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Abstract: Forest fuel load is the key factor for fire risk assessment, firefighting, and carbon emissions
estimation. Remote sensing technology has distinct advantages in fuel load estimation due to its
sensitivity to biomass and adequate spatiotemporal observations for large scales. Many related works
applied empirical methods with individual satellite observation data to estimate fuel load, which is
highly conditioned on local data and limited by saturation problems. Here, we combined optical data
(i.e., Landsat 7 ETM+) and spaceborne Synthetic Aperture Radar (SAR) data (i.e., ALOS PALSAR) in
a proposed semi-empirical retrieval model to estimate above-ground live forest fuel loads (FLagr).
Specifically, optical data was introduced into water cloud model (WCM) to compensate for vegetation
coverage information. For comparison, we also evaluated the performance of single spaceborne
L-band SAR data (i.e., ALOS PALSAR) in fuel load estimation with common WCM. The above two
comparison experiments were both validated by field measurements (i.e., BloSAR-2008) and leave-
one-out cross-validation (LOOCV) method. WCM with single SAR data could achieve reasonable
performance (R? = 0.64 or higher and RMSEr = 35.3% or lower) but occurred an underestimation
problem especially in dense forests. The proposed method performed better with R? increased by
0.05-0.13 and RMSEr decreased by 5.8-12.9%. We also found that the underestimation problem (i.e.,
saturation problem) was alleviated even when vegetation coverage reached 65% or the total FL4gy,
reached about 183 Tons/ha. We demonstrated our FL,gy, estimation method by validation in an
open-access dataset in Sweden.

Keywords: fire risk; above-ground forest fuel load; water cloud model; SAR; optical data; vegetation
coverage; inversion

1. Introduction

Wildfires have a vital impact on the formation and succession of ecosystems [1,2]. They
can enrich biodiversity and vegetation vertical structure thereby promoting the nutrient
cycle and enhancing vegetation resistance to diseases or insect pests [3,4]. However, an
uncontrolled wildfire may destroy the soil and water conservation ability of vegetation,
release atmospheric greenhouse gases, and even threaten the safety of human life and
property [5-10]. In most forest ecosystems, wildfires are mainly divided into surface fires
and crown fires, in which the above-ground live fuel load (FLagz) is the main energy
resource. Prior knowledge of FL,¢|, (refer to the canopy and stem fuel load) is important
for fire risk assessment, firefighting, and carbon emissions estimation.

The canopy fuel load commonly includes foliage (including needles and leaves),
branch wood, and other suspended biomass such as lichens and mosses [11]. The foliage
fuel load (FFL, referring to the dry weight of needles and leaves per unit area) and branch
fuel load (BFL, referring to the dry weight of branches per unit area) are the main energy
source supporting the spread of crown fire [12-17]. Stem fuel load (SFL, referring to the
dry weight of stems per unit area) can interact with fires and help carry fires although it
is not a substantial loss of biomass [18-22]. Hence, the FL4g;, (i.e., FFL, BFL and SFL) are
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generally affected by fire [18] and play an important role in fire-related factors assessment,
including flame length, fire intensity, fire severity and fuel loss [23-26]. FL4gy is also an
indispensable input parameter for fire behavior models [27-29].

Precise grasp of the spatial distribution of FLsg (i-e., fuel accumulation in two-
dimensional plane space) is helpful for fire managers to assess forest fire risk and manage
fuel load in advance (e.g., planning prescribed burning) and avoid uncontrollable fire
disasters. Traditionally, FL4gy is usually obtained by combining field inventory data
(e.g., diameter at breast height, height, tree species, etc.) and allometric equations. This
kind of method derives the relationship between stand parameters and biomass fractions
by cutting down trees, which is neither a desirable nor effective way [30]. The rapid
development of remote sensing (RS) technology has brought new opportunities for the
quantitative derivation of FL,¢y, since RS can provide adequate spatiotemporal earth
observations from regional to global scale and implement fuel loads assessment even in
rugged topography [11,31,32].

Previous studies mainly utilize single optical data to estimate fuel load. Those studies
focused on the vegetation type classification from multispectral information first, and then
applied the corresponding fuel model [33,34]. For high spatial resolution optical images
(e.g., 0.6 m), the tree scale parameters are also derived to estimate fuel load by image
segmentation technology [32,35]. Although optical data has advantage over vegetation
classification and foliage biomass indication [36], it is not a good indicator of woody
biomass. Because optical data can hardly characterize the vertical structure of forest, and
the saturation point of spectral bands is low (between 15 and 100 Tons/ha) [11,37,38]. On
the contrary, the exploration of SAR data in fuel load estimation is far less than that of optical
data. While there are a number of studies focused on aboveground biomass estimation
using SAR sensors [39-41], there are few specifically targeted at fuel load assessments, and
even fewer that examine components of fuel loads (e.g., foliage, branch and stem).

In this study, we first used spaceborne SAR data in FLg estimation via common
Water Cloud Model (WCM). Next, we introduced the optical data as vegetation information
into common WCM. These two models were both validated by the BioSAR-2008 dataset
and compared with each other. The spatial distribution of FL4g; was mapped using the
optimal model. The overarching objective is to provide accurate information of FLagr
for fire managers, which can effectively guide fuel management work and thus achieve
early prevention, suppression, and response of forest fire by planning prescribed burning,
increasing the distance between fuels, etc.

2. Materials
2.1. Study Site and Ground Measurements

The study area was selected in the forest region of Krycklan which is located in the
boreal zone of Visterbotten county, northern Sweden (64°14'N, 19°46’E). This site covers
6800 ha in total, which is covered mostly by forests with scattered cropland and lakes.
Pine, spruce, and birch are dominant tree species. The terrain is rugged, with an elevation
between 125 and 350 m. The annual mean precipitation and temperature are 600 mm and
1 °C, respectively, and about half of the rainfall happens in snow.

Forest inventory data were obtained from the BioSAR campaign which was carried
out in October 2008. The BioSAR-2008 dataset is available in the European Space Agency
(ESA) Earth Observation campaigns (https://www.esa.int last access 10 December 2022).
In the BioSAR-2008 dataset, a total of 31 forest stands were investigated, whose sizes range
from 2.4 to 26.3 ha. Each stand is arranged with 10 circular sampling plots (radius 10 m). In
each sample plot, the diameter at breast height (DBH) of all trees with a DBH > 4 cm were
measured, and randomly selected 1.5 sample trees in average (according to the proportion
of the basal area) to record their height and age. These field survey data were combined
with allometric equations [42] to obtain different parts of fuel load (i.e., biomass fractions).
The stand-level summaries of the data were obtained by averaging across all sampling
plots. Detailed information about these field inventory data can be found in [43]. However,
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two of the 31 forest stands are located adjacent to the bare land which may distort the
reflected signal. We eliminated these two stands since they were classified as non-forest in
global forest/non-forest maps from ALOS PALSAR data [44], thus resulting in 29 forest
stands shown in Figure 1.
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Figure 1. Geographical location of the study area. (a) The location of study area in Sweden. (b) The
distribution of forest stands.

2.2. Satellite Data

The surface reflectance product of Landsat 7 ETM+ with a spatial resolution of 30 m
was applied as multispectral data in this study. To match the field inventory data, a
preprocessed Landsat 7 ETM+ product (7 October 2008) was selected and downloaded
from Google Earth Engine (GEE) [45]. However, the ETM+ data obtained after the 31 May
2003 has scan-line-off strips due to a problem in the scan line corrector system [46]. Part of
the stands in this study were affected by the gaps. For these stands, all pixels away from
data gaps were extracted and averaged. For those stands that are not affected, all pixels
were extracted and averaged as the observed optical data of each stand. There was no stand
wholly located in the gaps. We compared pixels for which data were missing and for which
data were present by averaging coincident data in the Landsat VCF product. There was a
high correlation between the scan-line gaps and surrounding pixels, and we concluded it
was acceptable to average across stand polygons without the missing pixel data.

The ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-
band Synthetic Aperture Radar) mosaic yearly product with slope-correction and ortho-
rectification was used as spaceborne SAR data in this study [47]. We acquired the product
of 2008 with a spatial resolution of 25 m from GEE. The working wavelength of 23.6 cm
in the L-band makes the sensor signal more sensitive to forest structure and moisture
characteristics thus more suitable for forest monitoring [48]. The digital numbers were
converted to gamma naught (v°) as follows [44]:

vO(dB) =10 x loglo(DNz) — 83 )

where Y is backscatter coefficient in 4B unit and DN is the digital number. The gamma
naught (y°) in dB unit was converted to the linear unit:

v%(dB)

yo(linear) =10"10 (2)

The average of the converted SAR data within each stand is taken as the observed
SAR data of each stand.

Auxiliary data includes vegetation coverage and land cover data. The vegetation
coverage data used in this study is Landsat Vegetation Continuous Fields (VCF). Sex-
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ton [49] generated this 30-m-resolution tree cover percentage dataset by rescaling the
250-m-resolution MODerate-resolution imaging spectroradiometer (MODIS) VCF product
and combining Landsat optical data. The “tree_canopy_cover” band of this product refers
to the percentage of wood vegetation with a height greater than 5 m above the horizontal
ground. They provided four global products at the 30 m resolution in 2000, 2005, 2010
and 2015. Here, we acquired the 2010 epoch from GEE to match field data. The land
cover data used in this study is GlobeLand30 (http://www.globallandcover.com/ last
access 10 December 2022). GlobeLand30 is the first 30 m resolution global land cover data
product with an overall accuracy of 83.5% [50,51], which includes 10 types of land cover,
such as artificial surface, vegetation, etc. There are three products in 2000, 2010 and 2020,
respectively. The product of 2010 was selected for this experiment and for more details
about this product please refer to [51].

3. Methods
3.1. Water Cloud Model (IWCM)

The methods for vegetation parameter inversion based on remote sensing include
physically based models, empirical models (statistical relationships), and semi-empirical
models. Physical models are robust and transferable but have limitations in application due
to their complicated calculations [52]. Empirical models are straightforward and widely
used, but they lack physical meaning and are highly conditioned on local data [53,54].
The semi-empirical models integrate the empirical presentations with the physical model
which sidestep the non-transferability obstacles of empirical methods and the complexity
of physical models [55].

Therefore, the semi-empirical model (i.e., WCM) was applied in this study to simulate
the scattering mechanisms of the forest. The L-band SAR data used in this experiment
has a larger wavelength than the size of leaves, thus it can completely penetrate the forest
canopy and receive signals below the canopy [56,57]. Since the L-band SAR data has strong
penetration, an extended water cloud model which considering the canopy cover was used
to supplement the contribution of gaps in forests to total backscatter [58]. In this model, the
total backscatter is the sum of three parts:

o = (1- va)‘Tgr + fvcffgrf“h +f00019€g (1 - e—th) 3)

The first part represents the direct ground scattering through forest gaps. The second
part represents ground scattering attenuated by forest coverage. The last part represents
direct scattering from vegetation. fy, (739, and Ugeg are fractional vegetation coverage (the
percentage of horizontal ground covered by vegetation), ground backscatter coefficient,
and vegetation backscatter coefficient, respectively. e~*" describes the two-way tree trans-
missivity which is exponentially related to o« (the two-way attenuation per meter of tree
canopy) and h (the thickness of vegetation layer).

By combining the similar items of Equation (3), it can be expressed by a simpler form:

0f = 04 Tpor + 00eg (1= Tror) )

Tfor = (1 _fvc) +fvce_ah 5)

where Ty,, describes the forest transmissivity. In biomass estimation, Tf,, can be replaced
with a biomass related function [52]:

o) = agre_‘SB + af)eg (1 — e“SB) (6)

where 0 is the forest transmissivity parameter and B is aboveground biomass. In the
forest with gaps, additional compensation for (Tgeg is necessary since the backscatter from

the forest still contains a certain contribution of ground. Equation (6) can be inverted to
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get ageg from those so-called “dense-forest” pixels backscatter (72 f and biomass value of
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3.2. Semi-Empirical Modelling for Combining Optical and SAR Data
3.2.1. Limitation of WCM

In previous applications of WCM presented in Section 3.1, SAR is the only remote
sensing data source used to calibrate the model and retrieve the target parameters. The
single parameter (§) that needs calibration in WCM can be expressed as the following
equation according to Equations (4)—(6):

5= —% 1n(1 — foc+ fvce*“h) ®)

For each determined biomass value (B), the forest transmissivity () can be further
abstracted as the following functional relationship:

d =F(foc, &, h) )

That is, the forest transmissivity coefficient which describes the trend of backscatter
with the increase of biomass is determined by three physical variables: fractional vegetation
coverage (fuc), two-way signal attenuation («), and vegetation layer thickness (/). The
last two variables can be indicated by SAR well. However, SAR shows a relatively weak
representative ability of f,c compared to optical data. On contrary, many studies have used
optical data to derive vegetation coverage since optical information (including spectral
reflectance and vegetation indices (VIs)) is sensitive to vegetation coverage [59-66].

3.2.2. Vegetation Coverage Information Expressed by Optical Data

The optical reflectance signal from vegetation canopy is composed of both soil infor-
mation and vegetation information which can be divided by vegetation coverage [67,68].

Riotal = fchUEg + (1 - va)Rsoil (10)

where Ryos41, Roeg and Ry,;; represent the total reflectance, the pure vegetation reflectance,
and the pure soil reflectance, respectively. Hence, the vegetation coverage can be derived
inverting Equation (10) [66,69]:

o Rtotul - Rsoil

= 11
fvc Rveg - Rsoil ( )

It should be noted that the pure soil reflectance and the pure vegetation reflectance
can be considered as constant in a certain study area [61]. Therefore, Equation (11) can be
simplified as:

foc=aR+b (12)

where a and b are constants in the study area and R is the optical information of pixels
including spectral bands and Vls.
In addition, according to Equation (10) and WCM, the forest transmissivity of optical
data can be expressed as:
Tfor =1 *fvc (13)

Similar to WCM described above, here the forest transmissivity of optical data can be
replaced by an exponential function of biomass:

Tfor =1— foc= e ™8 (14)
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where T expresses the forest transmissivity of optical data and B is aboveground biomass.
Then, the vegetation coverage can also be expressed as:

foe =1~ e P (15)

3.2.3. Introducing Optical Data as Vegetation Coverage Information into WCM

This study introduces optical data as vegetation coverage information into WCM.
Assuming that can enhance the model’s ability to simulate ground reflection signals in
dense forest areas by supplementing vegetation coverage information.

Here, the vegetation coverage is introduced into WCM first:

0 0 ,—6Bys
Ojp — Ogr
_ d 8
o fuc = [ohe™®® + L

—0B
e (1-¢)) @ fuc (16)
where ® represent any one of the four arithmetic (i.e., addition, subtraction, multiplication,
and division) and f is vegetation coverage. Then, the new model is obtained by express
foc using optical data:

0 0 ,—0F;f
o oo.e
_ d r
ato ®R = [(70 oF f 8

1—b—e7F
—6F

a

where (7?, (fgr and Ug f represent the total backscatter, the ground backscatter, and the dense
vegetation backscatter, respectively; R is optical information including spectral bands and
Vis; F4 7 and F are “dense forest” fuel load and fuel load, respectively; a, b, 6, and T are the
four empirical coefficients in the new model.

3.3. Model Calibration and Fuel Load Retrieval

For the calibration of the new model expressed in Equation (17), there are seven

unknowns to be determined: (Tgr, Ug £ b, T, 6 and F; 7 agr represents the backscatter

coefficient of the surface without vegetation cover (i.e., ground) and ¢ 7 is the backscatter
coefficient of dense vegetation cover. The specific calibration will be described in detail
later. The other parameters (i.e., 4, b, T, and ¢) related to the forest structure characteristics
were optimized by the non-linear Levenberg-Marquardt algorithm [70]. Fy is the fuel load
value of the “dense forest” class. Here, we selected the 90 percentile of fuel load value in
our study area as F;¢ according to [52,71].

The acquisition of (Tgr needs auxiliary data including Landsat VCF product and Glo-
beLand30 to ensure the reliability of the selected candidate “ground” pixels, since non-soil
or non-vegetation pixels (such as water body, impervious surface, etc.) may cause fluctua-
tion of backscatter coefficient, resulting in distorted (Tgr. Considering there are very few
pixels with vegetation coverage of zero after excluding non-soil or non-vegetation pixels,
the pixels with vegetation coverage less than 25% were also included in candidate “ground”
pixels. Taking the study area as the center, all pixels within the radius of 250 pixels that
match the above conditions were selected. The median value of the backscatter coefficient
of all selected pixels was taken as Ugr since the median value can represent the centralized
trend of data.

The acquisition of ¢!, is similar to (rgr. The corresponding Landsat VCF product of
the study area should be used as auxiliary data. By selecting the pixels with vegetation
coverage greater than 70%, the median value of all pixels was taken to represent the
reflection signal under dense vegetation coverage in the study area.

Since the data were under constraints of limited size, the leave-one-out cross-validation
(LOOCYV) method [72] was used to validate the new model. In the LOOCV method, each
sample was excluded one by one, and the model is calibrated with the remaining samples
to predict the excluded sample.
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The new model has no corresponding numerical solution. Thus, the look-up table
(LUT) methodology was applied to acquire the optimal fuel load from the observed RS
data. To build the LUT, the calibrated model was executed forward with one input (i.e.,
fuel load value) to generate simulated RS data. The range of fuel load value in LUT was set
according to field FL4gr, measurements.

After the completion of LUT, the fuel load was retrieved through a cost function that
quantized the similarity between the simulated and observed signals to search out the
best-fitted simulated RS signal in LUT with the observed one. In this experiment, we used
the absolute difference as the cost function:

MAE, = |.usim - .uobs| (18)

where pg;,, and p,ps represent the simulated and observed RS data, respectively.
The determine coefficient (R?, Equation (19)), root mean square error (RMSE, Equation (20))
and relative RMSE (RMSEr, Equation (21)) were used as accuracy indicators for models:

—1(Pi —P)(0i -~ 0)

R? = (19)

VI (B~ P)*\/xi (0; - O
RMSE = \/ % YL (P—0;)? (20)
RMSEr :RM?SE (1)

where P; and O; represent predicted and observed fuel load, respectively, P and O represent
the mean of predicted and observed fuel load, respectively, and n is the sample size.

3.4. Comparison Experiments

In this study, the WCM with L-band spaceborne SAR data was first applied to FL4¢L,
(above-ground forest fuel loads, indicating FFL, BFL and SFL) inversion. Further, the new
model was developed to retrieve FL 4y, by introducing optical data as vegetation coverage
information into WCM. Performances of WCM and new model were adequately verified
using the leave-one-out cross-validation (LOOCV) method. The flowchart of the new model
for FLgr, estimation from SAR and optical data is illustrated in Figure 2.

| Fuel Load Measurements || ALOS PALSAR | | Landsat? ETM+ | [Landsat VCF||GlobeLand30]

(HV) . (B1-B5, B7) (NDV1, NDTll, NDIL,RVI)
L |

N ) 12
- Backscatter coefficient . Spectral Reflectance Vegetation Indices

¥

Validation Training “Infroducing optical data as vegetation
Samples Samples -__coverage information into WCM ..
¢ mn ‘ nto }
SN [
Acquisition of model parameter cgf_ Acquisition of model parameter 02,_7
o T : R R
Modcl Calibraﬁdn
e - ‘ o - ———
: C01}§t!'qct!0n oril'Loo!(-urprT“:Vuh_lre - Input Data
Cost Function Method or Model
I " B I
av
Leave One Out ¥ " Output Data

i Retrieved Fuel Loads

Figure 2. Methodological flowchart of FL4¢ estimation from integrated optical and SAR data with
new model.
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In addition to the six spectral bands of Landsat, four VIs were also selected for new
model exploration in this study. The VIs including Normalized Difference Infrared Index
(NDIIswirz) [73], Normalized Difference Tillage Index (NDTI) [74], Normalized Difference
Vegetation Index (NDVI) [75], and Ratio Vegetation Index (RVI) [76] are listed in Table 1.
The composition of NDIIswre and NDTI both contain short wave infrared band, which
indicates the vegetation water content and dry matter situation well [54,77-79]. NDVI
composed of Red and NIR bands with minimal water absorption is also sensitive to
vegetation coverage thus a good indicator of vegetation biophysical variable [54,80]. RVI
that defined as the ratio of Green band to Blue band here since chlorophyll absorbs red and
blue light, reflects green light and carotenoids also absorb blue light [81].

Table 1. VIs introduced into WCM for FLyg; retrieval.

Vegetation Indices Equations References
Normalized Difference Infrared Index NDII = % [73]
Normalized Dliffezlenc?fTillage Index NDTI = % [74]

Normalized Difference _ NIR—RED
Vegetation Index NDVI = NrreReD [75]
Ratio Vegetation Index RVI = Green [76]

Based on the 10 optical variables (spectral bands and vegetation indices) in this paper,
we explored all the possible combinations. To verify the effectiveness of the proposed
algorithm, the experimental results were compared with those before the introduction of
optical data. A total of 41 experiments were conducted in this study (Table 2).

Table 2. Experimental setup in modelling FL4¢.

Experiment Data Source Input Format
WCM HV HV

*HV ® Blue

*HV ® Green

*HV ® Red

HYV, Blue, Green, Red, NIR, *HV ® NIR
SWIR1, SWIR2, *HV @ SWIR1
NDII, NDTI, NDVI, *HV ® SWIR2
RVI *HV @ NDII
*HV @ NDTI

*HV @ NDVI

*HV ® RVI

* @ represents any one of the four arithmetic (i.e., addition, subtraction, multiplication, and division).

New model

4. Results

The performance of FL4¢), inversion using WCM with SAR is shown in Table 3. It can
be found that the WCM with HV polarization of L-band spaceborne SAR data has potential
in FL4¢y inversion with reasonable performance (R% = 0.64 or higher).

Table 3. Retrieval results of FL4¢, (FFL, BFL and SFL) by HV polarization backscatter alone using
WCM.

Fuel Load R? RMSE RMSEr
FFL 0.70 1.85 29.9%
BFL 0.70 423 27.4%
SFL 0.64 25.80 35.3%

The quantitative estimation of FL4g, can be further improved by adding optical
information with the new model. The performances of new models that performed better
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than WCM are listed in Table 4. It can be found that there are many new models that perform
better than WCM through introducing optical data as vegetation coverage information into
WCM (R? increased by 0.05-0.13 and RMSEr decreased by 5.8-12.9%).

Table 4. Retrieval results of FL4g;, (FFL, BFL and SFL) by the combination of HV backscatter and
optical information (band or vegetation index) with new model. The bold underlined items are the
best retrieval results.

Fuel Load R2 RMSE RMSEr Combination
Format

0.79 1.38 22.3% HV/Green
0.77 1.49 24.0% HV/RVI
0.75 1.56 25.2% HV-SWIR1
0.75 1.59 25.7% HV/SWIR1
0.75 1.60 25.8% HV-SWIR2
0.74 1.64 26.5% HV-Blue

FFL 0.72 1.64 26.5% HV /Blue
0.72 1.69 27.3% HV/Red
0.71 1.73 27.9% HV/SWIR2
0.71 1.74 28.1% HV x NDII
0.70 1.62 26.1% HV-Green
0.70 1.71 27.6% HV/NIR

BFL 0.75 3.34 21.6% HV/RVI
0.71 3.44 22.3% HV-Green
0.71 3.56 23.1% HV/Green
0.71 3.56 23.1% HV/NIR
0.77 16.38 22.4% HV/NDII
0.77 16.56 22.7% HV/NDTI
0.74 17.35 23.7% HV/NDVI
0.69 19.13 26.2% HV-Blue
0.69 19.68 26.9% HV + Blue
0.68 19.90 27.2% HV-Green

SFL 0.67 19.68 26.9% HV x RVI
0.67 19.90 27.2% HV-Red
0.67 20.33 27.8% HV + Green
0.66 19.89 27.2% HV /Blue
0.66 21.10 28.9% HV-NIR
0.65 20.89 28.6% HV-SWIR2
0.64 20.83 28.5% HV +Red

For foliage fuel load, when SAR data were used alone for inversion, R? is 0.70 and
RMSE is 1.85 Tons/ha (Table 3). Almost all optical data can be fused with HV backscattering
coefficient to improve accuracy (Table 4). The R? was increased from 0.70 to 0.79 and the
RMSEr was decreased from 29.9% to 22.3%. Taking the Blue band as an example, among all
the four combination ways of HV and Blue band (addition, subtraction, multiplication, and
division), both the inversion performance of ‘HV-Blue’ and “‘HV /Blue’ are better than that
of single HYV, so as to other optical variables. In other words, the addition of any optical
information in this study will certainly improve the retrieval results of FFL since leaves
are distributed in the forest canopy, and the multispectral signals can reflect the density of
green vegetation and biochemical characteristics of leaves such as leaf type, chlorophyll,
etc. Among all the inversion results of FFL by new model, ‘"HV /Green’ is the best (RZ: 0.79;
RMSE: 1.38 Tons/ha; RMSEr: 22.3%), as shown in bold underlined of Table 4.

For branch fuel load, when SAR data were used alone for inversion, the performance
was similar to FFL with R? of 0.70 Tons/ha and RMSE of 4.23 Tons/ha (Table 3). As for the
new model, the most optical information can be suitably integrated with HV backscatter
which reduced RMSE especially the Green band and RVI, indicating that the addition of
optical information improves the performance of WCM for forest backscatter simulation.
The reason is that optical data is sensitive to vegetation coverage, as described in Section 3.2.
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h

Among all the results obtained by the new model, "HV/RVT" is the best (R2: 0.75; RMSE:
3.34 Tons/ha; RMSEr: 21.6%), as shown in bold and underlined in Table 4.

For stem fuel load, the performance of WCM with HV backscatter alone was worse
than BFL or FFL (Table 3), while two kinds of sensor information compensate each other
well especially SAR data and optical vegetation index (Table 4). Specifically, a single
multispectral band has little effect on SFL inversion, while VIs selected in this study have
a more obvious effect. Among all new model inversion results of SFL, ‘HV /NDII’ is the
best (R%: 0.77; RMSE: 16.38 Tons/ha; RMSEr: 22.4%), as shown in bold and underlined in
Table 4.

More detailed information about the best results of FL4g, inversion using WCM and
the new model is shown in Figure 3. For FL,4¢, retrieved by HV backscatter alone using
WCM (the first row in Figure 3), the dispersion of observed fuel load and predicted by WCM
is scattered, and there is a distinct underestimation at the high value. The R? ranges from
0.64 to 0.70 while the RMSEr ranges from 27.4% to 35.3%. The fusion of optical information
and HV polarization using the new model effectively alleviated the underestimation of
high value and improved the model performance (R? ranges from 0.75 to 0.79 while the
RMSEr ranges from 21.6% to 22.4%).

HV HV < HV
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Figure 3. Comparison of FL4¢r, (FFL, BFL and SFL) inversion results using WCM (top row) and the
new model (bottom row) on BioSAR-2008.

Based on the optimum models, we derived the spatial distribution of FL4g; in study
area and shown in Figure 4. Considering the scan-line-off strips in Landsat 7, we filled these
gaps using ENVI 5.3 software before mapping to make the final fuel load map spatially
continuous. The product was masked by the GlobeLand30 to exclude those non-forest areas.
It can be found that the distribution of these three types of fuel loads in space presents a
good consistency.



Remote Sens. 2023, 15,5

110f18

4 SKm

A )

64°15'0"N 64°16'30"N

64°13'30"N

19°44'0"E

A BT T [ Tonsha N[ [ Tonsha

A IS
EX N SR 9]/ /l/j /3 5 6.,0 lg‘/q lq./& /‘9_22 22-26 ?6._;0 &)

19°47'30"E 19°51'0"E 19°44'0"E 19°47'30"E 19°51'0"E 19°44'0"E 19°47'30"E 19°51'0"E

FFL BFL SFL

S .5g 355, Mgy 85y 00/00\[/ ;’/5_ 13;/30

15'0"N

64°

130N

64°13

Figure 4. The spatial distribution of FL4¢y in the study area.

The performances of WCM and new model with different vegetation coverage are
shown in Figure 5. The observed and predicted fuel loads by WCM and new model
were sorted by fractional vegetation coverage. The black dots, blue dots, and red dots
are observed fuel loads, predicted fuel loads by WCM, and predicted fuel loads by the
new model, respectively. The dotted lines of corresponding colors are the trend lines
fitted by these points. It can be found that with the increase in vegetation coverage, the
fuel load shows an upward trend. Particularly, the trend of the red line (predicted fuel
loads by new model) is more similar to that of the black line (observed fuel load) than the
blue line (predicted fuel loads by WCM). Moreover, the WCM using HV alone shows an
underestimation problem in the case of dense fuel loads especially when FFL > 4 Tons/ha,
BFL > 10 Tons/ha, and SFL > 30 Tons/ha. However, the new model can effectively alleviate
this problem by introducing optical data as vegetation coverage information into WCM.
Specifically, the new model did not exhibit any underestimation even when vegetation
coverage reached 65% and the total FL4;, reached about 183 Tons/ha.
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Figure 5. Comparison of model performance with different vegetation coverage.

5. Discussion
5.1. Significance of this Study and Analysis with Previous Studies

FL¢ are generally affected by fire [18] and play an important role in the assessment
of fire-related factors [23-26]. However, there are few previous studies on the quantitative
inversion of fuel load using spaceborne SAR data. In fact, previous studies have shown high
sensitivity of SAR on forest biomass components and stand structure [82-86]. In particular,
the long band electromagnetic waves are sensitive to forest biomass and water content thus
can be used as a direct measurement of forest biomass and structure [87], thus derived
many successful applications of SAR in above-ground biomass estimation [52,88-91]. The
results in this study are consistent with previous studies that SAR can be a good indicator
of FL4gr, (i-e., biomass components) with R? is 0.64 or higher and RMSEr is 35.3% or lower.
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The reason of this result may due to the strong penetration ability of SAR signals and its
ability to characterize forest vertical structure [87].

However, single SAR data-based biomass estimation studies exhibited different satu-
ration levels limited to forest types, sensor characteristics, and other factors [82,92]. That
is, the sensitivity of backscatter signal to biomass decreases when the vegetation coverage
reaches a certain biomass density [93]. To overcome such limitations, SAR and optical data
were synergized to estimate biomass using empirical methods [91,94,95]. Indeed, multi-
spectral signals can reflect the density of green vegetation and biochemical characteristics
of leaves such as leaf type, chlorophyll, etc. Thus, the combination of two types of data
performs better than single data, which can effectively enhance the saturation point of
dense vegetation area [96,97].

Following previous studies, this study developed a semi-empirical retrieval method
of above-ground forest fuel load (FLagr, indicating FFL, BFL, and SFL) estimation by
introducing optical data as vegetation coverage information into WCM. Results showed that
the new model which combines optical information and SAR data performed better than
WCM using spaceborne SAR data alone (R? increased by 0.05-0.13 and RMSEr decreased
by 5.8-12.9%). In addition, the new model did not exhibit any underestimation even
when vegetation coverage reaches 65% and the total FL4g, reaches about 183 Tons/ha.
These results are also consistent with previous studies that the integration of SAR and
optical data can alleviate the saturation problems [96,97]. The optical data is helpful to
fitting forest transmissivity parameter because of its sensitivity to vegetation coverage,
thus simulating remote sensing signals realistically. It is expected that this method can
be applied in forest fire prevention and control in the future by providing spatiotemporal
continuous distribution information of fuel load.

5.2. References for Subsequent Fuel Load Research

For FFL, it can be found that all optical variables selected in this study combined with
HV polarization appropriately can effectively improve the inversion (e.g., increased R?
or decreased RMSE), especially the Green band. Since the vegetation cover type of the
study area is evergreen coniferous forest, even in autumn or winter, the leaves still contain
chlorophyll, which has strong reflection characteristics to green light. For BFL, most fused
data in proper combination mode contribute to inversion by decreasing RMSE, especially
the SWIR band and RVI. For SFL, the combination of VIs and HYV is better than that of
spectral bands. Most VIs selected in this experiment contribute to SFL inversion since they
are composed of near-infrared and short wave infrared which correlated to biomass [98].
The best performance of SFL inversion is “HV /NDII” since NDII is composed of NIR and
SWIR2 bands which can indicate the vegetation water content and dry matter status [54,77-79].

On the whole, the WCM with L-band spaceborne SAR data has great potential in FL4¢,
estimation. Although WCM exhibits an underestimation problem in dense mature forests,
it performed well in sparse young forests. The addition of optical information effectively
alleviates this problem, and has the most obvious effect on improving FFL, followed
by BFL and SFL. This may be because leaves are distributed in the canopy and affect
spectral reflectance by the physical scattering of light and the radiation energy absorbed by
chemical absorption. Scattering is caused by the optical inhomogeneity of the plant surface
and cell internal structure. Absorption is caused by pigments in visible light, water, and
other biochemical substances such as cellulose, lignin, starch, and protein in the infrared
band [99]. Although it is difficult for optical signals to penetrate the forest canopy to detect
stem due to their limited penetration ability, the addition of optical data still improved the
accuracy of SFL inversion. This may be attributed to the optical data supplemented the
vegetation coverage information in WCM. Moreover, the optical remote sensing data has a
high temporal resolution which could describe the phenological character of vegetation
and indicate the vegetation coverage well. Therefore, the addition of optical data can
enhance the ability of new models in simulating the remote sensing signal of landscapes
and effectively improve the estimation accuracy of FLagy .
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5.3. Sources of Error and Uncertainty

There are some sources of uncertainty in this experiment. The field data calculated
through forest structure parameters and allometric equations may introduce some error,
since the allometric equations were derived from statistical relationships of limited field
data which cannot describe all trees characteristics. The selection of “ground” candidate
pixels may also introduce errors, since those pixels with less vegetation covered may be
also selected as an approximation of pure “ground” pixel. In addition, the field data used
in this study did not provide any soil moisture or information during sampling, which
are determinants for radar backscatter. So, considering the uncertainties may be caused
by soil moisture, we only selected the HV polarization to perform models in this study.
In the HV polarimetric channel, volume scattering is the dominant scattering mechanism,
and its scattering center of the interferometric phase is closer to the vegetation canopy
top than that of the HH channel. The contribution of the ground layer is less important
than that of the vegetation layers in HV polarimetric channel [100-105]. In future work,
we will try to quantitatively consider the soil moisture in fuel load estimation by SAR
(including cross and co-polarizations). The application of SAR data still needs a lot of work.
In addition to the soil moisture, there is also the interference of rainfall and wind speed on
SAR observation signals, especially in the analysis of time series SAR data [106,107]. In the
future fuel load estimation work, we will further take these factors into account.

5.4. Model Operation and Optimization

The models in this study are semi-empirical models, which means that the model
operation and optimization were all dependent on field data. Therefore, we divided the
field measurements into calibrate data and validate data first. Then, the parameters in the
models were calibrated by the calibration data. The model performance was validated
by the validation data. During the LOOCYV process, the parameters were decided by
28 groups of field data each time. That is, these parameters were determined by the
calibration data without any artificial influence. Specifically, these parameters were fitted
by the non-linear Levenberg—Marquardt algorithm which provides a unique solution for
certain calibration data. In fact, the calibration of these parameters is definitely a process
of optimization. Because the non-linear Levenberg—Marquardt algorithm is actually a
parameter optimization algorithm, it can provide the most optimized parameters by fitting
the model with the calibration data. That is, the parameters fitted by non-linear Levenberg—
Marquardt algorithm were indeed the optimal one under the giving calibration data. To
sum up, the calibration and optimization of parameters is the same process, which is
completed and determined by the non-linear Levenberg-Marquardt algorithm and the
calibration data.

The inversion results of the forest fuel load also show that the calibration of the
parameters meets expectations. In addition, the combination of SAR and optical data has
better correlation performance than single SAR data. Take the Green band and FFL as an
example, the R? is higher when combined with the HV and Green band (Figure 6).
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Figure 6. The correlation relationship between HV and FFL (a), and HV/Green and FFL (b).
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6. Conclusions

Fuel load is a critical factor in fire ignition, spread, and intensity. Few previous
studies used spaceborne SAR data to estimate fuel load. This study explored the potential
of spaceborne L-band SAR data in live fuel load estimation using WCM and achieved
reasonable performance (R? = 0.64 or higher and RMSEr = 35.3% or lower). However,
the results of using WCM exhibited the underestimation phenomenon in dense mature
forest. We presented a new model by introducing the optical data as vegetation coverage
information into WCM, since the multispectral signals can reflect the density of green
vegetation and biochemical characteristics of leaves such as leaf type, chlorophyll, etc.
The new model performs better than WCM in FL4g) inversion with R? increased by
0.05-0.13 and RMSEr decreased by 5.8-12.9%. Besides, the new model did not show any
underestimation problem even when vegetation coverage reaches 65% and the total FLagr
reaches about 183 Tons/ha. Specifically, the addition of most optical parameters (e.g., bands
or VIs) especially the Green band in this study could certainly improve the inversion results
of FFL since leaves are distributed in the forest canopy. As for BFL, the Green band, SWIR
band and the RVI contributed to its estimation. As for SFL, the VIs (e.g., NDII, NDTI,
and NDVI) have a more obvious effect than optical bands on SFL inversion. These results
show the feasibility of using the proposed new model to estimate FL4¢, based on optical
and SAR data, which provides a good application prospect for forest fire risk warning,
prevention, and extinguishing.
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