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Abstract: Accurate characterization of evapotranspiration (ET) is imperative in water-limited crop-
ping systems such as California vineyards and almond orchards. Satellite-based ET modeling
techniques, including the atmosphere–land exchange inverse model (ALEXI) and associated flux
disaggregation technique (DisALEXI), have proven reliable in determining field scale ET. However,
validation efforts typically focus on ET and omit an evaluation of partitioned evaporation (E) and
transpiration (T). ALEXI/DisALEXI is based on the two-source energy balance (TSEB) model, making
it uniquely qualified to derive E and T individually. The current study evaluated E and T estimates
derived using two formulations of DisALEXI; one based on Priestley-Taylor (DisALEXI-PT) and the
other on Penman-Monteith (DisALEXI-PM). The modeled values were validated against partitioned
fluxes derived from the conditional eddy covariance (CEC) approach using EC flux towers in three
wine grape vineyards and three almond orchards for the year 2021. Modeled estimates were derived
using Landsat 8 Collection 2 thermal infrared and surface reflectance imagery as well as Harmonized
Landsat and Sentinel-2 surface reflectance datasets as input into DisALEXI. The results indicated
that the modeled total ET fluxes were similar between the two methods, but the partitioned values
diverged, with DisALEXI-PT overestimating E and slightly underestimating T when compared to
CEC estimates. Conversely, DisALEXI-PM agreed better with CEC-derived E and overestimated
T estimates under non-advective conditions. Compared to one another, DisALEXI-PM estimated
canopy temperatures ~5 ◦C cooler and soil temperatures ~5 ◦C warmer than DisALEXI-PT, causing
differences in E and T of −2.6 mm day−1 and +2.6 mm day−1, respectively. The evaluation of the
iterative process required for DisALEXI indicates DisALEXI-PM ET values converge on ALEXI ET
with proportionate adjustments to E and T, while DisALEXI-PT convergence is driven by adjustments
to E. The analysis presented here can potentially drive improvements in the modeling framework to
provide specific soil and canopy consumptive water use information in unique canopy structures,
allowing for improved irrigation and water use efficiencies in these water-limited systems.
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1. Introduction

Acquiring accurate measurements of crop consumptive water use in the form of evap-
otranspiration (ET) is increasingly important as demands for water resources drastically
shift under a changing climate. This acquisition is particularly critical in the Central Val-
ley of California, where competition for diminishing water resources is increasing due
to prolonged periods of severe drought, population growth, and increasing demands
from municipalities and industry [1]. Such are the demands that the state enacted the
Sustainable Groundwater Management Act (SGMA), an effort to monitor and regulate the
over-pumping of vulnerable groundwater basins.

Considering these regulations, California-based commodity groups continue to have
a vested interest in the sustainability of agriculture in the state, which is valued at USD
50 billion per year [2,3] and produces more than 400 different commodities. This interest
has produced partnerships with federal and state agencies and universities to promote
sustainable practices through the research and development of emerging state-of-the-art
technologies focused on promoting water use efficiency. Two such projects include the
Grape Remote Sensing Atmospheric Profile Evapotranspiration eXperiment (GRAPEX; [4])
and the Tree crop Remote sensing of Evapotranspiration eXperiment (T-REX), where the
priority is to improve irrigation efficiencies through satellite-derived ET estimates for wine
grapes and almond orchards, respectively. GRAPEX began in 2013 and continues with nine
vineyards being monitored with micrometeorological instrumentation located throughout
the Central Valley and Sonoma County, California. T-REX began in the spring of 2021 and
continues to support the monitoring of three almond orchards located near Sacramento
and Fresno, California.

Much has been learned during the GRAPEX project, which includes ground-based
micrometeorological/biophysical-focused work [4–8], the utilization of remotely piloted
aerial vehicles (RPAVs) for an improved understanding of spatial dynamics within vine-
yards [9–14], and the evaluation of satellite-based ET estimates, both retrospectively [15–18]
and in real-time [19], to promote ingestion into irrigation management dashboards. Similar
work is currently underway in the T-REX project. Although work related to these projects
has advanced our understanding of specialty crop dynamics as it relates to water use,
questions remain. One of particular interest is the partitioning of ET, used as a measure of
consumptive water use, into individual contributions of evaporation (E) and transpiration
(T) in these vineyard/orchard systems, which are represented by distinct inter-row (de-
noted by cover crop or bare soil depending on management practice and time of year) and
row (crop canopy). In water-limited regions such as California, some irrigation strategies
will likely focus on reducing water loss from E rather than T since vegetation T is linked to
crop biomass production [20–22].

Many ET partitioning techniques exist (detailed review provided in [23]), with recent
advancements developed to curb laborious measurements, expensive sensors, and the need
for a priori site knowledge [24–26]. Despite advancements, these approaches cannot be
inferred or spatially distributed across large landscapes. Such a solution requires the uti-
lization of remote sensing, whether from RPAVs or satellite imagery, and an approach that
explicitly accounts for soil (E) and canopy (T) contributions to ET. The two-source energy
balance (TSEB) model [27] offers these capabilities by partitioning a thermal infrared (TIR)
signal into canopy and soil temperatures and solving the surface-energy budget for the soil,
vegetation, and combined systems associated with a mixed pixel. TSEB has been applied
across many surfaces [28–35], including vineyards, with good fidelity [9,10,12,34,36,37].
However, these studies evaluated TSEB in terms of total (soil + canopy) ET rather than the
individual contributions of E and T.

Individual flux evaluation within TSEB began with [28], where it was found that
estimates of total heat fluxes were acceptable, but the partitioning of available energy
between soil and canopy fluxes was not physically realistic. These findings led to modifica-
tions within TSEB to improve partitioning, including the recommendation to increase the
Priestley-Taylor parameter over sparse canopy cover where advective heat sources from ad-
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jacent hot bare soil surfaces can contribute significantly as an additional energy source [28].
Reference [38] offered an evaluation of TSEB based on calculated versus measured E, T,
and ET. The results suggest that replacing the Priestley-Taylor (PT) formulation [39] with
Penman-Monteith (PM) provides a more accurate partitioning of E and T. This is because
the PM formulation more directly accounts for vapor pressure deficit (VPD), whereas the
PT formulation assumes the influence of VPD is accounted for in the fixed PT parameter.
A consequent study performed by [40], which occurred at a fully irrigated cotton field
indicative of highly advective conditions, reported improved TSEB E and T estimation
when applying PM in lieu of PT. Similar results were found in other PT-based ET studies,
when the PT parameter is calculated as an empirical function based on VPD (e.g., [32,41,42])
or when it is increased when VPD exceeds a predefined value, such as in the initial [28]
study mentioned above. Each imitates the VPD (i.e., aerodynamic) term in PM, proving its
importance and offering an explanation as to why PM outperforms PT within the context
of TSEB in advective systems.

Recent TSEB-based partitioning studies have focused on vineyards as part of the
GRAPEX project [36,43,44]. Reference [36] applied TSEB over two Pinot Noir vineyards
in the Central Valley of California and compared modeled T/ET ratios to observations
derived using the correlation-based flux partitioning method [45–47]. The results indicate
TSEB E and T estimates yield relative differences with flux tower measurements of less than
15%. However, the results are heavily dependent on the time of year; e.g., TSEB overesti-
mates T/ET during winter and spring but underestimates during the growing season [36].
Reference [44] attempted to improve modeled partitioned fluxes in vineyard systems by
proposing a three-source energy balance (3SEB) model, accommodating an additional
vegetation source within TSEB. The results were promising, with modeled T correlating
better than TSEB with observations derived from an eddy covariance-based partitioning
approach (R > 0.76). Despite improvements, the results still indicate a slight underestima-
tion of T/ET, particularly when the cover crop between vine rows is absent [44]. Perennial
natural ecosystems (trees) and agroecosystems (vineyards) have a strong physiological
and stomatal control of ET under conditions of high VPD [48–51]. As described above, the
PT initialization in TSEB or 3SEB may not fully capture these effects. As demonstrated
in [38,40], alternative initialization formulations in TSEB, such as PM, which better account
for VPD, may be required to accurately capture T/ET values in advective systems and
agroecosystems characteristic of having bare inter-rows.

Reference [43] offers an evaluation of advective conditions within the context of TSEB
and vineyards by exploring the effects different levels of advection have on derived T/ET
estimates from different modified versions of TSEB over a vineyard in the Central Valley of
California. The results suggest the performance of the original PT-based TSEB is satisfactory
in all but the most extreme advective conditions. They also found a transpiration algorithm
based on Shuttleworth-Wallace, which includes a canopy resistance formula that relates
maximum stomata conductance to VPD and performs well under all conditions [43]. An
evaluation of a PM-based TSEB (similar to [38]) showed improvements only under the more
extreme advective conditions and over-estimated T/ET under the remaining conditions.

Although work related to TSEB-based E and T partitioning has led to many insights,
most notably the relationship between canopy transpiration (i.e., T) and VPD, it has relied
on ground-based thermal infrared measurements as an input and has only been evaluated
at individual sites. Such approaches omit the capable spatial component of TSEB through
the utilization of satellite-derived thermal infrared imagery. Spatially distributed ET
estimates from TSEB can be produced using the Atmosphere–Land Exchange Inverse
model (ALEXI; [52–54]) and the associated disaggregation technique (DisALEXI; [55,56]).
As with TSEB, the combined ALEXI/DisALEXI modeling framework has been applied in
vineyards as part of the GRAPEX project [15–17,19,57–60]. DisALEXI is also implemented
within the OpenET framework on Google Earth Engine, which supplies ET information
across 17 western U.S. states in support of water management and decision making [61].
Although ALEXI/DisALEXI produces reliable ET estimates in vineyard settings, there
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has yet to be a thorough analysis of the individual contributions of E and T to the total
ET flux in the context of DisALEXI. Additionally, given the operational capabilities of
ALEXI/DisALEXI (OpenET, irrigation decision making) and the increasing importance
of individual flux contributions in water-limited agricultural systems requiring irrigation–
such as vineyards and almonds orchards—the evaluation of E and T partitioning will be
necessary for developing robust applications.

This study evaluates the partitioning of E and T within the context of the ALEXI/DisALEXI
modeling framework. Analysis was performed over three wine grape vineyards (GRAPEX
sites) and three almond orchards (T-REX sites) for the year 2021, using tower measurements
of total ET (as defined in [7]) as well as individual E and T estimates that were calculated
using the conditional eddy covariance (CEC) approach as described in [26]). We evaluate the
original DisALEXI approach based on the Priestley-Taylor formulation of TSEB (DisALEXI-
PT) and the iterative convergence process with ALEXI for irrigated vineyards/orchards
in the advective climate characterizing the GRAPEX and T-REX sites. We also evaluate a
DisALEXI approach based on the Penman-Monteith formulation (DisALEXI-PM), as first
suggested by [38]. Due to the advective nature of the study sites and their characteristically
barren inter-rows during the growing season, we hypothesize that shifting to a Penman-
Monteith-based approach will improve model partitioned estimates of E and T. When
applied operationally, the model output will give growers more specific consumptive water
use information, subsequently allowing for improved irrigation and water use efficiencies
in these valuable water-limited agricultural systems.

2. Materials and Methods
2.1. Study Domain

The study domain encompasses four separate regions across California and includes
three individual wine grape vineyards being monitored as part of the USDA-ARS Grape
Remote sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) [4]
and three individual almond orchards being monitored as part of the USDA-ARS Tree crop
Remote sensing of Evapotranspiration eXperiment (T-REX) (Figure 1). Vineyards include
BAR (Sonoma County near Cloverdale, CA, USA), SLM (Sacramento County near Galt, CA,
USA), and RIP (Madera County near Madera, CA, USA). BAR is a 10-ha plot composed of
Cabernet Sauvignon grapes trained on a split trellis and drip irrigated. Vines were planted
in 2010 with 1.8 m vine spacing and 3.35 m row spacing and have a southwest–northeast
row orientation. SLM is a 35-ha plot composed of Cabernet Sauvignon grapes (regrafted in
the winter of 2020) trained on quadrilateral cordons with 3.35 m row spacing, 1.5 m vine
spacing, west-to-east row orientation, and drip irrigation. RIP is a 31-ha block composed
of Chardonnay grapes planted in 2009 and trained on a double vertical trellis with 1.83 m
vine spacing and 2.74 m row spacing, west-to-east row orientation, and drip irrigation.

Almond orchards include VAC (Solano County near Vacaville, CA), WWF (Yolo
County near Woodland, CA, USA), and OLA (Madera County near Madera, CA). VAC is a
70 ha seventh-leaf orchard with 100% Independence variety and a southwest-to-northeast
row orientation with drip irrigation. WWF is a 60 ha ninth-leaf orchard with 50% Nonpareil,
and 17% Butte, Monterey, and Carmel varieties, north–south row orientation, and micro-
sprinkler irrigation installed. OLA is a 20 ha eighth leaf orchard with 50% Nonpareil, 37%
Wood Colony, and 13% Supareil, north–south row orientation, and two-line drip irrigation.

All vineyard sites have a cover crop present during the winter season. Once conditions
become dry in the early summer, the cover crop is either left to senesce or removed
via mowing so that water is used exclusively by vines. The northernmost site, BAR,
typically has more cover crop biomass that also remains longer into the growing season
in comparison with the other two vineyards. This is due to greater precipitation and
higher quality grape grown at the site, which requires a cover crop to regulate soil water
availability. Almond orchards OLA and VAC have native vegetation that grows in between
rows that is also present during the winter season before either being mowed or allowed to
senesce during the early summer months. WWF has a cover crop consisting of a seeded
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mix of legumes and grasses, which is present from winter through spring and then mowed
after senescence.
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locations. The latitude and longitude of each tower location are given after the abbreviated site name.

2.2. Field Measurements

Micrometeorological and biophysical data collected at each location as part of GRAPEX
and T-REX are used to evaluate, validate, and refine ET estimates, detect crop stress, and
monitor biomass development and root zone soil water availability. All sites are equipped
with similar instrumentation, with measurements including surface energy balance flux
estimates, turbulence and mean profile measurements of wind, temperature, and water
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vapor, as well as periodic ground-based biophysical measurements such as leaf-water
potential, leaf area index (LAI), and gas exchange.

Eddy covariance systems at the GRAPEX sites include a Campbell Scientific, Inc. inte-
grated CO2 and H2O open-path gas analyzer and a three-dimensional ultrasonic anemome-
ter collecting data at 20 Hz producing 30 min flux averages. Radiation is monitored via
an NR01 four-component radiometer (Hukseflux, Delft, Netherlands), and humidity and
temperature via an EE08 probe (E+E Elektronik, Engerwitzdorf, Austria) in a TS120 fan-
aspirated shield (Apogee Instruments Inc., Logan, UT, USA). Ground heat flux is estimated
through an array of soil heat flux plates (HFT-3, Radiation Energy Balance Systems, Belle-
vue, Washington) buried at a depth of roughly 8 cm, Hydraprobe soil moisture sensors
(Stevens Water Monitoring Systems, Inc., Portland, OR, USA), and soil thermocouples for
estimating heat storage above the plates (see [4,6] for details of the eddy covariance and
soil heat flux measurements). The eddy covariance flux systems at the T-REX sites include
a similar instrumental setup with the exception of the radiation measurements monitored
using a CNR4 net radiometer (Kipp and Zonen, Delft, the Netherlands).

In order to further provide partitioned (separation of E and T) flux validation, we
utilize a novel method based on quadrant analysis of high-frequency EC data, referred to
as the conditional eddy covariance (CEC) approach [26]. The CEC approach is based on the
similarity between stomatal (transpiration and photosynthesis) and non-stomatal (evapora-
tion and respiration) pairs of component fluxes and works by combining measurements of
high-frequency carbon dioxide and water vapor EC data to find all four component fluxes
(transpiration, photosynthesis, evaporation, respiration) simultaneously. The CEC method
is a simpler technique in comparison to other partitioning approaches (such as the modified
relaxed eddy accumulation; MREA, flux-variance similarity; FVS) but circumvents the need
to estimate water use efficiency (WUE) and gross primary product (GPP) as inputs. The
approach has been applied in various systems, including forest, grassland, and vineyard
sites [26]. Although the results were promising, particularly given the simplified approach,
application within a vineyard site demonstrated some uncertainty worth mentioning. Most
notable is the EC measurement height relative to the canopy height, where [26] suggests
measurements be obtained as close as possible to the top of the canopy so air parcels
emanating from the soil surface and canopy are not completely mixed. The EC tower height
for the T-REX almond sites is roughly 5 m above the canopy, whereas the included GRAPEX
vineyard sites are about 2.0 to 2.5 m above the canopy. Heights were chosen to include
fetch and footprint requirements so ET observations could provide validation to remotely
sensed values. Although the distance from the canopy is not ideal, we assume the CEC
technique gives reasonable partitioning estimates but acknowledge potential deficiencies
in the values.

To conduct a reliable and consistent comparison between daily observed measure-
ments and modeled flux estimates, which assume closure on a daily scale, we use a closure
approach offered in [7]. Specifically, nine separate EC flux energy balance closure ap-
proaches are used to derive an ensemble daily closed ET estimate at each tower location
as the mean of nine daily closed ET estimates. This method effectively reduces spurious
outliers potentially related to hysteresis, advection, or heat storage by equally weighting
measurement’s reliability of the available energy (net radiation minus soil heat flux density)
and eddy covariance sensible (H) and latent (λE) heat flux density components [7]. The
CEC method applied here has been corrected for closure by distributing the difference
between closed (via [7]) and unclosed ET by the fraction of E and T to total ET.

Modeled flux estimates were extracted and averaged over a 3 × 3 pixel area (90 × 90 m)
shifted in the direction of the mean incoming wind to approximate the typical tower upwind
fetch/flux footprint. Additional care was taken for sites located near field boundaries (VAC,
OLA, RIP, SLM), making sure representative pixels did not overlay the adjacent road. We
refer the reader to [7] and [26] for additional details pertaining to observations used for
validation in the current study.
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2.3. Satellite-Based ET Modeling Framework
2.3.1. TSEB-PT

The two-source energy balance (TSEB) model was first described in [27], with im-
provements presented in [28]. The TSEB model partitions surface temperature into soil and
vegetation canopy components using a local vegetation cover fraction (fc) estimated from
retrievals of leaf area index (LAI) and a clumping factor dependent on vegetation class
(Ω; [30]) according to Equation (1).

Tr = fcTc + (1 − fc)Ts, (1)

Initial temperature components are then used to initiate a temperature gradient-
resistance system of equations designed to solve the surface-energy budget for the soil and
vegetation components (Equation (2)).

(Rns + Rnc)− G = (Hs + Hc) + (λEs + λEc), (2)

In the above energy balance equation, Rn is the net radiation (W m−2), H is the sensible
heat flux (W m−2), G is the soil heat flux (W m−2), and λE is the latent heat flux (W m−2).
Subscripts ‘s’ and ‘c’ represent fluxes associated with the soil and canopy components of
the pixel, respectively. The soil and canopy components of Rn are estimated according
to [62], and G is derived from a phase difference equation described by [63]. Following [27],
we calculate Hs and Hc directly and λEs as the residual (details forthcoming). However, in
order to do so, an initial estimate of λEc is obtained using the Priestley-Taylor approach [39]:

λEc_PT = αfg
∆

∆ + γ
(Rnc), (3)

where fg is the fraction of green vegetation (set as 1.0), α is the Priestley-Taylor parameter
(α~1.3), ∆ is the slope of the saturation vapor pressure–temperature curve, γ is the psy-
chrometric constant, and Rnc is the divergence of net radiation in the canopy calculated as
an initial estimate following [27]. Canopy and soil components of sensible heat flux are
calculated assuming a series network as:

Hs = ρCp ∗
(

Ts − Tac

rs

)
, (4)

Hc = ρCp ∗
(

Tc − Tac

rx

)
, (5)

where ρCp is the volumetric heat capacity of the air, Tac is the air temperature within
the air-canopy layer, rs is the resistance to transport heat between the soil surface and
a height representing the canopy, and rx is the total boundary layer resistance of the
complete canopy of leaves. Initial Tc values are estimated using a form of the Priestley-
Taylor equation (Equation (6)), whereas initial Ts values are estimated as the residual to
Equation (1).

Tc1 = Ta +
Rncra

ρCp

[
1 − α

∆
∆ + γ

]
, (6)

Here, Ta is air temperature, ρ is the air density, Cp is the specific heat of air (assumed
constant at 1013 J kg−1 K−1), and ra is the aerodynamic resistance, calculated from the
stability corrected log profile equations for wind and temperature in the surface layer [64]
and expressed as

ra =
[ln
(

zU−d
zM

)
− ΨM]

[
ln
(

zT−d
zM

)
− ΨH

]
0.16U

, (7)

where zu and zT are the height of wind speed measurements (defined as ‘U’) and Ta
measurements, respectively. Additionally, d is the displacement height (estimated as
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0.67 × hc, where hc is canopy height), zM is the roughness length for momentum (estimated
as 0.123 × hc), 0.16 is the square of von Kármáns constant taken as 0.4, and ΨM and ΨH
are the stability correction functions for momentum and heat, respectively [64]. Note that
following initial estimation of Tc and Ts (Equations (1) and (6), respectively); they are
then calculated assuming a series network described in Appendix A of [27]. Finally, λEs is
estimated as a residual and λEc is re-calculated as a residual using estimated partitioned
fluxes (Equations (8) and (9)).

λEs = Rns − G − Hs, (8)

Under water-stressed conditions, it is possible to produce non-physical solutions
during the iterative process (λEs < 0, implying condensation on the soil). If these conditions
are met, α is reduced incrementally (resulting in increased Tc and decreased λEc_PT) until
λEs ≥ 0 [65]. Note that the classic form of TSEB-PT has no mechanism to enhance transpi-
ration through the α term; its initial value is assumed to be for well-watered non-stressed
vegetation (i.e., maximum λEc).

λEc = Rnc − Hc, (9)

Estimates of λEs and λEc are then summed and converted to daily estimates in mass
units (mm day−1) using the latent heat of vaporization (λ) and the ratio of instantaneous
(time of satellite overpass) to daily solar radiation (Equation (10)), following [66]

ETd =

(
λEs + λEc

λRs

)
∗ Rs24, (10)

2.3.2. TSEB-PM

In the current study, the TSEB-PM model was run according to the iterative procedure
described above, except that the calculation of Tc1 (Equation (11)), λEc (Equation (12)), and
subsequent iterations used a formulation for canopy transpiration based on the Penman-
Monteith (PM) equation:

Tc1 = Ta +
Rncraγ

∗

ρCp(∆ + γ∗)
− es − ea

∆ + γ∗
, (11)

λEc_PM =
∆Rnc

∆ + γ∗
+

ρCp(es − ea)

ra(∆ + γ∗)
, (12)

In Equations (11) and (12), ra is the aerodynamic resistance between the canopy and
the air above canopy, es and ea are the saturation and actual vapor pressures of the air,
respectively, γ* = γ(1 + rc/ra), rc is the bulk canopy resistance, and all other terms are as
defined previously. Following [38], rc is set at 50 s m−1 (see [67] for explanation). Analogous
to TSEB-PT and the throttling back of α when LEs < 0, rc is incrementally increased by
10 s m−1 under similar conditions until LEs ≥ 0. The substitution of PT for PM also required
changes to the original Tc, Ts, and Tac calculations outlined in Appendix A of [27]. A
detailed explanation of these changes is found in Appendix B of [38]. However, we include
the core equations below for completeness. Tc is calculated according to Equation [13] as
the summation of linear (Tc,LIN, Ts,LIN; Equations (14) and (15) and small correction (∆Tc;
Equation (16)) components.

Tc = Tc,LIN + ∆Tc, (13)

Tc,LIN =

Ta
ra

+ Tr
rs(1−fc)

+
[

rxγ
∗Rnc

ρCp(∆+γ∗) −
rx
ra

(es−ea)
(∆+γ∗)

][
1
ra
+ 1

rs
+ 1

rx

]
1
ra
+ 1

rs
+ fc

rs(1−fc)

, (14)

Ts,LIN = Tc,LIN

(
1 +

rs

ra

)
− Ta

(
rs

ra

)
−
[

rxγ
∗Rnc

ρCp(∆ + γ∗)
− rx

ra

(es − ea)

(∆ + γ∗)

][
1 +

rs

ra
+

rs

rx

]
, (15)
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∆Tc =
T4

r − fcT4
c,LIN − (1 − fc)T4

s,LIN

4fcT4
c,LIN + 4(1 − fc)T3

s,LIN

(
1 + rs

ra

) , (16)

All terms included in Equations (11)–(16) are previously defined above in this manuscript.
Once Tc is acquired, Ts is calculated according to Equation (1) and Tac is calculated in terms of
only temperatures and resistances that are previously defined and calculated (Equation (17)).

Tac =
Ta
ra

+ Ts
rs
+ Tc

rx
1
ra
+ 1

rs
+ 1

rx

, (17)

2.3.3. ALEXI/DisALEXI

The ALEXI model is currently run operationally over the continental United States
(CONUS), producing daily ET estimates at 4 km spatial resolution. ALEXI applies the
TSEB model twice during the morning hours (approximately 1.5 h after local sunrise and
1.0 h before local noon) using sub-hourly land-surface temperature (LST) observations
from the Geostationary Operational Environmental Satellites (GOES). A simple slab model
of atmospheric boundary layer (ABL) growth [68] is then used to relate the rise in air
temperature (Ta) in the mixed layer to the time-integrated influx of sensible heat from the
surface, allowing the vertical temperature gradient and sensible heat flux of the surface
layer to be estimated. Due to the time-differential approach, ALEXI flux estimates are less
sensitive to biases in LST and non-representative Ta fields [54]. However, due to its coupled
nature, ALEXI is constrained to the coarse spatial scales of geostationary platforms such as
GOES (4 to 10 km or greater).

For finer-scale applications, an ALEXI disaggregation procedure (DisALEXI) was intro-
duced [55,56]. DisALEXI operates by running TSEB over each ALEXI pixel (Equations (1)–(9))
using higher spatial resolution vegetation cover (LAI, NDVI), albedo, and LST information
from polar-orbiting satellites—in this case, from Landsat. To ensure consistency between
the ALEXI and DisALEXI ET estimates, an initial Ta map (set at a nominal blending height
of 50 m) is iteratively adjusted at the ALEXI pixel scale until the DisALEXI ETd fluxes,
spatially averaged over the ALEXI pixel, converge to the ALEXI daily value. This procedure
also ensures consistency when applying DisALEXI to other sensors with thermal imaging
capabilities, a key advantage when wanting to fuse multiple sources of data [58–60]. How-
ever, under initial DisALEXI assumptions and differences in PT or PM approaches, values
of Ta (in combination with LST) will produce varying Tc and Ts and by association, λEs (E)
and λEc (T). Some choices in Ta may result in unrealistic estimates of T and E partitioning
under some climatic and/or surface conditions, even though the components may sum to
reasonable estimates of ET. One such case may be under conditions of strong advection
over irrigated crops, where deviations between DisALEXI and ALEXI ET may be impacted
more by horizontal advection of energy rather than air temperature boundary conditions
at the blending height.

2.4. ALEXI/DisALEXI Model Inputs

Input shared between the ALEXI and DisALEXI modeling frameworks include meteo-
rological forcing information, including wind speed, air temperature, solar radiation, air
pressure, and vapor pressure, all of which are obtained from the Climate Forecast System
Reanalysis (CFSR) dataset at 0.25◦ resolution and hourly to 3 h time steps [69]. ALEXI uses
landcover classification from the University of Maryland (UMD) global land cover dataset
at 1 km resolution, based on observations from AVHHR [70]. Landcover classification
for higher resolution Landsat is determined using the 30m National Land Cover Dataset
(NLCD) [71].

Remote sensing inputs specific to ALEXI include LST computed from 11 µm brightness
temperature observations from GOES-East and GOES-West Imager Instruments. Bright-
ness temperatures are atmospherically corrected using atmospheric profiles of temperature
following the procedure in [72]. LAI, used to partition LST between canopy and soil compo-
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nents (Equation (1)), is obtained from the MODIS LAI product (MCD15A3H), aggregated
to GOES resolution (4 km), and interpolated to daily timesteps.

DisALEXI-specific inputs include Landsat 8 Collection 2 TIR and surface reflectance
(SR) band imagery as well as Harmonized Landsat and Sentinel-2 SR datasets (HLS)
(Table 1). Data were acquired during the year 2021 for available cloud-free days (Table 1).
Sites located within the overlap of two Landsat scenes have additional imagery available
for analysis (SLM, RIP, OLA). High-resolution LST maps were generated using Landsat
8 Collection 2 Surface Temperature (ST) sharpened from a native resolution of 100 m to
30 m using a data mining sharpening (DMS) approach developed by [73]. LAI and NDVI
at 30 m resolution are created using HLS band information following a procedure in [74]
based on machine learning, which has been recently modified to include ground-based LAI
measurements taken at the GRAPEX vineyard sites [75].

Table 1. Landsat 8 Collection 2 and HLS scenes used for each site. Additionally included are the
number of images used for each site during the period of study (2021). Note more clear image days
for sites with overlapping Landsat scenes.

SITE CROP Landsat-8 Scene HLS Scene Clear Image Days

BAR Vineyard p045-r033 T10SEH 13

VAC Almond p044-r033 T10SEH 12

WWF Almond p044-r033 T10SEH 12

SLM Vineyard p044-r033/p043-r034 T10SFH 26

RIP Vineyard p043-r034/p042-r035 T11SKA 30

OLA Almond p043-r034/p042-r035 T11SKA 30

3. Results
3.1. Evaluation of ALEXI/DisALEXI ET

The ALEXI/DisALEXI modeling scheme has been previously evaluated in California
vineyards as part of the GRAPEX project, with resulting daily ET fluxes comparing well with
observations (RMSE <= 1.0 mm day−1; [15–17,19,58–60]). In the current study, we focus
on three GRAPEX vineyard sites: BAR, SLM, and RIP. These individual sites were chosen
because of their differing cultivars and locations that span the state, offering maximum
diversity when making comparisons [6]. The almond orchards used for validation in the
current study are VAC, WWF, and OLA and are part of the T-REX project as described in
Section 2.1. Although many years of observed data exist at the proposed GRAPEX sites,
we focus on 2021 as it overlaps with the availability of observations at the T-REX locations,
providing uniformity in what otherwise might be differences in meteorological conditions
year to year.

Figure 2 shows the resulting ALEXI/DisALEXI ET values for the Priestley-Taylor-
based approach (DisALEXI-PT) and the Penman-Monteith-based approach (DisALEXI-PM)
compared against observations for all sites on clear Landsat 8 overpass dates. Vineyard
sites are on the top (purple) and almond sites are on the bottom (brown). Observations
are taken as the average of multiple energy balance closure techniques as described in [7]
and Section 2.2. Unclosed ET observations versus DisALEXI-PT and DisALEXI-PM ET are
also shown (Figure 3). The results show good agreement between modeled and closed
observed estimates, with an average Root Mean Square Error (rmse) of 1.10 mm day−1 for
DisALEXI-PT and 1.14 mm day−1 for DisALEXI-PM on Landsat overpass dates. Although
DisALEXI-PT performs slightly better at all sites, small differences in total ET are found
between the approaches, regardless of crop or location. The largest errors are reported at
sites OLA and RIP, the two southernmost sites. At RIP, errors are due to deviations between
the modeled and observed estimates at high values of ET (Figure 2), while a consistent
positive bias error is present at OLA.
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Figure 2. Scatter plots of DisALEXI-PT- and DisALEXI-PM-derived daily ET vs. observed daily ET
(closed via [7]) for GRAPEX vineyards (top) and T-REX almond orchards (bottom) on clear Landsat
8 overpass dates during 2021. Additionally included are statistical measures n (number of clear-sky
images available), r2 (coefficient of determination), rmse (root mean square error), and mbe (mean
bias error). Differences between the number of comparison points (n) and the number of clear-sky
days (Table 1) are due to missing observed data during the Landsat overpass.
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Figure 3. Scatter plots of DisALEXI-PT- and DisALEXI-PM-derived daily ET vs. observed daily
ET (unclosed) for GRAPEX vineyards (top) and T-REX almond orchards (bottom) on clear Landsat
8 overpass dates during 2021. Additionally, included are statistical measures n (number of clear-sky
images available), r2 (coefficient of determination), rmse (Root Mean Square Error), and mbe (Mean
Bias Error). Differences between the number of comparison points (n) and the number of clear-sky
days (Table 1) are due to missing observed data during the Landsat overpass.
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Modeled negative bias in TSEB for irrigated crops on highly advective days has been
noted in previous studies [17,43]. To the northwest of RIP is a large expanse of fallowed land
that causes the horizontal advection of hot/dry air across the vineyard, increasing the evap-
orative demand and causing latent heat fluxes to exceed available energy. These instances
lead to large closed estimates of ET (in relation to unclosed) and discrepancies with modeled
values as presented in Figure 2. However, when comparing DisALEXI-PT/DisALEXI-PM
ET estimates with unclosed values (Figure 3), biases decrease substantially at RIP (from
−0.92 to 0.10 mm day−1 on average for DisALEXI-PM and DisALEXI-PT). A similar cir-
cumstance is present at VAC, where a large expanse of barren/non-vegetative land (airport)
neighbors the orchard, potentially causing the horizontal advection of hot/dry air across
the orchard. MBE values are improved at VAC when validating to unclosed ET; however,
more datapoints, particularly during high ET days, are required to determine the extent of
advective conditions at the site and how closure influences validation efforts. Evaluation
between closed and unclosed observations to modeled ET at OLA shows little difference
between the two, indicating advective conditions may not be as prevalent at the site, and
the modeled positive bias (for both DisALEXI-PT and DisALEXI-PM) is likely due to
other factors.

3.2. Evaporation and Transpiration Partitioning

Although daily ET compares well with observations, individual contributions of
evaporation (E) and transpiration (T) will provide a better understanding of actual crop
water use, particularly in systems with distinct rows and inter-rows. Figure 4 shows a
timeseries of these partitioned estimates of E and T for DisALEXI-PT (left) and DisALEXI-
PM (right), each denoted as a stacked bar plot, with brown indicating E and green indicating
T. Additionally, included are derived E and T estimates (brown and green line, respectively)
using the CEC approach as defined in [26] and modeled daily LAI (blue line) from [75].

Timeseries analysis indicates DisALEXI-PT produces elevated estimates of E when
compared to CEC E values. This is most notable during the middle of the season, when
one would expect E values to be minimal. CEC E values, regardless of the time of year,
are close to zero and rarely exceed more than 1 mm day−1. The largest difference between
DisALEXI-PT E and CEC E is found at OLA, where DisALEXI-PT E contributes to 34% of
the total ET on average over the year. From the timeseries, we find that this percentage
increases during June and July, when one would expect E/ET values to decrease or be closer
to zero, which is suggested by CEC. It is important to note that OLA is the southernmost
site and is exceptionally dry during the summer months (i.e., bare inter-rows with no cover
crop). Such a physical setting would suggest little to no E during these months, aligning
with CEC-derived E, instead of the elevated values suggested by DisALEXI-PT. Conversely,
DisALEXI-PM produces estimates of E that align more closely with CEC-derived E values,
with E rarely exceeding 1 mm day−1 regardless of site or time of year. Although muted in
comparison, DisALEXI-PM aligns with DisALEXI-PT in that modeled E is highest for site
OLA. This trend is only present prior to June, with E values becoming negligible in terms
of total ET during the latter half of the year.

In comparison with the E performance, the DisALEXI-PT and DisALEXI-PM-derived
T values correlate much better with the CEC-derived T values (Figure 4), except at site
RIP during the peak growing season, aligning with the results presented in Figure 2. The
DisALEXI-PT and DisALEXI-PM T estimates generally follow annual LAI trends, with
values starting low and slowly increasing to peak values during the middle of the year
before gradually declining. The decline in T is most abrupt at almond sites, particularly for
CEC T, which shows a rapid decrease in T beginning in August. This is a result of irrigation
management during a phenological period called hull split. When the almond splits and
exposes the soft shell inside (hull split), it leaves the almond more vulnerable to diseases
such as hull rot [76]. To limit damage, growers reduce irrigation to promote the drying out
of the nuts and to shorten the window of time where the orchard is vulnerable to damage,
causing estimates of T (and ET) to decrease. Although the DisALEXI-PT and DisALEXI-PM
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T values decrease in response to hull split, they fail to match the magnitude of the decline,
remaining ~2 mm day−1 higher than the estimates provided by CEC (for site OLA where
Landsat imagery is available).
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Scatter plots between the modeled and observed partitioned fluxes show similar
patterns (Figure 5). Specifically, we find clear discrepancies between DisALEXI-PT and
DisALEXI-PM E partitioning, with the latter more closely aligning with CEC E (Figure 5,
bottom row) and the former often overestimating (Figure 5, top row) with an overall
MBE = 0.88 mm day−1 (Table 2) as the CEC E remains consistently small (<1 mm day−1).
In contrast, the T estimates from DisALEXI-PT generally align with the CEC T, with an
MBE of −0.07 mm day−1 when averaged over all sites, where DisALEXI-PM yields an
MBE of 1.02 mm day−1

. The DisALEXI-PM T estimates perform best at sites RIP and
VAC, coinciding with worse DisALEXI-PT T performance. Such a result is expected as
RIP and VAC are most prone to advective conditions. Focusing on VAC for days with
high ET (≥4 mm day−1; Landsat overpass dates of 9 June, 25 June, and 11 July 2021)
shows nearly identical total ET estimates for DisALEXI-PT and DisALEXI-PM. However,
DisALEXI-PT suggests T/ET ratios close to ~0.5, meaning E is contributing ~50% to total
water use during this time period. This amount of E is not likely to occur given the dry
barren interrow present during the summer at VAC. Conversely, DisALEXI-PM suggests
T/ET ratios closer to 1.0. This same pattern, albeit less drastic, is seen at RIP, where the
DisALEXI-PT T values show negative bias with the CEC T for values ≥ 4 mm day−1, while
the DisALEXI-PM T shows better alignment for the same values. At site OLA, we find
DisALEXI-PM overestimates T (aligning with CEC E) and DisALEXI-PT overestimates E
(aligning with CEC T), contributing to both estimating similar total ET estimates (Figure 5).
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Table 2. Statistical metrics correlation coefficient (R2), root mean square error (RMSE), and mean bias
error (MBE) for DisALEXI-PT (PT) and DisALEXI-PM (PM) partitioned evaporation (E), transpiration
(T), and combined E and T compared to CEC-derived E and T and combined E and T for all sites.

E T E + T

PT PM PT PM PT PM

R2 0.03 0.04 0.77 0.70 0.75 0.72

RMSE (mm/day) 1.26 0.64 0.82 1.41 1.25 1.30

MBE (mm/day) 0.88 −0.23 −0.07 1.02 0.80 0.79

MAE (mm/day) 0.97 0.45 0.57 1.11 0.96 0.99

As described in Section 2.3.2, a major difference between DisALEXI-PT and DisALEXI-
PM is how the Tc at the satellite overpass time is calculated when solving the temperature
gradient–resistance system of the equations. Therefore, differences in E or T from DisALEXI-
PT or DisALEXI-PM propagate from estimates of Tc. Additionally, past research has shown
that the effect advection, and by proxy, VPD, can have on estimates of T [33,43]. Figure 6
compares the DisALEXI-PT and DisALEXI-PM Tc estimates with Ta (initial estimate used
as model input) and VPD (calculated using Ta and CFSR vapor pressure). The results
suggest a common trend, with Tc (y-axis) and VPD (color scale) increasing with an increase
in Ta for all sites and both approaches (Figure 6A,B). In both models, Tc follows a linear
correlation with Ta, with values between 0 to ~2 ◦C warmer than Ta throughout most of
the year and regardless of site. However, there are specific instances when Tc is reported
as less than Ta, a characteristic of dry air advection. These instances are only identified
in DisALEXI-PM-derived Tc values (Figure 6B); the DisALEXI-PT Tc estimates always
remain ≥Ta (Figure 6A). Instances of Tc ≤ Ta tend to align with higher VPD (red tones),
with more occurrences at higher Ta values. However, there are instances when Tc ≤ Ta
even at cooler temperatures (Ta ≤ 25 ◦C). Closer inspection indicates a division between
Tc and VPD for instances of Tc ≤ Ta (Figure 6C, red) and Tc ≥ Ta (DisALEXI-PM = blue,
DisALEXI-PT = green; Figure 6C). This is because DisALEXI-PM accounts for the effects of
elevated VPD via its explicit inclusion within the framework (see Equation (10)), whereas
DisALEXI-PT assumes that the influence of VPD is mostly accounted for in the α pa-
rameter. Most instances of Tc ≤ Ta link to the large differences in the DisALEXI-PT and
DisALEXI-PM T estimates discussed above and shown in Figure 6. Specifically, the im-
provement in T estimation by DisALEXI-PM compared to DisALEXI-PT for RIP and VAC
for values ≥ 4 mm day−1 align with instances of Tc < Ta (not shown), suggesting the
improvement in these cases is related to VPD inclusion.
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Figure 6. Scatter plot comparison of Ta (x-axis; (A,B)) and DisALEXI Tc (y-axis) for DisALEXI-PT (A)
and DisALEXI-PM (B), with color-scale indicating VPD values for all sites. Additionally included is a
scatter plot of DisALEXI Tc (y-axis; (C)) and VPD (x-axis; (C)) for all sites. The blue and green dots
represent DisALEXI-PM and DisALEXI-PT modeled values when Tc > Ta, respectively. Red markers
indicate when DisALEXI-PM Tc < Ta.

Figure 7 shows a comparison between the DisALEXI-PT and DisALEXI-PM estimates
of Tc (top left) and Ts (bottom left), as well as the major individual energy balance flux
components, demonstrating how differences in Tc influence and propagate to differences
in E and T between approaches. Note that energy balance component values are at Landsat
overpass times and are given in units of W m−2. Accordingly, E and T are presented as λEs
and λEc, respectively. Additionally included is the average difference between component
values (PM minus PT).
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Figure 7. Scatter plot of DisALEXI-PM- (y-axis) versus DisALEXI-PT (x-axis)-produced canopy (top
row) and soil (bottom row) components to the energy balance, including Tc, Ts, Rnc, Rns, Hc, Hs, lEc,
and lEs.

DisALEXI-PM produces Tc values that are 5.3 ◦C cooler, on average, than DisALEXI-
PT estimates. Cooler Tc values result in Ts values that are 4.6 ◦C warmer, on average, than
DisALEXI-PT estimates. Cooler Tc and warmer Ts DisALEXI-PM predictions propagate
to an increase in Rnc (+15 W m−2) and a decrease in Rns (−16 W m−2) when compared to
estimates proposed by DisALEXI-PT (Figure 7). The canopy (Hc) and soil (Hs) sensible
heat flux contributions show a change between −60 W m−2 for Hc and +62 W m−2 for
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Hs, with the values of Hc highlighting the ability of DisALEXI-PM to capture negative H
values. In combination, these differences lead to DisALEXI-PM canopy transpiration rates
(λEc) roughly 30% larger than those from DisALEXI-PT (+75 W m−2). The differences in
soil evaporation (λEs) are opposite in sign, with DisALEXI-PM yielding λEs estimates that
are ~80% smaller (−76 W m−2) than the DisALEXI-PT estimates. Conversion to daily mass
units for reference with previously discussed E and T estimates results in DisALEXI-PM
producing 2.64 mm day−1 more transpiration and 2.68 mm day−1 less evaporation than
DisALEXI-PT when averaged for all sites.

Another notable difference between DisALEXI-PT and DisALEXI-PM is the use of rc
within the DisALEXI-PM framework. To be consistent with the original PM version of TSEB
implemented by [38], rc is held constant at 50 s m−1 (see Section 2.3.2). However, this value
represents a reference short crop (i.e., well-watered and full canopy), which may cause
issues in taller and/or more heterogeneous canopies where the sensitivity of rc to VPD
will be more significant. To evaluate the model’s sensitivity to rc, we ran DisALEXI-PM
using incrementally increasing rc values (10 to 95 s m−1) and calculated the error in T, E,
and ET (Figure 8). Figure 7 shows the mean bias error (MBE; mm day−1) between the
DisALEXI-PM-derived T, E, or ET and the CEC-derived T or E (green and brown bar,
respectively) for each model run (defined by the value of rc; x-axis). Additionally included
is the combined ET modeled bias (Figure 7; black line with yellow highlight).
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Figure 8. Bar plot of mean bias error (MBE; mm day−1) between the DisALEXI-PM-derived T or E
and the CEC-derived T or E, green bar and brown bar, respectively, for each site. MBE is calculated
for individual DisALEXI-PM model run when rc is varied at 5 s m−1 increments from 10 to 95 s m−1.

The results suggest that an increase in rc causes modeled E values to increase (negative
to positive bias) and T values to decrease (bias becoming less positive). This is expected as
an increase in rc while holding VPD constant will result in decreasing T. Accordingly, the
largest improvements in MBE achieved by increasing rc are found at RIP and VAC, where
advection is more common, and at OLA, where a more substantial overestimation of T was
originally derived (i.e., a decrease in modeled T inherently improves error predictions).
Figure 8 suggests that DisALEXI-PM E and T estimates would benefit from site-specific
rc values better representing surface conditions as biases in T decrease to minimums at
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different rc values. Note that minimal biases in T do not explicitly align with minimal
biases in E. Although magnitudes are different, decreases in T bias align with an increase
in E bias. When combined as ET, we find little difference in the modeled bias (Figure 8;
black line with yellow highlight), suggesting changes in rc have an effect on partitioned
fluxes but offer little improvement in the modeled total ET. Declining T biases corroborate
results presented in [43], where a partitioning algorithm that included an rc formula that
relates maximum stomata conductance to VPD produced the most reasonably partitioned
estimates of E and T.

3.3. ALEXI/DisALEXI Iterations of TSEB

To ensure consistency between the ALEXI and DisALEXI ET estimates, the Ta is
iteratively adjusted at the ALEXI pixel scale until the DisALEXI daily ET, spatially averaged
over the ALEXI pixel, converges to the ALEXI value. This iterative process requires running
TSEB on each iteration. Under the TSEB system of equations (DisALEXI-PT or DisALEXI-
PM), adjustments to the Ta will change the Tc and Ts and subsequently, T and E. Such a
process may result in unrealistic estimates of T and E partitioning even though components
may sum to reasonable estimates of ET. One such case may be under conditions of strong
advection over irrigated crops, where deviations between DisALEXI and ALEXI ET may be
impacted more by the horizontal advection of energy rather than air temperature boundary
conditions at the blending height. Given the iterative process associated with DisALEXI,
we evaluate the behavior of E and T by comparing the difference between the final and
initial estimates of E and T (Figure 9, y-axis) with the difference between the final and initial
Tair (Figure 9, x-axis) for DisALEXI-PT (Figure 9, top row) and DisALEXI-PM (Figure 9,
bottom row).
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Figure 9. Scatter plot of the difference between final and initial Tair (x-axis) and the difference
between final and initial E (brown) or T (green) for DisALEXI-PT (top) and DisALEXI-PM (bottom)
approaches on all Landsat overpass dates.

An evaluation of Figure 9 shows distinct patterns in the DisALEXI-PT E and T response
to Ta, quantified with respect to values obtained from the initial Ta boundary conditions
obtained from CFSR (Figure 9, top row). The pattern can best be observed at OLA, where
differences in Ta more directly influence the E values compared to T. In general, as Ta
increases, H will decrease as the surface-to-air temperature gradient reduces, subsequently
leading to an increase in ET (E+T) to maintain energy balance. The inverse response is
expected as Ta decreases. Although the response from the individual E and T components
is also dependent on specific site conditions (e.g., vegetation cover, stress, etc.), convergence
on the ALEXI ET appears primarily driven by shifts in E for the DisALEXI-PT approach.
Conversely, the DisALEXI-PM model results show more uniformity in E and T component
responses to shifts in Ta (Figure 9, bottom row), suggesting more proportionate adjustments
to E and T in relation to ET.
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3.4. Spatial Analysis

A key advantage of the ALEXI/DisALEXI modeling framework is the spatial
component—producing daily ET estimates over expansive areas that may encompass
multiple vineyards, orchards, or other commodities. Figure 10 provides a contextual look at
the mapping of ET, as well as E and T, by both models over multiple sites. These maps were
created using Landsat-8 data collected during the month of June in 2021 (BAR = 06/16,
SLM = 06/18, RIP = 06/18, OLM = 06/18, VAC = 06/09, WOD = 06/09). The red dots
indicate the tower’s location within the vineyard or orchard. These maps reflect tendencies
discussed above, with DisALEXI-PM generally generating lower/higher estimates of E/T
than DisALEXI-PT, despite the similarity in the representation of total ET.
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Figure 10. Spatial maps of daily E (left two columns), daily T (middle two columns), and daily ET
(right two columns) in mm day−1 for DisALEXI-PT and DisALEXI-PM (next to one another) for all
sites on Landsat-8 overpass dates in June 2021 (specific dates listed in text). The red dot indicates flux
tower location.
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The differences between the DisALEXI-PT- and DisALEXI-PM-derived E, T, and ET
for all sites on the same dates are shown in Figure 11. Additionally included are LAI and
LST images on the same dates, acquired at the Landsat overpass time. The differences
in E are lowest over BAR and VAC and greatest at OLA (differences ≥ 2 mm day−1 over
most of the area). The areas of strongest difference in T and E between the models tend
to occur where the LAI is low and the LST is high. The most extreme case is found in the
field directly to the west of SLM, where the LAI values are the lowest (~0.5) and the LST
values are the highest (~52 ◦C). This combination results in low ET for both DisALEXI-PT
and DisALEXI-PM (Figure 10, right two columns), with little difference between the two
(Figure 11). However, a comparison between E and T suggests total ET from DisALEXI-PT
over this field is primarily driven by evaporation, whereas for DisALEXI-PM, it is primarily
driven by transpiration. Although no ground-truth instrumentation exists for this field,
visual inspection indicates a newly planted vineyard, characteristic of having little vine
biomass and drip irrigation installed. If irrigation is substantial and creates a wetted soil,
E is likely to contribute a larger fraction to ET, aligning with the DisALEXI-PT results.
Although differences in E and T are nearly equal and opposite for most areas surrounding
the sites, spatial patterns indicate that DisALEXI-PT produces larger ET estimates over
areas of higher LAI and lower LST (except for OLA) on these dates when compared to
DisALEXI-PM (Figure 10). In terms of total ET between DisALEXI-PT and DisALEXI-PM,
we find little difference between the approaches, with values remaining ≤ 0.75 mm day−1

in either direction, aligning with the results presented in the prior sections.
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4. Discussion

The evaluation of DisALEXI-PT and DisALEXI-PM indicates little difference in the
magnitude and accuracy of their daily total ET estimates when compared to observations
at vineyard and orchard sites. However, the evaluation of contributions from individ-
ual fluxes E and T for DisALEXI-PT and DisALEXI-PM show considerable differences,
both in comparison to CEC-derived fluxes and to one another. As the name of each im-
plies, DisALEXI-PT and DisALEXI-PM differ in the initial and subsequently iteratively
adjusted derivation of Tc, with DisALEXI-PT using a modified Priestley-Taylor approach
and DisALEXI-PM using the Penman-Monteith. Such a difference allows VPD, and po-
tential advective conditions, to be explicitly accounted for in the DisALEXI-PM approach
(omitted in DisALEXI-PT). Aligning with past studies [38,40,43], DisALEXI-PM performs
best under advective conditions (sites RIP and VAC) when analyzing partitioned E and T
estimates. However, regardless of differences in E and T, summation equates to analogous
DisALEXI-PT and DisALEXI-PM total ET estimates, suggesting advective conditions only
affect partitioned estimates and not total ET within the proposed modeling frameworks.
Improvements in DisALEXI-PM-derived E and T can be attained by utilizing more site-
specific rc values rather than holding the rc constant at 50 s m−1. These results align
with [43], where TSEB based on the Penman-Monteith formulation overestimated T, but
TSEB based on utilizing a site-specific rc value improved T estimates. Work is underway
to address this limitation within the DisALEXI-PM approach by implementing the results
of [43] within the DisALEXI framework, including the transition of site-specific, empirically
driven relationships into more physically based relationships that can be applied at scale,
similar to [77].

Under drought conditions and the threat of continued water restrictions for agricul-
tural irrigation in the state of California, many parcels of land are being fallowed, creating
more instances of irrigated cropland adjacent to dry barren parcels of land. Such a situation
is likely to lead to increased horizontal advection of hot/dry air across irrigated fields, in-
creasing the evaporative demand and causing latent heat fluxes to exceed available energy
over irrigated fields. Therefore, careful consideration should be taken when validating
satellite-based ET models over California. An example of such an instance was shown
at site RIP, where advective conditions caused large differences between the closed and
unclosed observed ET. A comparison of the DisALEXI-PT- and DisALEXI-PM-derived ET
to the observed ET at RIP showed a strong negative bias to the energy-balanced closed
ET estimates for high ET values (ET ≥ 4 mm day−4), whereas the biases improved greatly
when compared to the unclosed estimates for the same time period.

DisALEXI-PT and DisALEXI-PM similarly adjust Ta until the aggregated ET converges
with the ALEXI ET. However, given differences in the derivation of Tc, these Ta adjustments
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will affect Tc and Ts, and by association, T and E differently. The results suggest that the
DisALEXI-PM ET values converge on the ALEXI ET with more proportionate adjustments
to E and T, whereas the DisALEXI-PT convergence is primarily met with adjustments to E,
the exception being when soil evaporation is ≤ 0 and the Priestley-Taylor term (α) is allowed
to change from its initially assigned value (Equation (4)). Therefore, conditions leading
to large differences between the ALEXI ET and the initial aggregated ET can have large
ramifications. Specifically, if the ALEXI ET is considerably larger than the aggregated ET,
DisALEXI-PT will adjust by increasing E. In vineyard and almond systems, where distinct
differences are present between the drip-irrigated canopy and non-irrigated soil, this may
lead to inappropriately high E values. Conversely, when the ALEXI ET is much lower
than the aggregated ET, DisALEXI-PT will adjust by decreasing E, producing reasonable
partitioned estimates of E during the growing season. However, should these conditions
be met in the spring, when the soil moisture content is larger [78–80], decreases in E may
be excessive. The incorporation of DisALEXI-PM may provide a solution by adjusting E
and T more proportionately. Large differences between ALEXI ET and disaggregated ET
were not found during the current study. Future work will look to identify ALEXI pixels
displaying large biases to disaggregated ET based on surface spatial heterogeneity and/or
time of year and test differences between the DisALEXI-PT and DisALEXI-PM approaches.

Spatial analysis mirrors patterns found at the field scale, with DisALEXI-PT showing
elevated E in comparison to DisALEXI-PM, which indicates E values closer to zero over each
site and for most of the surrounding area (Figure 10). Estimates of T are opposite in relation,
with DisALEXI-PM producing larger T estimates over each site and over surrounding
fields. DisALEXI-PT shows more range in T, particularly for low values. The summation
of E and T for both approaches produces analogous ET estimates, with differences of
≤0.75 mm day−1 in either direction over the regions shown. Such maps demonstrate
the differences in the partitioned E and T between approaches despite the similarities in
total ET values. In water-limited agronomic systems where distinct differences are present
between the soil (likely dry during the growing season) and canopy (direct application of
irrigation leading to full canopies), differentiation between E and T is required for improved
irrigation management.

5. Conclusions

The mapping of ET and its individual components of surface evaporation (E) and
canopy-based transpiration (T) at spatial scales suitable for irrigation management has the
potential to lead efforts in the conservation of agricultural water resources and improve
irrigation and water use efficiencies in water-limited systems. This study evaluated the par-
titioning of E and T within the context of the ALEXI/DisALEXI modeling framework using
a modified Priestley-Taylor approach (DisALEXI-PT) and a Penman-Monteith approach
(DisALEXI-PM). Analysis was performed over three wine grape vineyard sites and three
almond orchard sites all located in California for the year 2021. The sites are primary tar-
gets of micrometeorological and biophysical field measurements as part of the USDA-ARS
Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX)
and Tree Remote sensing of Evapotranspiration eXperiment (TREX) projects.

The results indicate that the DisALEXI-PM approach estimates canopy temperatures
roughly 5 ◦C cooler and soil temperatures roughly 5 ◦C warmer when compared to
DisALEXI-PT (average for all sites). These temperature differences cause subsequent
differences in evaporation (E) and transpiration (T) values, with DisALEXI-PM producing
E values 2.69 mm day−1 lower and T values 2.64 mm day−1 higher than those estimated by
DisALEXI-PT. The differences are in part due to DisALEXI-PM accounting for the effects of
VPD, allowing Tc to decrease and subsequently T to increase under more advective condi-
tions. DisALEXI-PT does not have a mechanism to increase T in such a way. The evaluation
of the iterative process required for ALEXI/DisALEXI indicates that the DisALEXI-PM ET
values converge on the ALEXI ET with more proportionate adjustment to E and T, whereas
the DisALEXI-PT convergence is primarily driven by adjustments to E. Such a difference
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may present misguided partitioned fluxes, should the ALEXI ET and the disaggregated
DisALEXI ET be considerably different. Improvement in the DisALEXI-PM-derived E and
T estimates can be attained by incorporating rc values defined by local surface conditions
rather than holding constant at 50 s m−1. Spatial analysis aligns with tower-based evalua-
tions, suggesting that the resulting differences in E and T between the approaches are also
found over areas surrounding each study site.

In water-limited agricultural systems where distinct differences between the soil and
canopy are prevalent, it is important to accurately partition ET into individual contributions
of E and T as the irrigation strategy is likely to focus on reducing water loss from E
rather than T. The analysis presented here has the potential to drive improvements in
the ALEXI/DisALEXI modeling framework to provide more specific soil- and canopy-
consumptive water use information in unique canopy structures characteristic of irrigated
woody perennial crops, allowing for improved irrigation and water use efficiencies in these
water-limited systems.
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