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Abstract: Polarimetric synthetic aperture radar (PolSAR) images contain useful information, which
can lead to extensive land cover interpretation and a variety of output products. In contrast to
optical imagery, there are several challenges in extracting beneficial features from PolSAR data. Deep
learning (DL) methods can provide solutions to address PolSAR feature extraction challenges. The
convolutional neural networks (CNNs) and graph convolutional networks (GCNs) can drive PolSAR
image characteristics by deploying kernel abilities in considering neighborhood (local) information
and graphs in considering long-range similarities. A novel dual-branch fusion of CNN and mini-
GCN is proposed in this study for PolSAR image classification. To fully utilize the PolSAR image
capacity, different spatial-based and polarimetric-based features are incorporated into CNN and
mini-GCN branches of the proposed model. The performance of the proposed method is verified by
comparing the classification results to multiple state-of-the-art approaches on the airborne synthetic
aperture radar (AIRSAR) dataset of Flevoland and San Francisco. The proposed approach showed
1.3% and 2.7% improvements in overall accuracy compared to conventional methods with these
AIRSAR datasets. Meanwhile, it enhanced its one-branch version by 0.73% and 1.82%. Analyses over
Flevoland data further indicated the effectiveness of the dual-branch model using varied training
sampling ratios, leading to a promising overall accuracy of 99.9% with a 10% sampling ratio.

Keywords: classification; convolutional neural network (CNNs); dual-branch fusion; graph convolu-
tional networks (GCNs); PolSAR

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) has become of the utmost importance
in land cover discrimination methods, providing extensive information about land features
using fully polarized data, which are collected in almost all weather conditions, as well as
day and night. This polarimetric information mainly considers features based on scattering
mechanisms and overlooks spatial information, unlike other remote sensing images (e.g.,
optical and hyperspectral images). Therefore, accessing both polarimetric and spatial
information from PolSAR images requires the extraction of additional features.

Several PolSAR feature extraction techniques have been developed and investigated
for classification methods [1–3]. Due to the complexity of full polarimetric SAR images,
features containing the most distinctive information are needed for different applications,
including classification and change detection. Statistical features [4,5], scattering infor-
mation [6], and target decomposition features [7–9] are the three main types of extracted
features from PolSAR image analysis. Traditional PolSAR image analysis solves the clas-
sification problem in a two-step process, including feature extraction and classification.
Accordingly, conventional PolSAR image classification methods, such as Wishart [10–12],
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decision tree [13,14], and support vector machine (SVM) [15,16], have been applied after
the feature extraction step. The main disadvantage of these methods is that the feature
engineering step is a time-consuming task and decreases the classification accuracy when
high-correlated features or features with low information content are extracted in this
step. In contrast to conventional PolSAR image classification algorithms, deep learn-
ing (DL) methods remove the feature engineering task from the processing steps. As
such, the capability of different DL algorithms, such as a convolutional neural network
(CNN) [17], autoencoder (AE) [18,19], and deep belief network (DBN) [20], were recently
investigated for PolSAR image classification. Among these advanced models, deep CNNs
have achieved remarkable success in PolSAR image classification [21,22]. As reported in
the literature, utilizing a single convolutional kernel of CNN and single-channel CNN does
not extract sufficient information for PolSAR image classification [23]. Therefore, several
networks have been developed based on this algorithm with versatile structures and Pol-
SAR features [24,25]. For example, Chen and Tao [25] derived several polarimetric features,
including entropy (H), mean alpha angle, anisotropy from a decomposition technique,
total backscattering power (SPAN), and two null angles for supervised image classification
using the deep convolutional neural network (DCNN). Zhang, et al. [26] also proposed
complex-valued CNN (CV-CNN) for PolSAR data processing by extending each element of
real-valued CNN (RV-CNN), including feed-forward and backpropagation process, to the
complex domain, wherein coherency matrix values were considered as complex inputs for
the network. In order to benefit from rich spatial and polarimetric features of PolSAR data,
multibranch CNNs have been proposed [27–29]. These networks contain independent
CNNs for distinguishing different classes. In another study, Gao, et al. [27] developed
a dual-branch CNN, which utilizes six-channel polarimetric and three-channel spatial
features (Pauli RGB (red, green, blue)) as two independent inputs of the proposed model.
Accordingly, a multichannel fusion of CNNs based on different scattering mechanisms was
designated [28], in which each CNN obtains one of the Freeman decomposition elements
(odd bounce, double-bounce, and volume scattering), and, together with a fusion feature,
they passed through fully connected (FC) layers.

Graph-based DL methods have attracted great attention among remote sensing re-
searchers for image classification. Graph convolutional networks (GCNs) [30] consider the
relation between samples over the whole image rather than the local kernels of CNNs. In
the case of PolSAR classification, there is a limited number of studies which have used
GCNs. In contrast, GCNs have been widely utilized in hyperspectral image (HSI) classifi-
cation [31–34]. For instance, He, et al. [35] presented supervised dual GCN (DGCN) for
HSI classification; one of the GCN extracts features in and among samples, while the other
utilizes label distribution learning. One of the main drawbacks of GCNs is that they have a
high computation cost by considering the relation between all samples, and only full-batch
learning is permitted (unlike CNNs). To alleviate this limitation, Hong, et al. [36] introduced
miniGCNs that train networks by applying minibatch fashion. Furthermore, there are
several pioneering studies employing GCNs in the field of remote sensing. Cai and Wei [37]
proposed a cross-attention mechanism and GCN integration approach to help the model
select the most important characteristics for accurate remote sensing image classification.
Du, et al. [38] used a multimodal graph network to provide a feature extraction–fusion
network for multisource remote sensing data classification in an unsupervised manner and
obtained satisfactory classification performance.

In order to exploit PolSAR images’ spatial and polarimetric features, a dual-branch
fusion of miniGCN and CNN is proposed in this study. Accordingly, seven channels of
spatial features of the PolSAR image are obtained from Pauli RGB and four-component
Yamaguchi [39], which are fed into CNN, owing to its promising ability to extract spatial
features. Meanwhile, six polarimetric features of PolSAR images, utilized in [16], would be
the inputs of miniGCN to depict relationships among polarimetric features. In the end, both
spatial and polarimetric features would be concatenated and passed through FC layers. As
such, the main contributions of the current study can be highlighted as follows:
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(1) Considering different PolSAR image characteristics, we attempt to derive network-
specific features by dividing them into spatial and polarimetric categories. Hence,
Pauli RGB and Yamaguchi decomposition of the PolSAR image present spatial feature
channels, and six roll-invariant and hidden polarimetric features are polarimetric
features channels.

(2) The novel method of supervised batchwise version of GCN, known as miniGCN, is
investigated as a classifier for PolSAR image classification.

(3) Dual-branch fusion of miniGCN and CNN is proposed as a PolSAR classifier. Thus,
each miniGCN and CNN is fed by the features with specific characteristics correspond-
ing to its structure. Particularly, miniGCN and CNN extract spatial and polarimetric
features, respectively. Subsequently, their integrated features are followed by two FC
layers to determine PolSAR image classes.

The remainder of this paper is organized as follows: Section 2 presents the background
of CNN and miniGCN, including an overview of the basics of CNNs, GCN, and miniGCN.
In Section 3, the proposed method is introduced by presenting extracted PolSAR features
and the architecture of the dual-branch fusion network. A comprehensive analysis of
the proposed network is conducted on different PolSAR benchmark datasets in Section 4.
Finally, Section 5 concludes the paper’s main remarks.

2. Theory and Basics of CNN and miniGCN

This study proposes a novel dual-branch deep learning method based on the CNN and
miniGCN architectures for PolSAR image classification. This section provides an overview
of the fundamentals and theorems of the networks mentioned above.

2.1. CNNs Basics and Overview

A CNN is typically comprised of an input layer, convolutional layers, pooling layers,
FC layers, and an output layer. The input layer firstly receives input features of the image.
Then, convolutional layers extract input features using convolutional kernels (Figure 1).
These kernels work based on considering neighboring pixels. Thus, spatially correlated
pixels that are located in close range (2 × 2 in Figure 1) would be considered in the
convolutional kernel. This capability improves the ability of the network to model spatially
related features.
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Deep CNNs utilize multiple convolutional layers, with the early layers extracting
low-level data and the deeper ones detecting high-level features. The convolutional layer is
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usually followed by a pooling layer, which intends to reduce the output dimension of the
preceding layer. Average- and maxpooling are the most common pooling algorithms that
extract average and minimum pooling region values, respectively. A fully connected (FC)
layer is usually employed after the last convolutional layer. The FC layer reshapes its input
into a one-dimensional feature vector that can then be sent to the output layer. Finally, the
retrieved features are mapped to their corresponding classes in the output layer.

2.2. Graph and miniGCN

(1) Graph convolutional network (GCN): The GCN [30] works based on defining
graphs and relationships among samples in a non-Euclidean space (Figure 2). This provides
a helpful tool for considering medium- and long-range relations between pixels rather
than only considering short-range relations like convolutional networks. In other words,
instead of considering spatial correlation, feature-based relations are considered through
an adjacency matrix.
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Figure 2. General structure of a graph.

A graph can be defined as G(V, E), where V and E donate a set of vertices and
edges, respectively. Vertices indicate input data samples, while edges represent similarities
between any two vertices. The edges are defined based on the adjacency matrix (A). It is
a symmetric N × N matrix, where N is the number of pixels (nodes) and represents the
relationship between each pair of pixels by weights between 0 and 1. Radial basis function
(RBF) can be used to calculate the adjacency matrix.

Ai,j= exp (
‖xi − xj‖2

σ2 ) (1)

where xi and xj are the feature vector corresponding to vertices vi and vj and σ is the control
parameter of the RBF. Accordingly, the normalized graph Laplacian matrix L is represented
using diagonal matrix D as follows [40]:

Di,j= ∑ j Ai,j (2)

L = I − D−1/2 A D−1/2 (3)

where I is an identity matrix. Spectral decomposition on L can be performed on L as follows:
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L = U Λ UT (4)

where U and Λ are orthogonal eigenvector matrix and diagonal eigenvalues of L, which is
the basis function of Fourier transform of feature vector f of each node. The convolution on
a graph G can be defined as

G[ f ∗ gθ ] = U gθ UT f (5)

where gθ(Λ) is a filter in the Fourier domain that represents the function of eigenvalues
(Λ) of L considering the variable θ. The Kth order truncated expansion of Chebyshev
polynomials is used to alleviate the computational cost of convolutional on a graph [41].

G[ f ∗ gθ ] ≈ ∑ K
k=0θ′k Tk

(
L̃
)

f (6)

where θ′k is the vector of Chebyshev coefficients and Tk donates Chebyshev polynomials.
Normalized L̃ is scaled as L̃ = 2 L /λmax − I. Eventually, Equation (6) can be simplified by
considering K = 1 and λmax = 2:

G[ f ∗ gθ ] ≈ θ
(

I + D−1/2 A D−1/2
)

f . (7)

Regarding Equation (7), the propagation rule for GCNs is defined as follows:

Hl+1 = h
(

D̃−1/2 Ã D̃−1/2 Hl wl +bl
)

(8)

where adjacency matrix A and D are renormalized as Ã = A + I and D̃i,j = ∑ j Ãi,j. Mean-
while, wl, bl, and h() are weight matrix, bias matrix, and activation function. The output of
lth and (l + 1)th layers are also indicated by Hl and Hl+1.

(2) miniGCN overview: Because of the size of the adjacency matrix, GCNs have a
substantial computational cost for large graphs. miniGCN [36], which takes advantage of
minibatch processing in a batchwise fashion (similar to CNNs), is a feasible solution to the
high computational cost issue. For the construction of minibatches, a random node sampler
of size M is generated from a full graph G with N nodes on the labeled set (M << N)
(Figure 3). In each epoch, the sampler is first applied to the graph until all nodes are
sampled, resulting in the generation of subgraphs (Gs):
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G = {Gs = (Vs, Es)|s = 1, . . . , dN/Me} (9)

where de is ceiling operator. Consequently, the miniGCN update rule for one batch can be
represented as follows:

H̃l+1
s = h

(
D̃−1/2

s Ãs D̃−1/2
s Hl

s wl + bl
s

)
(10)

where s denotes the sth subgraph as well as the sth batch. The final output in the (l + 1)th
layer is calculated.

Hl+1 =
[

H̃l+1
1 , . . . , H̃l+1

s , . . . , H̃l+1
dN/Me

]
(11)

The primary difference between this batch procedure and that used in CNNs is that
the adjacency matrix of each batch must be reformed after each sampling. The miniGCN
model can consider the relationship between pixels using an adjacency matrix, regardless
of their distance. While selecting random batchwise samples in each epoch decreases
computational cost, it also makes the model compatible with batchwise CNN models and
can be integrated with them.

3. The Proposed Method
3.1. PolSAR Feature Extraction

The acquired feature extraction techniques for feeding the proposed network’s spatial
and polarimetric channels are defined in the following subsections. As spatial characteris-
tics, Pauli RGB and four-component Yamaguchi decomposition algorithms are defined first.
Then, roll-invariant and hidden polarimetric features are explained.

(1) Pauli and decomposition features: The Pauli RGB image is a decomposition ap-
proach produced based on scattering matrix S for visualizing PolSAR imagery. The scatter-
ing matrix for a full polarized SAR image is defined as follows:

S =

[
SHH SHV
SVH SVV

]
(12)

The scattering matrix is symmetrical (SHV = SVH) in case of satisfying the reciprocity
theorem. It can be represented in a way to highlight specific scattering mechanisms:

k =
(

1/
√

2
)
[SHH + SVV SHH − SVV 2SHV ]

T = [a1 a2 a3]
T (13)

Accordingly, red, green, and blue bands of a false-color Pauli RGB image would be
deemed |a2|2 (SHH − SVV), |a3|2 (2SHV), and |a1|2 (SHH + SVV). This pseudo-colored
image is more human-desirable and in close harmony with natural colors [42], making
it easier to consider spatial characteristics such as other colored images. The Coherency
matrix T3 can be obtained as follows:

T3 = (1/L) ∑ L
i=1kikH

i = [T11 T22 T33] (14)

where H donates the complex conjugate transpose, ki is the ith sample of Pauli scattering
vector (k), and L indicates the number of looks.

Four-component Yamaguchi decomposition technique decomposes T3 into the four
scattering powers of surface (Ps), double-bounce (Pd), volume (Pv), and helix scattering
(Ph) [39]. This decomposition is valuable for characterizing urban man-made targets, owing
to the helix scattering component that emerges in heterogenous areas [9].

(2) Polarimetric descriptors: To consider the polarimetric characteristics of PolSAR im-
ages, roll-invariant and hidden features [25] are deployed. As a result, total backscattering
power SPAN is defined as follows:
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SPAN = |SHH|2 + 2|SHV|2 + |SVV|2 (15)

The coherency matrix can be decomposed based on eigenvalues and eigenvectors, as
follows:

T3 = U3

λ1 0 0
0 λ2 0
0 0 λ3

U3H , λ1 ≥ λ2 ≥ λ3 (16)

where λ1, λ2, and λ3 are eigenvalues and U3 comprises eigenvectors of the coherency
matrix. Accordingly, Cloude–Pottier decomposition components [43], including entropy
(H), mean alpha angle (α), and anisotropy (A) are derived.

Pi =
λi

∑3
n=1 λn

, i = 1, 2, 3 (17)

H = −∑ 3
n=1 pi log3 pi (18)

α= ∑ 3
i=1 piαi (19)

A =
λ2 − λ3

λ2 + λ3
(20)

In order to leverage the rotation characteristics of PolSAR image, Chen, et al. [44]
proposed a method for extending polarimetric features to the rotation domain along
the radar line of sight and, accordingly, derived the null angle θnull. The null angles of
θnull_Re[T12] and θnull_Im[T12] are highly sensitive to various land covers, which offers a
lot of potential for PolSAR classification. These two null angles are presented as follows:

θnull_Re[T12] = − 1
2 Angle{Re[T13] + j Re[T12]}

= 1
2 Angle{Re[〈(SHH + SVV) S∗HV〉]
+j 1

2 (〈|SVV |2 − |SHH |2〉)}
(21)

θnull_Im[T12] = − 1
2 Angle{Im[T13] + j Im[T12]}

= 1
2 Angle{Im[〈(SHH + SVV) S∗HV〉]

+j Im[〈SHHS∗VV〉]}
(22)

where Re[] and Im[] get real and imaginary parts, respectively. In contrast, The Angle []
operator acquires phase in complex axis and range of [−π, π].

The six features of SPAN, H, α, A, θnull_Re[T12], and θnull_Im[T12] are considered for
representing and modeling polarimetric characteristics of PolSAR images.

3.2. Dual-Branch FuNet Architecture

In this study, a dual-branch fusion of miniGCN and CNN networks (FuNet) is pro-
posed for PolSAR image classification, and the framework is depicted in Figure 4. The
spatial and polarimetric features of the PolSAR image are inputs for the proposed model.
These two sets of PolSAR features are then fed to the CNN and miniGCN, which can extract
additional information. The CNN branch leverages the contextual information extraction
ability of convolutional kernels, and the miniGCN has the ability to find similarities (such
as similarities in polarimetric features) with graphs.
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The combination of these two models would help the network make the most of
polarimetric data. Therefore, rather than utilizing only the spatial potential of convolutional
networks in either one- or two-branch architectures, polarimetric features are deployed
in a dual-branch architecture using miniGCN and CNN models. It should be noted that
GCN models cannot be fused with CNNs due to their pixel-based structure. As a result,
the so-called miniGCN is used to obtain GCN capability in a batchwise strategy.

The proposed network uses spatial and polarimetric features of the PolSAR image as
inputs to the CNN and miniGCN branches, respectively. The miniGCN branch consists
of a batchwise GCN block. This block is fed by batchwise pixels and an adjacency matrix,
which represent nodes and edges of the graph, respectively. In other words, polarimetric
features are considered nodes, and the adjacency matrix indicates the relationship between
the nodes (edges).

Meanwhile, the CNN branch comprises three two-dimensional convolutional layers
and an FC layer. The first two convolutions are followed by maxpooling (pooling size of
2 and stride 2). The FC layer aims to reshape the output of the last convolution to a one-
dimensional vector to be concatenated with miniGCN output. The fused output will then
be fed to two FC layers to further deepen the network and prepare concatenated features
to pass through a Softmax classifier and perform classification. Moreover, a dropout with a
0.5 ratio is applied to the last FC layer to mitigate the overfitting effect.

4. Experiments
4.1. Data Description

The proposed method for PolSAR classification is evaluated in this section, adopting
two airborne synthetic aperture radar (AIRSAR) benchmark datasets. Details of the utilized
dataset are described as follows:

(1) AIRSAR Flevoland data: The Flevoland L-band full polarimetric dataset was
acquired by the NASA/JPL AIRSAR platform in 1989 over Flevoland, Netherland. The
image size is 750 × 1024 pixels, with 157,296 labeled pixels representing 15 different land
cover categories in the ground truth (GT) retrieved from Zhang, et al. [26]. Table 1 lists
these land cover categories’ names and sizes (for train and whole GT samples). Figure 5a,b
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show the Pauli RGB pseudo-color image and GT. The image has a resolution of 6.6 meters
(m) in range and 12.1 m in the azimuth direction.

Table 1. Details of classes and training samples for AIRSAR Flevoland data (TR represents training
ratio).

Class Number Class Name Train Number Sample Number TR (%)

1 Stem beans 62 6103 1.015894
2 Peas 92 9111 1.009768
3 Forest 150 14,944 1.003747
4 Lucerne 95 9477 1.002427
5 Wheat 173 17,283 1.000984
6 Beet 101 10,050 1.004975
7 Potatoes 153 15,292 1.000523
8 Bare soil 31 3078 1.007147
9 Grass 63 6269 1.004945
10 Rapeseed 127 12,690 1.000788
11 Barley 72 7156 1.006149
12 Wheat2 106 10,591 1.00085
13 Wheat3 214 21,300 1.004695
14 Water 135 13,476 1.001781
15 Buildings 5 476 1.05042

All 1579 157,296 1.00384
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Figure 5. (a) Pauli RGB and (b) ground truth map of AIRSAR Flevoland data.

(2) AIRSAR San Francisco data: The San Francisco data also comprise an L-band full
polarimetric image captured by the AIRSAR platform in 1989 over San Francisco, USA.
The image has a resolution of 900 × 1024 pixels and 802,302 GT labeled pixels, with five
land cover categories. The GT is accessible from [45]. Details of GT categories’ names
and sizes (for train and whole sample) are compared in Table 2. Figure 6a,b represent the
San Francisco image’s Pauli RGB and GT. The spatial resolution of the image is 10 in both
directions.
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Table 2. Details of classes and training samples for AIRSAR San Francisco data (TR represents
training ratio).

Class Number Class Name Train Number Sample Number TR (%)

1 Bare soil 138 13,701 1.007226
2 Mountain 628 62,731 1.0011
3 Water 3296 329,566 1.000103
4 Urban 3428 342,795 1.000015
5 Vegetation 536 53,509 1.001701

All 8026 802,302 1.000371
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As a preprocessing step, a refined Lee filter with a 7 × 7 window size is applied to
both AIRSAR images to reduce the influence of speckle [46].

4.2. Experimental Design

In the current study, a patch-size of 15 × 15 is considered for CNN-based networks
since this patch size has been established as the optimal quantity for 2D-CNN classification
of AIRSAR datasets [27]. The training samples are randomly chosen from labeled data,
with a ratio of 1%. The network’s hyperparameters are as follows: the training epochs are
300, and the batch sizes are 64. Batch normalization is used with a momentum parameter
of 0.9. In addition, the base learning rate (LR) of 0.01 is considered. The LR is dynamically
updated every 50 epochs by multiplying the base LR by

√
(1 − iteration/(maximum

iteration)). In order to reduce overfitting, L2-norm regularization is obtained (e.g., 0.001).
The hyperparameters are set over a grid search. The architecture of the proposed network
is illustrated in Table 3. The input of the CNN branch is patchwise, represented by a
four-dimensional matrix with the size of N × 15× 15× 7, where N is the size of the PolSAR
image, 15 × 15 is the patch size, and 7 is the number of spatial features. The input size of
miniGCN for the six polarimetric features is N × 6. In addition, a N × N adjacency matrix
is considered in the graph model.
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Table 3. The architecture of the dual-branch FuNet.

Layer CNN miniGCN

Input 15 × 15 × 7 (Spatial feature) 6 Polarimetric feature

Block 1

2 × 2 Conv BN
BN Graph Conv

2 × 2 Maxpool BN
ReLU ReLU

Output size 8 × 8 × 30 120

Block 2

2 × 2 Conv -
BN -

2 × 2 Maxpool -
ReLU -

Output size 4 × 4 × 60 -

Block 3
2 × 2 Conv -

BN -
ReLU -

Output size 4 × 4 × 120 -

Fully connected
FC Encoder -

BN -
ReLU -

Output size 120 -

Fusion
FC Encoder

BN
ReLU

Output size 240

Output FC Encoder
Softmax

Output size Number of classes

Several state-of-the-art classification approaches, including support vector machine
(SVM), random forest (RF), 1D-CNN, 2D-CNN, miniGCN, and FuNet, are compared to
the proposed method (dual-branch FuNet). SVM with RBF kernel function, RF with 200
decision and 1D-CNN, with two convolutional layers with filter sizes of 120 (with ReLU)
and the number of classes (with Softmax), utilized classical classification methods. 2D-CNN
with an almost similar structure to [25] is acquired, with the exception of additional L2-
norm regularization (same as the proposed network), resulting in identical convolutional
blocks with the proposed network’s CNN branch. The utilized miniGCN comprises two
graph convolutional layers, the first of which has a size of 120 (similar to the miniGCN
branch of the proposed network), and the second one has the same size as the number of
classes, which is followed by a Softmax. The FuNet network design is similar to that of
the proposed dual-branch method, with polarimetric features given to both miniGCN and
CNN branches.

In order to evaluate and compare the performance of methods, overall accuracy (OA)
and kappa coefficient (K) are adopted.

4.3. Parameter Setting, Adjacency Matrix

The adjacency matrix significantly impacts the quality of the proposed method’s
miniGCN branch. As a result, optimum parameters for the construction of the adjacency
matrix, including the number of neighbors (K) and RBF function width (σ), are required.

A grid search was conducted on Flevoland data to identify the suitable parameters
using the miniGCN network (Figure 7). The overall accuracy of miniGCN varies substan-
tially over the search range. While K = 20 and σ = 0.5 yield the highest OA, the OAs are not
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stable near those values. The most stable outcomes are obtained using K = 10 and σ = 1. In
other words, the lowest standard deviations (SD) were 0.2% and 0.5%, at K = 10 and σ = 1,
respectively. SDs for different sets of parameters, in contrast, are not less than 1% and 0.7%
(for each K and σ). Eventually, (K = 10, σ = 1) is taken into consideration for the proposed
network classification.
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4.4. Effectiveness Evaluation

To indicate consistency of the proposed method, it was implemented five times, and
the average of the results were considered for further evaluation. The processing stage was
conducted using an 8 GB memory Intel Core i7-7500U processor. The training process for
300 epochs of the AIRSAR Flevoland dataset with 1% sampling ratio (1579 samples) was
1985 seconds.

The convergence of losses and accuracies of the dual-branch FuNet model for AIRSAR
Flevoland are shown in Figure 8. After 150 epochs, the loss of both training and test
sets become almost steady, indicating the effectiveness of the network’s training process.
Eventually, the training accuracy reaches 100%, while the test set becomes approximately
98%.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

  
(a) (b) 

Figure 8. (a) Accuracy and (b) loss curves of the dual-branch FuNet model. 

4.5. Experiments on AIRSAR Datasets 

The proposed dual-branch FuNet land cover classification results are compared to 

several state-of-the-art methods, including SVM, RF, 1D-CNN, 2D-CNN, miniGCN, and 

FuNet, over AIRSAR Flevoland and AIRSAR San Francisco. To establish a fair compari-

son, similar random samples (with 1% TR) are selected, and the average performance of 

each network’s five-time running is represented. 

In Figures 9 and 10, the proposed method’s classified maps are visually compared to 

the six state-of-the-art methods for the entire image and the labeled regions, demonstrat-

ing that the FuNet network and its dual-branch version produce significantly smoother 

and more satisfying results for both datasets. Furthermore, in the Flevoland case, classical 

methods and miniGCN classification maps are noisy and seem to be impacted by speckle, 

whereas networks using convolutional layers (including 2D-CNN, FuNet, and dual-

branch FuNet) produce smoother results. Similarly, in the case of the San Francisco data, 

classical approaches and miniGCN yield noisy and misclassified results, particularly in 

the mountain and urban areas.  

Figure 8. (a) Accuracy and (b) loss curves of the dual-branch FuNet model.

4.5. Experiments on AIRSAR Datasets

The proposed dual-branch FuNet land cover classification results are compared to
several state-of-the-art methods, including SVM, RF, 1D-CNN, 2D-CNN, miniGCN, and
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FuNet, over AIRSAR Flevoland and AIRSAR San Francisco. To establish a fair comparison,
similar random samples (with 1% TR) are selected, and the average performance of each
network’s five-time running is represented.

In Figures 9 and 10, the proposed method’s classified maps are visually compared to
the six state-of-the-art methods for the entire image and the labeled regions, demonstrating
that the FuNet network and its dual-branch version produce significantly smoother and
more satisfying results for both datasets. Furthermore, in the Flevoland case, classical
methods and miniGCN classification maps are noisy and seem to be impacted by speckle,
whereas networks using convolutional layers (including 2D-CNN, FuNet, and dual-branch
FuNet) produce smoother results. Similarly, in the case of the San Francisco data, classical
approaches and miniGCN yield noisy and misclassified results, particularly in the mountain
and urban areas.
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(e1) miniGCN, (f1) FuNet, and (g1) dual-branch FuNet. (a2)–(g2) Masked results according to the
ground-truth of (a1)–(g1).
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Figure 10. AIRSAR San Francisco classification maps of (a1) SVM, (b1) RF, (c1) 1D-CNN, (d1) 2D-
CNN, (e1) miniGCN, (f1) FuNet, and (g1) dual-branch FuNet. (a2)–(g2) Masked results according to
the ground-truth of (a1)–(g1).

Per-class OA, overall OA, and kappa coefficient for the methods mentioned above are
compared to the proposed one in Tables 4 and 5. It can be observed that classical methods
of SVM, RF, and 1D-CNN have performed almost similarly, attaining OAs of 78–80% and
approximately 91% for Flevoland and San Francisco, respectively. Meanwhile, the 2D-CNN
achieved high OA and K, benefiting from its potential to extract 2D features and the use of
neighboring pixels’ information. Accordingly, it reached the highest OA for bare soil and
grass classes in the Flevoland dataset.
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Table 4. Detailed classification OAs and K of different algorithms compared to the proposed method
on AIRSAR Flevoland. Bold numbers indicate the highest accuracy in each row.

Classes Models

Name SVM RF 1D-CNN 2D-CNN miniGCN FuNet Dual-Branch FuNet

Stem beans 80.95 80.90 79.59 99.47 66.33 99.47 99.35
Peas 77.26 76.22 77.78 97.54 83.14 96.74 97.62

Forest 77.13 85.36 76.65 96.69 96.62 96.43 98.33
Lucerne 83.23 84.56 81.28 97.11 81.12 97.35 94.54
Wheat 71.07 72.36 73.70 93.12 63.76 95.20 98.85
Beet 77.80 79.85 83.08 94.34 71.39 94.18 98.05

Potatoes 72.42 72.06 76.19 93.34 49.38 97.03 97.02
Bare soil 66.26 68.00 81.29 100.00 56.58 100.00 94.58

Grass 69.34 70.38 71.87 96.46 65.19 95.97 94.25
Rapeseed 74.82 71.69 74.31 94.98 58.13 95.52 97.48

Barley 70.99 76.96 78.67 98.09 83.54 98.90 97.52
Wheat2 71.11 69.38 71.71 96.73 42.84 97.15 97.47
Wheat3 90.18 89.64 89.86 99.67 78.32 99.21 99.75
Water 96.45 96.78 92.93 99.00 99.91 99.03 98.94

Buildings 65.82 68.79 77.28 80.68 83.86 86.20 91.93

OA (%) 78.57 79.55 79.81 96.54 72.32 97.11 97.84
K (%) 76.57 77.64 77.94 96.22 69.86 96.84 97.64

Table 5. Detailed classification OAs and K of different algorithms compared to the proposed method
on AIRSAR San Francisco. Bold numbers indicate the highest accuracy in each row.

Classes Models

Name SVM RF 1D-CNN 2D-CNN miniGCN FuNet Dual-Branch FuNet

Bare soil 40.87 45.60 44.21 74.09 50.66 76.21 88.76
Mountain 73.10 76.32 73.92 96.25 82.98 95.92 97.38

Water 98.98 98.90 98.95 99.39 99.06 99.49 99.40
Urban 94.88 94.46 94.92 94.93 48.36 96.80 98.68

Vegetation 55.84 57.53 57.45 78.07 63.74 78.53 89.36

OA (%) 91.33 91.57 91.57 95.39 72.95 96.27 98.09
K (%) 86.22 86.65 86.62 92.79 62.05 94.14 97.00

The miniGCN, which is powered by the graph’s long-range similarity detection ability,
showed overall poor performance compared to the classical networks. The reason for this
performance is graph edges or adjacency matrix, which connects pixels based on their
similarities in input features rather than target classes. Therefore, in classes such as urban
areas in the AIRSAR San Francisco dataset that contain mixed pixels (such as vegetation
coverage), the output is affected by the similarities considered in the adjacency matrix. In
contrast, in classes with fewer mixed pixels (such as building in Flevoland), even with a
small number of training samples (five for the building class), the miniGCN performed
well. It also achieved the highest OA in the water class. Furthermore, in the case of the San
Francisco image, the miniGCN surpasses classical approaches (except in urban class).

The FuNet model outperforms the abovementioned methods by combining the con-
volutional advantage of 2D-CNN with the ability of graphs to consider the long-range
relationships. Using both polarimetric and spatial features of PolSAR images in the dual-
branch FuNet model further improves its performance compared to the one-branch model.
Eventually, dual-branch FuNet achieved OA and K of 97.84% and 97.64% for Flevoland
and 98.09% and 97% for San Francisco. Flevoland data had the foremost OAs for forest,
beet, rapeseed, building, and all three wheat classes. Moreover, it is the only model that
achieved above 90% OAs for all classes, with 91.93% for building as the lowest per-class
OA. Meanwhile, for the San Francisco case, four of the existing five classes, including bare
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soil, mountain, urban, and vegetation, obtained their maximum OAs using the proposed
dual-branch network.

4.6. Performance Analyses with Different Training Sampling Rates

In general, supervised classification methods work with a limited number of training
samples; thus, their ability to discriminate varied land covers with restricted sample data is
crucial. Accordingly, the effect of various training sample ratios (TRs) on the performance
of the proposed method is compared to that of the other methods over the Flevoland data.
Table 6 depicts classification OAs of 1%, 5%, and 10% TRs. The result indicates that the
proposed dual-branch FuNet achieved the highest OAs with different TRs, followed by
2D-CNN and FuNet.

Table 6. Classification OAs with different training ratios on AIRSAR Flevoland data. Bold numbers
indicate the highest accuracy in each row.

Training
Ratio (%) SVM RF 1D-CNN 2D-CNN miniGCN FuNet Dual-Branch

FuNet

OA (%)
1 78.57 79.55 79.81 96.54 72.32 97.11 97.84
5 81.95 83.43 82.59 98.7 75.52 98.66 99.67
10 83.16 84.45 83.1 99.63 76.94 99.2 99.9

To offer a clear visual comparison, Figure 11 illustrates the performance of the three
superior networks. It can be observed that with an adequate sampling ratio of 10%, 2D-
CNN outperforms FuNet and is slightly lower than the dual-branch network. When TR
is reduced to 5%, the OAs of 2D-CNN and FuNet fall by 0.93% and 0.54%, whereas that
of the dual-branch decreases marginally (0.23%). Considering 1% TR, 2D-CNN degrades
significantly (2.58%), whereas the proposed dual-branch and its one-branch version of
FuNet have more stable results. Overall, the dual-branch FuNet shows the least sensitivity
to changes in training sample ratios and achieves the highest OAs.
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4.7. Comparison with Other Studies

The proposed method is compared to some published PolSAR classification tech-
niques to provide a more comprehensive verification. For a fair comparison, using similar
benchmark data and ground-truth (GT) is recommended. Accordingly, AIRSAR Flevoland
benchmark data, which has been widely deployed in previous studies, is regarded for
comparison. It should be noted that some of the other papers have employed different GTs
with different random training samples, which might impact the obtained result.
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The PolSAR classification approaches of complex-valued CNN (CV-CNN) [26], dual-
branch deep CNN (dual-branch DCNN) [27], 2D-CNN [25], multichannel fusion CNN
(MCFCNN) [28], and semi-supervised multiscale evolving weighted GCN (MEWGCN) [47]
are the ones compared with the proposed FuNet and dual-branch FuNet (Table 7).

Table 7. Comparison of classification OAs with other studies on AIRSAR Flevoland data. Bold
numbers indicate the highest accuracy in each row.

Training
Ratio % CV-CNN Dual-Branch 2D-CNN MCFCNN MEWGCN Proposed

OA (%)
1 62

98.53 (75% TR)
97.57 95.83 - 97.84

5 94 98.83 - 99.39 99.67
10 96.2 99.3 - - 99.9

It should be noted that several GTs with varied numbers of labeled points are utilized,
with only CV-CNN sharing the same GT as the current study. With an identical GT, CV-
CNN showed poor performance, with 1% TR, and inferior OA, with 5% and 10%. When
using a limited amount of training data (1%), this method has even lower performance
compared to the SVM and RF with proposed input features. This indicates the importance
of model input parameters and how extracted spatial and polarimetric features can boost
the classifier performance, particularly with limited training data. The dual-branch method
in Gao, et al. [27] produces promising results (98.53% OA) with a sufficient sampling
rate of 75%. However, it is still low compared to the proposed method’s 5% and 10%.
The architecture of the proposed dual-branch model (using a miniGCN branch) aside
from the modified input features are the main factors for improving dual-branch method
classification ability with low TR. Although the polarimetric feature-driven 2D-CNN,
MCFCNN, and MEWGCN produced satisfactory accuracies, they still have lower OAs
compared to the proposed dual-branch FuNet.

5. Conclusions

Since PolSAR images’ characteristics vary from those of optical images, a specialized
approach for extracting spatial information is required. Combining both spatial and
polarimetric features allows us to fully consider the rich information of PolSAR images.
Accordingly, a dual-branch network utilizing DCNN and miniGCN was developed in the
current study to make the most of PolSAR features.

Deep convolutional models can consider spatial characteristics utilizing neighborhood
information, for which, in the current study, Pauli RGB and four-component Yamaguchi
decomposition were driven to provide spatial features of the PolSAR image. In contrast, roll-
invariant and hidden polarimetric features were obtained to feed the miniGCN. miniGCN
is a batchwise version of GCN that can cooperate with batchwise CNN and considers
long-range similarities through an adjacency matrix, while it requires significantly lower
computational cost. Eventually, the DCNN and miniGCN were fused in the proposed
dual-branch network, called dual-branch FuNet, to discriminate PolSAR classes.

The proposed classifier outperforms several state-of-the-art models over AIRSAR
Flevoland and San Francisco datasets, reaching above 97% OA for both cases. When
compared to traditional approaches (SVM, RF, and 1D- and 2D-CNN), improvements
ranged from 1.3% to 19.27% (OA). Furthermore, the dual-branch strategy outperforms
the simple one-branch network by 0.73% to 1.82% in terms of OA. The investigated dual-
branch network offers a robust technique to deal with different sampling rates (1 to 10%)
and produces a stable result, even with the small-labeled sample, i.e., between 97.8% and
99.9% OA.
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