andriolo, U.; Gonçalves, L.M.S.; Sobral, P.; Bessa, F. Beach Litter Survey by Drones: Mini-Review and Discussion
of a Potential Standardization. Environ. Pollut. 2022, 315, 120370. [CrossRef] [PubMed]

66. Gonçalves, G.; Andriolo, U.; Pinto, L.; Bessa, F. Detecting marine litter on sandy beaches by using UAS-based orthophotos and
machine learning methods. In Proceedings of the WORKSHOP Standardization of Procedures in Using UAS for Environmental
Monitoring, Coimbra, Portugal, 6 November 2019. [CrossRef]

67. Andriolo, U.; Gonçalves, G.; Rangel-Buitrago, N.; Paterni, M.; Bessa, F.; Gonçalves, L.M.S.; Sobral, P.; Bini, M.; Duarte, D.;
Fontán-Bouzas, Á.; et al. Drones for Litter Mapping: An Inter-Operator Concordance Test in Marking Beached Items on Aerial
Images. Mar. Pollut. Bull. 2021, 169, 112542. [CrossRef] [PubMed]

68. Gonçalves, G.; Andriolo, U.; Gonçalves, L.; Sobral, P.; Bessa, F. Quantifying Marine Macro Litter Abundance on a Sandy Beach
Using Unmanned Aerial Systems and Object-Oriented Machine Learning Methods. Remote Sens. 2020, 12, 2599. [CrossRef]

69. Bao, Z.; Sha, J.; Li, X.; Hanchiso, T.; Shifaw, E. Monitoring of Beach Litter by Automatic Interpretation of Unmanned Aerial Vehicle
Images Using the Segmentation Threshold Method. Mar. Pollut. Bull. 2018, 137, 388–398. [CrossRef]

70. Merlino, S.; Paterni, M.; Locritani, M.; Andriolo, U.; Gonçalves, G.; Massetti, L. Citizen Science for Marine Litter Detection and
Classification on Unmanned Aerial Vehicle Images. Water 2021, 13, 3349. [CrossRef]

71. Merlino, S.; Paterni, M.; Berton, A.; Massetti, L. Unmanned Aerial Vehicles for Debris Survey in Coastal Areas: Long-Term
Monitoring Programme to Study Spatial and Temporal Accumulation of the Dynamics of Beached Marine Litter. Remote Sens.
2020, 12, 1260. [CrossRef]

72. Deidun, A.; Gauci, A.; Lagorio, S.; Galgani, F. Optimising Beached Litter Monitoring Protocols through Aerial Imagery. Mar.
Pollut. Bull. 2018, 131, 212–217. [CrossRef]

73. Andriolo, U.; Garcia-Garin, O.; Vighi, M.; Borrell, A.; Gonçalves, G. Beached and Floating Litter Surveys by Unmanned Aerial
Vehicles: Operational Analogies and Differences. Remote Sens. 2022, 14, 1336. [CrossRef]

74. Fallati, L.; Polidori, A.; Salvatore, C.; Saponari, L.; Savini, A.; Galli, P. Anthropogenic Marine Debris Assessment with Unmanned
Aerial Vehicle Imagery and Deep Learning: A Case Study along the Beaches of the Republic of Maldives. Sci. Total Environ. 2019,
693, 133581. [CrossRef] [PubMed]

75. Kako, S.; Morita, S.; Taneda, T. Estimation of Plastic Marine Debris Volumes on Beaches Using Unmanned Aerial Vehicles and
Image Processing Based on Deep Learning. Mar. Pollut. Bull. 2020, 155, 111127. [CrossRef] [PubMed]

76. Garcia-Garin, O.; Borrell, A.; Aguilar, A.; Cardona, L.; Vighi, M. Floating Marine Macro-Litter in the North Western Mediterranean
Sea: Results from a Combined Monitoring Approach. Mar. Pollut. Bull. 2020, 159, 111467. [CrossRef] [PubMed]

77. Escobar-Sánchez, G.; Markfort, G.; Berghald, M.; Ritzenhofen, L.; Schernewski, G. Aerial and Underwater Drones for Marine
Litter Monitoring in Shallow Coastal Waters: Factors Influencing Item Detection and Cost-Efficiency. Environ. Monit. Assess. 2022,
194, 863. [CrossRef]

78. Kataoka, T.; Nihei, Y. Quantification of Floating Riverine Macro-Debris Transport Using an Image Processing Approach. Sci. Rep.
2020, 10, 2198. [CrossRef]

79. Jakovljevic, G.; Govedarica, M.; Alvarez-Taboada, F. A Deep Learning Model for Automatic Plastic Mapping Using Unmanned
Aerial Vehicle (UAV) Data. Remote Sens. 2020, 12, 1515. [CrossRef]

80. Clapuyt, F.; Vanacker, V.; Van Oost, K. Reproducibility of UAV-Based Earth Topography Reconstructions Based on Structure-from-
Motion Algorithms. Geomorphology 2016, 260, 4–15. [CrossRef]

81. Nex, F.; Remondino, F. UAV for 3D Mapping Applications: A Review. Appl. Geomat. 2014, 6, 1–15. [CrossRef]
82. Rusnák, M.; Sládek, J.; Kidová, A.; Lehotský, M. Template for High-Resolution River Landscape Mapping Using UAV Technology.

Measurement 2018, 115, 139–151. [CrossRef]
83. Joyce, K.E.; Duce, S.; Leahy, S.M.; Leon, J.; Maier, S.W. Principles and Practice of Acquiring Drone-Based Image Data in Marine

Environments. Mar. Freshw. Res. 2019, 70, 952. [CrossRef]
84. Xu, C.; Liao, X.; Tan, J.; Ye, H.; Lu, H. Recent Research Progress of Unmanned Aerial Vehicle Regulation Policies and Technologies

in Urban Low Altitude. IEEE Access 2020, 8, 74175–74194. [CrossRef]
85. Stöcker, C.; Bennett, R.; Nex, F.; Gerke, M.; Zevenbergen, J. Review of the Current State of UAV Regulations. Remote Sens. 2017, 9,

459. [CrossRef]

http://doi.org/10.3390/rs12101536
http://doi.org/10.1002/aqc.3357
http://doi.org/10.1007/s00338-016-1522-0
http://doi.org/10.1002/rse2.98
http://doi.org/10.3390/rs12233897
http://doi.org/10.1016/j.marpolbul.2020.111158
http://www.ncbi.nlm.nih.gov/pubmed/32310099
http://doi.org/10.1016/j.envpol.2022.120370
http://www.ncbi.nlm.nih.gov/pubmed/36216177
http://doi.org/10.13140/RG.2.2.10232.39682
http://doi.org/10.1016/j.marpolbul.2021.112542
http://www.ncbi.nlm.nih.gov/pubmed/34052588
http://doi.org/10.3390/rs12162599
http://doi.org/10.1016/j.marpolbul.2018.08.009
http://doi.org/10.3390/w13233349
http://doi.org/10.3390/rs12081260
http://doi.org/10.1016/j.marpolbul.2018.04.033
http://doi.org/10.3390/rs14061336
http://doi.org/10.1016/j.scitotenv.2019.133581
http://www.ncbi.nlm.nih.gov/pubmed/31376751
http://doi.org/10.1016/j.marpolbul.2020.111127
http://www.ncbi.nlm.nih.gov/pubmed/32469764
http://doi.org/10.1016/j.marpolbul.2020.111467
http://www.ncbi.nlm.nih.gov/pubmed/32692674
http://doi.org/10.1007/s10661-022-10519-5
http://doi.org/10.1038/s41598-020-59201-1
http://doi.org/10.3390/rs12091515
http://doi.org/10.1016/j.geomorph.2015.05.011
http://doi.org/10.1007/s12518-013-0120-x
http://doi.org/10.1016/j.measurement.2017.10.023
http://doi.org/10.1071/MF17380
http://doi.org/10.1109/ACCESS.2020.2987622
http://doi.org/10.3390/rs9050459


Remote Sens. 2023, 15, 84 18 of 18

86. Felis, J.J.; Kelsey, E.C.; Adams, J.; Stenske, J.G.; White, L.M. Population estimates for selected breeding seabirds at Kı̄lauea Point
National Wildlife Refuge, Kaua‘i, in 2019. U.S. Geological Survey Data Series. 2020, 1130, 32. [CrossRef]

87. Borghgraef, A.; Barnich, O.; Lapierre, F.; Van Droogenbroeck, M.; Philips, W.; Acheroy, M. An Evaluation of Pixel-Based Methods
for the Detection of Floating Objects on the Sea Surface. EURASIP J. Adv. Signal Process. 2010, 2010, 978451. [CrossRef]

88. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted residuals and linear bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520. [CrossRef]

89. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multiBox detector. In Proceedings of
the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M.,
Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37. [CrossRef]

90. Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
91. Brown, J.B. Classifiers and Their Metrics Quantified. Mol. Inform. 2018, 37, 1700127. [CrossRef]
92. Gao, M.; Hugenholtz, C.H.; Fox, T.A.; Kucharczyk, M.; Barchyn, T.E.; Nesbit, P.R. Weather Constraints on Global Drone Flyability.

Sci. Rep. 2021, 11, 12092. [CrossRef]
93. Leira, F.S.; Johansen, T.A.; Fossen, T.I. Automatic detection, classification and tracking of objects in the ocean surface from UAVs

using a thermal camera. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015; pp. 1–10.
94. Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification

and Considerations of Use. Remote Sens. 2012, 4, 1671–1692. [CrossRef]
95. Doukari, M.; Batsaris, M.; Topouzelis, K. UASea: A Data Acquisition Toolbox for Improving Marine Habitat Mapping. Drones

2021, 5, 73. [CrossRef]
96. Goddijn-Murphy, L.; Dufaur, J. Proof of Concept for a Model of Light Reflectance of Plastics Floating on Natural Waters. Mar.

Pollut. Bull. 2018, 135, 1145–1157. [CrossRef] [PubMed]
97. Lee, Z.; Ahn, Y.-H.; Mobley, C.; Arnone, R. Removal of Surface-Reflected Light for the Measurement of Remote-Sensing Reflectance

from an above-Surface Platform. Opt. Express 2010, 18, 26313. [CrossRef] [PubMed]
98. Maharjan, N.; Miyazaki, H.; Pati, B.M.; Dailey, M.N.; Shrestha, S.; Nakamura, T. Detection of River Plastic Using UAV Sensor

Data and Deep Learning. Remote Sens. 2022, 14, 3049. [CrossRef]
99. Su, J.; Liu, C.; Coombes, M.; Hu, X.; Wang, C.; Xu, X.; Li, Q.; Guo, L.; Chen, W.-H. Wheat Yellow Rust Monitoring by Learning

from Multispectral UAV Aerial Imagery. Comput. Electron. Agric. 2018, 155, 157–166. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3133/ds1130
http://doi.org/10.1155/2010/978451
http://doi.org/10.48550/arXiv.1801.04381
http://doi.org/10.1007/978-3-319-46448-0_2
http://doi.org/10.1186/s40537-019-0197-0
http://doi.org/10.1002/minf.201700127
http://doi.org/10.1038/s41598-021-91325-w
http://doi.org/10.3390/rs4061671
http://doi.org/10.3390/drones5030073
http://doi.org/10.1016/j.marpolbul.2018.08.044
http://www.ncbi.nlm.nih.gov/pubmed/30301013
http://doi.org/10.1364/OE.18.026313
http://www.ncbi.nlm.nih.gov/pubmed/21164981
http://doi.org/10.3390/rs14133049
http://doi.org/10.1016/j.compag.2018.10.017

	Introduction 
	Materials and Methods 
	Data Collection 
	Comparison of Analytical Procedures 
	Visual Inspection and Manual Classification 
	Color- and Pixel-Based Detection Analysis 
	Machine Learning for Automated Object Detection and Classification 


	Results 
	Performance Assessment 
	Comparing Processing Times and Requirements 

	Discussion 
	Conclusions 
	References

