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Abstract: The inherent unknown deformations of inverse synthetic aperture radar (ISAR) images,
such as translation, scaling, and rotation, pose great challenges to space target classification. To
achieve high-precision classification for ISAR images, a deformation-robust ISAR image classification
network using contrastive learning (CL), i.e., CLISAR-Net, is proposed for deformation ISAR image
classification. Unlike traditional supervised learning methods, CLISAR-Net develops a new unsuper-
vised pretraining phase, which means that the method uses a two-phase training strategy to achieve
classification. In the unsupervised pretraining phase, combined with data augmentation, positive
and negative sample pairs are constructed using unlabeled ISAR images, and then the encoder is
trained to learn discriminative deep representations of deformation ISAR images by means of CL. In
the fine-tuning phase, based on the deep representations obtained from pretraining, a classifier is
fine-tuned using a small number of labeled ISAR images, and finally, the deformation ISAR image
classification is realized. In the experimental analysis, CLISAR-Net achieves higher classification
accuracy than supervised learning methods for unknown scaled, rotated, and combined deformations.
It implies that CLISAR-Net learned more robust deep features of deformation ISAR images through
CL, which ensures the performance of the subsequent classification.

Keywords: inverse synthetic aperture radar (ISAR); image deformation; target classification;
unsupervised pretraining; contrastive learning (CL)

1. Introduction

Inverse synthetic aperture radar (ISAR) plays an important role in space target observa-
tion, benefiting from its ability to provide high-resolution ISAR images of targets in airspace
and aerospace all-day and all-weather [1–5]. The two-dimensional (2D) high-resolution
ISAR image contains information about the shape, structure, and electromagnetic (EM)
scattering characteristics of the target, so it is usually used for accurate classification of
space targets [6,7]. However, the main scattering centers of the target and the ISAR imaging
projection plane (IPP) will change rapidly due to the maneuverability of the target during
the observation, and the effective rotation vector will also be time-varying. Furthermore,
the variation of radar parameters, such as bandwidth, wavelength, imaging accumulation
angle, etc., as well as target motion, will bring serious unknown deformations to ISAR im-
ages, such as translation, rotation, and scaling [8]. Nowadays, deformation-robust feature
extraction and accurate classification for ISAR images are gaining attention [9–11].

With the booming of deep learning, several advanced deep learning methods are being
used for synthetic aperture radar (SAR) image detection [12–14] and classification [15–24].
For SAR image classification, some frameworks for few-shot learning [16–18] map SAR
images to the embedding space, and then implement classification using distance metric in
the embedding space. Bai et al. [19] proposed a sequential SAR image classification network
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by fusing the temporal and spatial features of multiple SAR images, which improved the
classification accuracy. The above data-driven SAR image classification methods cannot
overcome the dependence on manually labeled samples. In [20], the authors constructed a
hybrid network combining data-driven and model-driven methods. By adding the prior
information of SAR images, the hybrid network is able to capture both the distribution and
structural features of SAR images simultaneously. The method makes full use of abundant
unlabeled SAR images, which not only reduces manual annotation, but outperforms the
only data-driven methods. Moreover, the addition of high-level semantic features of optical
images further improves the classification accuracy of SAR images [21–24]. However,
these SAR image classification techniques are not applicable to ISAR images. This is
because the ISAR targets are non-cooperative [25], and the imaging parameters are usually
unknown, so it is a little difficult to obtain the accurate ISAR images through parameter
estimation. Therefore, it is necessary to research specific classification methods suitable for
ISAR images.

For deformation ISAR image classification, the following aspects have been thor-
oughly investigated in the existing literature: (1) extracting deformation-robust features
from the image domain [26–28]; (2) extracting deformation-robust features from the trans-
form domain [8,29,30]; and (3) constructing deformation-robust networks [31–34]. For
robust feature extraction from the image domain, Tien et al. [26] assumed the distribu-
tion of strong scattering centers is fixed and constructed a template library based on the
geometric relationship of scattering centers. However, the above assumption is hard to
hold because the main scattering centers will vary with the target motion. For polarimet-
ric ISAR (Pol-ISAR) images, invariant features can be extracted by Ω− Ψ− Φ [27] and
Cloude–Pottier H/αML [28] invariant decomposition, and then classification is performed
by template matching or convolutional neural network (CNN). However, the 2D shape and
size information of the target is not effectively utilized.

For methods that extract deformation-robust features from the transform domain,
Lee et al. [8] performed the trace transformation in a small angular region to extract
deformation-invariant features. Park et al. [29] extracted translation- and rotation-invariant
features from ISAR images by polar mapping of the 2D Fourier transform images. However,
both the trace transformation and coordinate system transformation lose the structure and
shape information of the target. Lu et al. [30] converted the ISAR images to the log-polar
representations by polar transformation. Although the method extracts the robust features
for scaling and rotation deformations, the origin of log-polar transformation is difficult to
predict accurately.

In the construction of deformation-robust networks, an amount of research has
emerged in recent years. The spatial transformer network (STN) [35] can be used for
deformation correction of ISAR images. In [31,32], the effect of image deformation is allevi-
ated by affine adjustment of the input ISAR image using a double-layer STN. Although
satisfying performance is achieved, inappropriate affine parameters may cause the edges
of the STN-adjusted images to exceed the boundaries. In order to better preserve the
edge information, the inverse compositional spatial transformer network (IC-STN) [36] is
designed to deal with the boundary effect of STN [33]. Although IC-STN can perform better
adjustment on deformation ISAR images, the numerous parameters make it difficult to train.
For sequential ISAR images, Xue et al. [32] designed a deformed shrink and a deformed
affine ConvNet to adjust the image deformation, and then a bidirectional long short-term
memory (BiLSTM) network is used to fuse the features of sequential images. Moreover, a
hybrid transformer network is proposed for sequential ISAR image classification, which
can extract local and global features of an ISAR image sequence [34]. These sequential ISAR
image classification networks can obtain more information from deformation ISAR images,
but the training process is more time-consuming, and the acquisition of sequential images
also requires more stringent observation conditions.

All the above ISAR image deformation-robust networks are deep CNN models based
on supervised learning. Due to the complexity of the networks, abundant labeled samples
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are required to provide supervised information during training to avoid overfitting. In the
real world, manual annotation for acquired ISAR images requires extensive engineering
experience and theoretical foundation. Currently, the self-supervised learning (SSL) training
paradigm without labels is gaining popularity. SSL hopes to learn valuable representations
for classification from large amounts of unlabeled data [37]. The encoded representations
provided by SSL are more indicative of potential connections between samples than pale
human-made annotations. SSL usually contains two phases: unsupervised pretraining and
classifier fine-tuning. Generally, the pretraining is implemented by a pretext task, and the
deep representations obtained by the pretext task is helpful for downstream classification.
Recently, contrastive learning (CL) [38–41] has achieved impressive performance in SSL.
Based on the pretext task of instance discrimination [42], CL pretrains an encoder to
distinguish samples from different categories by comparing their deep representations in
the embedded feature space.

Inspired by SSL, a deformation-roubust ISAR image classification network using
CL, i.e., CLISAR-Net, is proposed, which adopts a two-phase training strategy. In the
unsupervised pretraining phase, a convolutional encoder is designed using deformable
convolution instead of regular convolution. Then, CLISAR-Net will extract discriminative
representations of unlabeled ISAR images through the convolutional encoder. The positive
sample pairs will be clustered together, while the negative sample pairs will be separated
in the feature space using InfoNCE (Noise Contrastive Estimation) loss [43,44]. In the fine-
tuning phase, based on the deep representations obtained by the pretrained convolutional
encoder, labeled ISAR images are utilized to fine-tune the downstream classifier, so as to
realize deformation ISAR image classification. Experimental results indicate that CLISAR-
Net achieves better classification accuracy than existing supervised learning methods on
the scaled, rotated, and combined deformation ISAR image datasets consisting of four
satellites. The main contributions include:

1. Based on CL, the unsupervised ISAR image deep representation learning and clas-
sification are explored for the first time. Without manual annotation, we design an
unsupervised pretraining encoder to learn transferable deep representations of ISAR
images. With the help of deep representations, deformation ISAR image classification
can be achieved using labeled training samples.

2. Deformable convolution is applied in the convolutional encoder for contrastive learning.
Compared with the regular CNN, the convolutional encoder with the addition of de-
formable convolution is more adaptable to various deformation modes of ISAR images.

3. In the downstream deformation ISAR image classification task, using only 5% of
labeled samples, the classification accuracy of CLISAR-Net is comparable to that
of CNN under 100% supervision. This provides strong evidence that the features
learned by unsupervised learning are more discriminative than those learned by
supervised learning.

The rest of this article is organized as follows. Section 2 elaborates the causes of
ISAR image deformation. Section 3 states the structure of the encoder in CLISAR-Net,
the loss function of CL, and the optimization process of the encoder. Section 4 presents
the experimental details and analyzes the results. Section 5 discusses the superiority of
CLISAR-Net. Finally, Section 6 concludes this article and prospects the future work.

2. Causes of ISAR Image Deformation

Based on the EM scattering mechanism, ISAR images usually reflect the structure infor-
mation of the body and solar panel of the space target [45,46]. However, the change in radar
parameters and target motion will lead to the deformation of ISAR images, which makes
the space target classification more difficult. In this section, the ISAR target observation
geometry is established, and the causes of ISAR image deformation are discussed.

According to the theory of ISAR imaging [47], the target motion can be decomposed
into translation and rotation. During translational motion, the Doppler produced by
each scattering center is identical, which is not helpful for ISAR imaging. Moreover, the
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translational motion will lead to the range migration, which needs to be compensated
accurately before imaging [48]. When the target rotates around the rotation center, the
Doppler of the scattering center will change, which contributes to azimuth imaging. As
shown in Figure 1, the target can be described by the turntable model after translation
compensation, where O is the rotation center of the target, rS is the position vector of the
scattering center S, Llos is the radar line-of-sight (LOS), and Ω is a three-dimensional (3D)
rotation vector, which can be decomposed into Ωe and Ωl . The IPP is defined as the plane
perpendicular to Ωe and passing through Llos. For complex motion targets, the IPP varies
due to the rapid change in Ω, which makes the distribution of scattering centers not fixed.
Furthermore, the time-varying effective rotation vector Ωe also increases the difficulty of
azimuth scaling.

Figure 1. ISAR observation geometry.

For the scattering center S, its 2D ISAR image can be obtained using the range-Doppler
(RD) algorithm by fast Fourier transform (FFT):

sRD(r, fd) = AS sinc
(

2B
c
(r− rS)

)
sinc(Ta( fd − fdS)) (1)

where {
rS = rS · Llos
fdS = 2

λ (Ωe × rS · Llos)
(2)

where AS is the amplitude of the scattering center S, c is the speed of light, B indicates the
radar bandwidth, r is the range bin, fd is the Doppler bin, rS is the projection of rS onto
Llos, fdS is the Doppler of S, Ta is the imaging time interval, sinc(x) = sin(πx)/(πx), λ
indicates the wavelength of the carrier frequency, and · and × denote the inner and cross
product, respectively. The ISAR image is a superposition of multiple scattering centers on
the target.

For non-cooperative ISAR targets, the parameters B, Ta, Llos, Ωe, etc., always vary
with the observation conditions and target motion, resulting in ISAR image deformation.
Figure 2 illustrates various deformations for the same target due to different imaging
parameters and target motion.
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Figure 2. Various deformations of ISAR image for the same target. (a) Referenced ISAR image,
(b) ISAR image azimuth scaling caused by accumulation angle, (c) ISAR image range scaling caused
by radar bandwidth, (d) ISAR image rotation caused by target rotational motion, and (e) ISAR image
deformation caused by the variation of main scattering centers.

Figure 2 shows that different accumulation angles and radar bandwidths will cause
scaling deformation of the ISAR image, while the change in target motion direction will
produce rotation deformation. During the target rotation, the change in main scattering
centers of the target causes obvious fluctuation of the pixel intensity and makes the ISAR
image exhibit more significant deformation. Such characteristics of ISAR images pose
great difficulties for ISAR image classification. At present, it is an important task to study
classification techniques with strong robustness to ISAR image deformation.

3. Proposed Method

In this section, CLISAR-Net is proposed to obtain the deep representations of defor-
mation ISAR images through unsupervised CL, and then realize ISAR image classification
based on the deep representations. This method belongs to unsupervised learning and
contains two phases: pretraining and fine-tuning. As shown in Figure 3, the encoder in
CLISAR-Net is first pretrained with unlabeled data in the pretraining phase to obtain the
deep discriminative representations of the deformation ISAR images. In the fine-tuning
phase, to accommodate specific downstream classification tasks, the classifier is fine-tuned
with labeled training samples on the basis of the obtained deep representations. Actually,
the traditional CNN-based deformation ISAR image classification networks are trained
directly from the second phase, and they are all supervised learning methods.

Figure 3. General flow chart of the training of CLISAR-Net.

3.1. Unsupervised Pretraining With Unlabeled Data

Compared with the traditional deformation ISAR image classification networks,
CLISAR-Net can be pretrained without any manually labeled samples. This is because CL
can motivate the encoder to learn higher-level representations by comparing the similar-
ity between amounts of unlabeled samples and empower it to distinguish samples from
different categories. In the pretraining phase of CLISAR-Net, the following issues should
be considered: the structure of the encoder, loss function of CL, and the optimization of
the encoder.
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3.1.1. Structure of the Encoder

The goal of CL is to learn an encoder that can extract the deep representations of
samples. In CLISAR-Net, the encoder contains two parts: the convolutional encoder and
the projection head, in which the former is what we hope to obtain through unsupervised
pretraining. Figure 4 shows the structure of the encoder. The convolutional encoder is
stacked with five convolution-pooling blocks, and regular 2D convolutions are used in the
former three blocks to learn simple features of ISAR images, such as textures and edges.
The latter two blocks are 2D deformable convolutions, the variable convolution kernel can
be more adaptive to the structure variation of the deformation ISAR images.

Figure 4. Structure of the encoder for obtaining deep representations of deformation ISAR images in
CLISAR-Net.

In the convolutional encoder, Conv.8@3× 3BN/ReLU indicates that there are eight reg-
ular convolution kernels sized 3× 3 with batch normalization (BN), and ReLU represents
rectified linear unit activation. Max pooling@2× 2 indicates a max-pool layer with a kernel
size of 2× 2 and step of 2. For the mth channel of the input feature map I(l)m , the nth channel
of the output feature map O(l+1)

n is computed as follows:

O(l+1)
n = σ

(
BN

(
M

∑
m

conv
(

I(l)m , K(l+1)
n

)
+ b(l+1)

n

))
(3)

where K(l+1)
n and b(l+1)

n are the learnable weights and bias of the (l + 1)th layer in the nth
channel, and M is the number of channels for the input feature map. The pixel value of the
output feature map at (x, y) is calculated by:

conv(I, K)x,y =
P−1

∑
p=0

Q−1

∑
q=0

Ix−p,y−qKp,q (4)

where P×Q is the kernel size, and Ix−p,y−q and Kp,q denote the pixel values of the input
feature map I and the convolution kernel K at (x− p, y− q) and (p, q), respectively. BN
for a mini-batch data X is defined as follows:

BN(X) = α× X − µB√
σ2

B + ε
+ β (5)
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where µB and σ2
B are mean and variance of the data, ε is a small value that avoids division

by zero, and α, β are learnable parameters. Gradient disappearance and explosion can be
alleviated by BN. σ(·) is a ReLU non-linear activation function, which can be written as:

σ(X) = max(0, X) (6)

Pooling can usually be seen as a downsampling operation. For the mth channel of I(l)m ,
after the max-pooling window with a kernel size of 2× 2 and step size of 2, the pixel value
of the output feature map at (x, y) is:

P(l+1)
n = max

(
I(l)m (2x + p, 2y + q) | p = 0, 1; q = 0, 1

)
(7)

In the convolutional encoder, Deform conv.64@3× 3BN/ReLU denotes that there are
sixty-four deformable convolution kernels sized 3× 3, also with BN and a ReLU activation.
The deformable convolution adds the learned offset to each sampling position of the
receptive field, making the deformable sampling locations able to sample the structural
information around the pixel of interest. Additionally, the extracted features are more
adaptable to scaling, rotation, and other deformations of ISAR images.

The implementation process of deformable convolution is shown in Figure 5. The
offset field is first generated using the offset generator to obtain the offset values, then the
input feature maps will be resampled using bilinear interpolation to obtain the deformation
feature maps. Finally, the output feature maps are generated by regular 2D convolution on
the the deformation feature maps.

Figure 5. Illustration of 3× 3 deformable convolution.

The offset generator is a convolution layer with 3× 3 kernels, and the offset field
is obtained by convolution on the input feature maps. For any pixel position (x, y) of
I ∈ RFx×Fy (Fx × Fy is the size of the input feature map), two offsets xoffset and yoffset

are learned in the offset field, i.e., offsets ∆F = {(xoffset, yoffset)} ∈ R2M×Fx×Fy , where
2M is the number of channels. Since xoffset and yoffset may be fractional, the new position
(xnew, ynew) = (x + xoffset, y + yoffset) obtained by resampling usually deviates from integer
pixels. Therefore, the bilinear interpolation is required to calculate the pixel value at
(xnew, ynew) in the deformation feature maps from the pixels around (x, y) in the input
feature maps. Assuming that Ix,y is the pixel value at (x, y), the output pixel value Îxnew,ynew

is calculated as follows:
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Îxnew ,ynew =
Fx

∑
x

Fy

∑
y

Ix,y max(0, 1− |xnew − x|)max(0, 1− |ynew − y|) (8)

After the above bilinear interpolation to obtain the deformation feature maps, the final
output feature maps can be obtained by regular 2D convolution. The whole computation
of deformable convolution is summarized as follows:

deform.conv(I, K, ∆F)x,y =
P−1

∑
p=0

Q−1

∑
q=0

Îx−p+xoffet ,y−q+y offset Kp,q (9)

where Î denotes the deformation feature maps.
After Deform conv.128@3× 3BN/ReLU, the obtained output feature maps are converted

into feature vectors using average pooling. For an input ISAR image sample xi, the
feature vector representation obtained by the above convolutional encoder fψ(·) is denoted
as hi = fψ(xi), where ψ denotes all the learnable parameters. Then, the feature vector
representation is mapped into the feature space by a projection head gξ(·), where ξ is the
learnable parameters of gξ(·). In this article, the projection head is constructed by two
fully connected layers. For the input xi, the vector representation output by the projection
head is:

qi = gξ(hi) = W (2)σ
(

W (1) fψ(xi) + b(1)
)
+ b(2) (10)

where W , b ∈ ξ indicate the learnable parameters of the projection head. Recent work has
shown that calculating the contrastive loss on qi is more efficient than hi [38]. The above
convolutional encoder fψ(·) and projection head gξ(·) constitute the base encoder fq(·) for
extracting the deep representations from input ISAR image samples. The loss function of
CL is elaborated below.

3.1.2. Loss Function of CL

Traditional supervised learning methods are based on category discrimination, which
need to provide the category information manually. CL is a pretext task based on instance
discrimination, that is, each sample is regarded as a category, so the samples themselves
provide supervised information, and no manual annotation is required. Therefore, the
cross-entropy loss function commonly utilized in category discrimination is no longer
suitable for instance discrimination, and it is necessary to be modified.

Consider a training set X = {x1, x2, · · · , xZ} ∈ Rd×Z, where xi denotes the ith training
sample and d is the dimension of the data. Another view of the training set X can be written
as X̃ = {x̃1, x̃2, · · · , x̃Z} ∈ Rd×Z, where xi and x̃i are different views of the same sample,
and they are treated as a positive sample pair, while xi and x̃j(j = 1, 2, · · · , Z, j 6= i) form
Z − 1 negative sample pairs. To facilitate the distinction, we denote x̃i as x+i and x̃j as
x−j . For a sample xi, it is encoded as qi = fq(xi), and similarly, x+i and x−j are encoded as

q+i = fq̃
(

x+i
)

and q−j = fq̃

(
x−j
)

, respectively, where fq(·) is the base encoder that needs to
be pretrained, and fq̃(·) is the auxiliary momentum encoder that is necessary for pretraining
fq(·). The contrastive loss needs to realize the following relationship:

sim
(
qi, q+i

)
� sim

(
qi, q−j

)
(11)

where sim(·, ·) is a function that measures the similarity of two samples. In CL, the InfoNCE
loss function is often used to implement the above relationship. The InfoNCE loss of the
deep representation qi is defined as follows:

L
(

qi, q+i ,
{

q−j
})

= − log
exp

(
sim

(
qi, q+i

)
/τ
)

exp
(
sim

(
qi, q+i

)
/τ
)
+ ∑{q−j

} exp
(

sim
(

qi, q−j
)

/τ
) (12)
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where τ is a temperature hyperparameter. In the above equation, the number of negative
sample pairs is Z − 1, which means the upper limit of j is Z − 1. As described in the
definition, this loss function is a Z-way log loss based on softmax classifier, which tries
to classify qi as q+i [49]. In this article, the vector dot product is utilized to measure the
similarity of two samples, i.e.,

sim
(
qi, q+i

)
= qT

i q+i , sim
(

qi, q−j
)
= qT

i q−j (13)

In the InfoNCE loss, each q+i is a positive sample of qi and also participates in the
calculation of InfoNCE loss as a negative sample of all qj(j 6= i). Actually, a positive sample
pair in CL provides supervision to each other.

3.1.3. Optimization of the Encoder

As mentioned above, an auxiliary momentum encoder is also needed for pretraining
the base encoder. As shown in Figure 6, the momentum encoder and the base encoder
form a parallel dual-stream architecture, and they share the same network structure and
hyperparameters [50]. For an ISAR image sample xi, the data-augmented view of it is x+i ,
they form a positive pair. Similar to Equation (10), x+i is fed into the momentum encoder to
obtain its deep representation:

q+i = gξ̃

(
fψ̃

(
x+i
))

(14)

where fψ̃(·) and gξ̃(·) are the convolutional encoder and projection head of the momentum
encoder. Based on the above description, the positive pair, i.e., qi and q+i , can be produced
by the two encoders, respectively, and they are both vectors with dimensions of C.

Figure 6. The optimization flow of the encoder in CLISAR-Net. The update of base encoder is realized
by backpropagation of the InfoNCE loss, and the momentum encoder is updated in a momentum way.

CL requires an amount of negative pairs when calculating InfoNCE loss; this is because
a rich set of negative samples allows the encoder to learn features that are more conducive
for discrimination [42]. Consider a mini-batch with N training samples, when CLISAR-Net
is optimized by gradient descent on a mini-batch, the number of negative pairs is N − 1.
To satisfy the InfoNCE loss calculation, a large mini-batch size is needed, but increasing
the mini-batch size will bring some adverse effects. For example, as the mini-batch size
increases, more memory space is needed, but most standard computing platforms struggle
to support such requirements. At the same time, a large mini-batch size will reduce the
optimization efficiency. Inspired by previous works [39,42], this article introduces a memory
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bank to store the negative samples. As shown in Figure 6, the encoded representations of
the momentum encoder in the previous mini-batches are stored in the memory bank in
turn. In order to utilize more negative pairs, the encoded representations of the momentum
encoder in the current mini-batch are not used as negative samples in the InfoNCE loss
calculation but are provided by the memory bank. That is, in the current mini-batch, the
positive samples are provided by the momentum encoder, while the negative samples come
from the memory bank. By calculating the InfoNCE loss, the base encoder can be updated
through backpropagation.

During the pretraining of CLISAR-Net, the encoded representations q+ of the mo-
mentum encoder in each mini-batch are stored into the memory bank in turn. Since the
samples in each mini-batch have no intersection, for the output representations q of the
current mini-batch, the q+ of all the previous mini-batches can be viewed as negative
samples of q. This means that output representations of the momentum encoder for the
previous mini-batches can be reused. Supposing that the length of the memory bank is K,
then K = k× N. The introduction of the memory bank expands the number of available
negative samples, so the number of negative sample pairs is equal to the length of the
memory bank and no longer depends on the mini-batch size. Such a design provides more
negative sample pairs for the InfoNCE loss calculation and ensures the effectiveness of CL.
Moreover, traversing negative samples from the memory bank does not require additional
computations, which provides a guarantee for efficient training of CLISAR-Net.

It should be pointed out that the negative samples in the memory bank vary dynami-
cally. In CLISAR-Net, the memory bank is maintained as a queue of negative samples, and
the encoded representations output by the momentum encoder will be enqueued into the
memory bank after each mini-batch training is completed. When the new representations
cannot be enqueued into the memory bank, the representations of the oldest mini-batch will
be dequeued from the memory bank, and the new output of the current mini-batch will be
enqueued, thereby updating the negative samples dynamically. As the momentum encoder
is continuously optimized, and the output encoded representations are gradually updated,
the representations of the oldest mini-batch are the most outdated and the most inconsistent
with the newest ones. Therefore, in order to maintain the consistency of negative samples,
it is necessary to maintain a slowly updated memory bank. In addition, a slowly and
dynamically updated memory bank requires less memory space and is more beneficial to
maintain the consistency of negative samples than storing the representations of all samples
in the dataset [42].

The utilization of the memory bank makes it difficult to update the momentum
encoder by loss backpropagation, so the optimization of the momentum encoder needs
to be adjusted accordingly. The momentum encoder in CLISAR-Net provides negative
samples that support InfoNCE loss calculation, and the negative samples play a partially
supervisory role during training, so there should not be too much difference between them.
That is, the update of the momentum encoder should be smooth. In this article, we use a
momentum update to optimize the momentum encoder, namely:

ψ̃← mψ̃ + (1−m)ψ, ξ̃ ← mξ̃ + (1−m)ξ (15)

where m ∈ [0, 1) is a momentum coefficient, which is the meaning of the word momentum.
It shows that only the parameters ψ and ξ of the base encoder are updated by InfoNCE
loss backpropagation. The momentum update in Equation (15) makes the parameters ψ̃
and ξ̃ evolve more smoothly than ψ and ξ. Therefore, although the negative samples in
the memory bank are generated by different momentum encoders, the differences between
them are small. The experimental results in [39] prove that a larger momentum coefficient
will make the momentum encoder update more smoothly, which is also more beneficial to
maintain the consistency of negative samples.
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3.2. Classifier Fine-Tuning With Labeled Data

The deep representations of deformation ISAR images obtained by pretraining in
Section 3.1 cannot be directly used for classification. Therefore, in this section, the pretrained
convolutional encoder is transferred to the downstream supervised learning, and a linear
classifier is fine-tuned using labeled samples. The diagram of classifier fine-tuning in
CLISAR-Net is shown in Figure 7. Specifically, throw away the projection head of the
pretrained base encoder, and only the convolutional encoder is retained. In the fine-
tuning process, the convolutional encoder is frozen and is directly used to extract the deep
representations of labeled training samples. In the fine-tuning phase, only the lightweight
classifier will be trained, and the convolutional encoder is not involved. Due to the
low complexity of the linear classifier, a small number of labeled samples are sufficient
for training.

Figure 7. Diagram of classifier fine-tuning in CLISAR-Net.

4. Experiments
4.1. Data Generation

To verify the unsupervised deep representation learning ability of the proposed
CLISAR-Net for deformation ISAR images and the classification ability using labeled
samples, we conduct experiments on a high-resolution ISAR image dataset including four
satellites, i.e., CALIPSO, Cloudsat, Jason-3, and OCO-2 [51]. In experiments, echoes of
the target are generated using the shooting and bouncing ray (SBR+) method in the HFSS
2021R2 software developed by Ansoft in the United States.

In the EM calculation, we set radar works in the central frequency of 17 GHz with HV
polarization, the imaging bandwidths are 1 GHz (16∼17 GHz), 1.5 GHz (16∼17.5 GHz),
and 2 GHz (16∼18 GHz). The azimuth angle γ is 0 ◦∼359 ◦ with an interval of 0.05◦. The
accumulating angle ∆θ is set to 4◦, 5◦, and 6◦, respectively. Meanwhile, in order to verify the
classification performance of CLISAR-Net for satellite targets at different elevation angles,
we set two elevation angles for four satellites, respectively, i.e., ϕ1 = 55◦ and ϕ2 = 60◦ for
CALIPSO, ϕ1 = 50◦ and ϕ2 = 55◦ for Cloudsat and Jason-3, and ϕ1 = 65◦ and ϕ2 = 70◦

for OCO-2. The RD algorithm is used to perform continuous high-resolution ISAR imaging.
For the convenience of classification, each ISAR image is cropped to 128× 128 pixels. The
optical images, CAD models, and typical ISAR images of CALIPSO, Cloudsat, Jason-3, and
OCO-2 are shown in Figure 8.
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Figure 8. The optical images, CAD models, and ISAR images of (a) CALIPSO, (b) Cloudsat, (c) Jason-3,
and (d) OCO-2.

As stated in Section 2, different radar parameters will cause scaling deformation of
ISAR images; meanwhile, the target motion will cause rotation deformation of ISAR images.
In practice, scaling and rotation deformations usually occur simultaneously during obser-
vation, resulting in complex deformation of ISAR images. Therefore, in the experiments,
three datasets are generated, namely scaled, rotated, and combined deformation datasets,
to evaluate the performance of CLISAR-Net on ISAR images with different deformations.
The details of these three datasets are described below.

4.1.1. Scaled Deformation Dataset

To evaluate the classification ability of CLISAR-Net for scaled deformation ISAR
images due to range and azimuth scaling, a scaled deformation dataset is generated, as
shown in Table 1. The elevation angles of the four satellites in the training and test sets are
all ϕ1. The other imaging parameters are ∆θ = 5◦, B = 1 GHz and ∆θ = 6◦, B = 2 GHz
for the training set, while becoming ∆θ = 6◦, B = 1.5 GHz and ∆θ = 4◦, B = 2 GHz for
the test set. The above parameter settings cause the training and test ISAR images to be
scaled along both the range and azimuth dimensions. In the scaled deformation dataset,
the training sets have 2836 samples, and the test sets have 2840 samples.

Table 1. Detailed parameter settings of training and test sets for scaled deformation dataset.

Class

Training Set Test Set

∆θ = 5◦, B = 1 GHz

ϕ1, γ = 0 ◦∼359◦
∆θ = 6◦, B = 2 GHz

ϕ1, γ = 0 ◦∼359◦
∆θ = 6◦, B = 1.5 GHz

ϕ1, γ = 0 ◦∼359◦
∆θ = 4◦, B = 2 GHz

ϕ1, γ = 0 ◦∼359◦

CALIPSO 355 354 354 356
Cloudsat 355 354 354 356
Jason-3 355 354 354 356
OCO-2 355 354 354 356

Total number 2836 2840

4.1.2. Rotated Deformation Dataset

The rotated deformation ISAR image dataset is shown in Table 2. The same bandwidths
and accumulating angles are used in the training and test sets, i.e., ∆θ = 5◦, B = 1 GHz
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and ∆θ = 6◦, B = 2 GHz. However, the elevation angles of the four satellites in the training
set are all ϕ1, and in the test set are all ϕ2. Furthermore, a quarter of the azimuth angles are
lost in the training set, i.e., the azimuth angle γ is 90 ◦∼359 ◦. Such a setting can verify the
ability of CLISAR-Net to extract discriminative representations of the rotated deformation
ISAR images when the training samples do not cover all the observation intervals. In the
rotated deformation dataset, there are 2116 samples in the training set and 2836 samples in
the test set.

Table 2. Detailed parameter settings of training and test sets for the rotated deformation dataset.

Class

Training Set Test Set

∆θ = 5◦, B = 1 GHz

ϕ1, γ = 90 ◦∼359◦
∆θ = 6◦, B = 2 GHz

ϕ1, γ = 90 ◦∼359◦
∆θ = 5◦, B = 1 GHz

ϕ2, γ = 0 ◦∼359◦
∆θ = 6◦, B = 2 GHz

ϕ2, γ = 0 ◦∼359◦

CALIPSO 265 264 355 354
Cloudsat 265 264 355 354
Jason-3 265 264 355 354
OCO-2 265 264 355 354

Total number 2116 2836

4.1.3. Combined Deformation Dataset

In practical observations, ISAR images usually exhibit a combined deformation of
scaling and rotation. To analyze the classification robustness of CLISAR-Net in this scenario,
a combined deformation ISAR image dataset is constructed, and the parameter settings
are shown in Table 3. The elevation angle in the training set is ϕ1, while changing to ϕ2
in the test set. The other parameters are ∆θ = 5◦, B = 1 GHz and ∆θ = 6◦, B = 2 GHz for
the training set, while they are ∆θ = 6◦, B = 1.5 GHz and ∆θ = 4◦, B = 2 GHz for the test
set. The combined deformation dataset includes both scaling and rotation deformations, so
this group of ISAR images has the most obvious deformations. Same as the rotated dataset,
1/4 of azimuth angles are lost in the training set for the combined dataset, which increases
the difficulty of classification. In the combined deformation dataset, there are 2116 training
samples and 2840 test samples.

Table 3. Detailed parameter settings of training and test sets for the combined deformation dataset.

Class

Training Set Test Set

∆θ = 5◦, B = 1 GHz

ϕ1, γ = 90 ◦∼359◦
∆θ = 6◦, B = 2 GHz

ϕ1, γ = 90 ◦∼359◦
∆θ = 6◦, B = 1.5 GHz

ϕ2, γ = 0 ◦∼359◦
∆θ = 4◦, B = 2 GHz

ϕ2, γ = 0 ◦∼359◦

CALIPSO 265 264 354 356
Cloudsat 265 264 354 356
Jason-3 265 264 354 356
OCO-2 265 264 354 356

Total number 2116 2840

4.2. Experimental Setup
4.2.1. Data Augmentations

The data augmentations employed in the training of CLISAR-Net include: (i) random
rotation and scaling for the ISAR images with the probability of 0.5, where the rotation
angles are uniformly distributed in ±90◦, and the scaling ratio is uniformly distributed
in ±0.2; (ii) random horizontal or vertical flips for the ISAR images with the probability
of 0.5; (iii) random center cropping (by 0.8× ∼ 1.2×) for the ISAR images and resizing
them to 128× 128 pixels; and (iv) performing ISAR images amplitude normalization to
eliminate the effect of amplitude. The above data augmentations provide more deformation
patterns and enable the pretrained base encoder of CLISAR-Net to learn more deformation
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information. Figure 9 visualizes the data augmentations that we use in this work. During
pretraining, two independent data augmentation operators are randomly generated from
the above augmentations and applied to each training sample xi to obtain two different
views, and then they are fed into the base encoder and momentum encoder, respectively.
Since deep representations of deformation ISAR images were obtained by pretraining, only
the normalization operator is used for data normalization in classifier fine-tuning.

Figure 9. Illustrations of the data augmentation operators. (a) Original, (b) rotated, (c) scaled down,
(d) scaled up, (e) horizontal flip, (f) vertical flip, (g) center crop, resize, and horizontal flip, and
(h) normalized ISAR image.

4.2.2. Parameter Settings

In the pretraining phase, the structure of the convolutional encoder is shown in
Figure 4. The convolutional kernels are all sized 3 × 3 with a step size of 1 × 1. The
max pooling layers are all sized 2× 2 with a step size of 2. The kernel numbers in five
convolution-pooling blocks are 8, 16, 32, 64, and 128, respectively. For the projection head,
the nodes of the two fully connected layers are 128 and 64. The momentum encoder
has exactly the same structure as the base encoder, which is very important to maintain
consistency. For the pretraining , the CosineAnnealing learning rate schedule is used with
a maximum learning rate of 0.001 and a half-period of 50 epochs. The mini-batch size is
256, and the Adam optimizer is used to train for 500 epochs. Meanwhile, the momentum
coefficient m = 0.999, the length of the memory bank is 8192, and the temperature τ = 0.1.
The pretraining is implemented by two NVIDIA RTX3090 GPUs using distributed training.

In the fine-tuning phase, the linear classifier connected behind the average pooling
layer contains two fully connected layers with 64 and 32 nodes, and the nodes of the
softmax layer are 4. The OneCycle learning rate schedule is used to train the linear classifier.
Based on the Adam optimization, the classifier is trained for 200 epochs with a maximum
learning rate of 0.001 . The mini-batch size is 32. The retraining and the testing process are
both performed by one NVIDIA RTX3090 GPU. The entire CLISAR-Net is implemented by
Pytorch on Ubuntu20.04 Linux system.

4.2.3. Comparison Methods

In order to verify the ability of CLISAR-Net for deformation ISAR image classification,
four supervised and a semi-supervised classifiers are compared in the experiments. Specifi-
cally, four CNN-based supervised models are chosen, including CNN, spatial transformer–
convolutional neural network (ST-CNN) with a double layer of STN [31], Deform-CNN
using the deformable convolutional network (DCN) [32], and CNN connected to BiLSTM
(CNN-BiLSTM) [52]. Moreover, the support vector machine (SVM) is chosen as a semi-
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supervised model. Among them, CNN has the same structure as the convolutional encoder
described in Section 3.1.1, except that the deformable convolution in the last two blocks is
replaced by regular convolution. The ST-CNN shares the same convolution kernels with
CNN, but it adds a double layer of STN before CNN. The structure of Deform-CNN is
identical to the convolutional encoder described in Section 3.1.1. It must be pointed out
that the Deform-CNN here is trained in a supervised paradigm. A double layer of BiLSTM
connected behind CNN constitutes the CNN-BiLSTM, which can be used to process the se-
quential ISAR images. The input sequential ISAR images of CNN-BiLSTM can be obtained
by a continuous sliding window [52]. In the experiments, the length of the sliding window
is set to 10, and the step size is 1.

Based on the Adam optimization, the parameter updates of the above networks are all
achieved by cross-entropy loss backpropagation. Similarly, these supervised networks for
comparison are trained using the CosineAnnealing learning rate schedule with a half-period
of 25 epochs. The maximum learning rate is 0.001 for all the networks except ST-CNN,
which has a learning rate of 0.0001. This is because STN is sensitive to the learning rate,
and a smaller learning rate is helpful for STN to train the ISAR images. The mini-batch size
is set to 32, and 200 epochs are trained.

4.3. Classification Results

In the experiment, all the unlabeled training samples are used to pretrain the convolu-
tional encoder in CLISAR-Net to obtain the deep representations of ISAR images. Then,
based on the learned representations, the linear classifier in CLISAR-Net is fine-tuned using
5% and 100% of the labeled training samples, respectively, to evaluate the classification
ability of CLISAR-Net for deformation ISAR images. Table 4 presents the classification
results on the three datasets. We can see that the proposed CLISAR-Net achieves the
best classification accuracy under the above conditions. The increase in the number of
labeled samples provides more supervised information for training, so better performance
is obtained when 100% of labeled samples are used.

Table 4. Classification accuracy (%) of CLISAR-Net and other methods using 5% and 100% of labeled
training samples on the three datasets.

Methods
Training with 5% of Labeled Samples Training with 100% of Labeled Samples

Scaled Data. Rotated Data. Combined Data. Scaled Data. Rotated Data. Combined Data.

CNN 77.50 73.59 71.87 91.58 87.98 84.96
ST-CNN 82.71 78.77 76.62 93.69 89.77 86.65
Deform-CNN 83.21 78.23 75.96 93.73 88.68 86.58
CNN-BiLSTM 86.34 82.78 80.82 94.33 92.58 91.73
SVM 87.54 84.69 82.64 95.81 93.72 92.39
CLISAR-Net 91.34 86.61 84.23 98.10 96.37 95.85

When only 5% of labeled samples, i.e., 35 samples per category in the scaled dataset
and 26 samples per category in the rotated and combined dataset, are used to train the
classifiers, CNN has the lowest classification accuracy because there are no mechanisms
to deal with ISAR image deformation. The STN network in ST-CNN can adjust the input
deformation ISAR image to the view that is easier to recognize. Therefore, the classification
accuracy of ST-CNN on the three datasets is improved by 5.21%, 5.18%, and 4.75% over
CNN, respectively. Deform-CNN is more adaptable to the deformations of ISAR images
through deformable convolution, so it obtains comparable classification ability with ST-
CNN. CNN-BiLSTM achieves bidirectional feature extraction and fusion for sequential
ISAR images and extracts more deformation-robust features than a single image, thus
achieving the best performance among the four supervised models. The classification
accuracy of CNN-BiLSTM is 8.84%, 9.19%, and 8.95% higher than CNN on the three
datasets. Based on the deep feature representations of deformation ISAR images obtained
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by CLISAR-Net in the unsupervised pretraining phase, SVM achieves slightly higher
classification performance than the other four supervised learning methods. However,
the proposed CLISAR-Net achieves the best classification performance. The classification
accuracy of CLISAR-Net on the scaled, rotated, and combined deformation datasets reaches
91.34%, 86.61%, and 84.23%, respectively.

When the classifiers are trained using 100% of labeled training samples, the classi-
fication accuracy of CLISAR-Net reaches 98.10% for the scaled dataset, 96.37% for the
rotated dataset, and 95.85% for the combined deformation dataset. It outperforms the
best performing supervised model CNN-BiLSTM by 3.77%, 3.79%, and 4.12%, respectively.
Based on the deep representations obtained by unsupervised pretraining, the SVM classifier
also performs slightly better than the other four supervised methods. It indicates that in
the pretraining phase, based on instance discrimination, CL makes the encoder learn deep
discriminative representations of deformation ISAR images, which provides a great help to
the classification.

To facilitate the analysis, Figure 10 gives the histograms of the classification results
when using 5% and 100% of labeled samples to train the above classifiers. We can summa-
rize that the classification accuracy is the highest for the scaled deformation dataset and
the lowest for the combined deformation dataset. Particularly, the classification accuracy
for CNN, ST-CNN, and Deform-CNN shows a significant decrease on the rotated and
combined deformation datasets. It implies that the traditional end-to-end model for classi-
fication based on a single image is difficult to learn deformation-robust features of complex
deformation ISAR images when part of the training samples are missing continuously.
Comparatively, CNN-BiLSTM maintains a relatively high classification performance on
the rotated and combined deformation datasets by fusing the information of multiframe
ISAR images. When 100% of the labeled training samples are used to fine-tune the classifier,
SVM and CLISAR-Net are less affected by sample misses, especially CLISAR-Net, which
shows a more balanced classification performance on the three datasets. Furthermore,
from Figure 10a, the classification accuracy of CLISAR-Net exceeds 90% for the scaled
deformation dataset, with only 5% of labeled samples, while the CNN is less than 80%. It
can be concluded that the smaller the number of labeled training samples, the more obvious
the superiority of CLISAR-Net.

Figure 10. Comparisons of involved methods on three datasets. (a) Classification results using 5% of
labeled training samples and (b) classification results using 100% of labeled training samples.

4.4. Computational Cost

In this subsection, the computational cost of the proposed CLISAR-Net versus other
methods is analyzed, including the computational complexity and the inference time,
i.e., the average period for acquiring a frame of an image label in the test process. We
measure the computational complexity of the model in terms of the number of trainable
parameters. As shown in Table 5, the ST-CNN has the largest number of parameters and
the longest inference time due to the addition of a double layer of STN. The number of
parameters in Deform-CNN is slightly higher than that in CNN because 2D offsets need to
be calculated. The double layer of BiLSTM in CNN-BiLSTM similarly brings an additional
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number of parameters to the model. The SVM itself has no parameters to be retrained,
so the inference time is the shortest. For CLISAR-Net, the pretrained encoder adopts the
same structure as Deform-CNN, and only the linear classifier needs to be retrained in the
downstream classifier, so the number of trainable parameters is medium. Moreover, the
average inference time for obtaining a frame of an image label is only 0.1125 ms. The above
analysis shows that CLISAR-Net can achieve the optimal classification performance with
less computational cost, which also proves the superiority of CLISAR-Net.

Table 5. Comparisons of the number of trainable parameters and inference time between CLISAR-Net
and existing methods.

Methods Number of Parameters (K) Inference Time (ms)

CNN 124.38 0.0834
ST-CNN 374.41 0.1862
Deform-CNN 146.28 0.1031
CNN-BiLSTM 326.78 0.0932
SVM / 0.0196
CLISAR-Net 267.73 0.1125

5. Discussion

To demonstrate the superiority of CLISAR-Net for deformation ISAR image classifi-
cation, Section 5.1 discusses the classification results when different numbers of labeled
training samples are used to train the classifiers. Section 5.2 discusses the classification
performance of CLISAR-Net when different azimuth angle ranges are included in the
training set. Additionally, the features learned by the CLISAR-Net and CNN-BiLSTM are
visualized in Section 5.3.

5.1. Effect of Different Training Ratios

To evaluate the effect of a different number of labeled training samples on the de-
formation ISAR image classification, CNN, ST-CNN, Deform-CNN, CNN-BiLSTM, SVM,
and the proposed CLISAR-Net are tested using different ratios of labeled training samples.
Figure 11 reports the comparison results on the scaled, rotated, and combined deformation
datasets. It can be seen from the results of the three datasets that CLISAR-Net performs
the best in all conditions, followed by SVM. Moreover, the classification accuracy increases
gradually with the increase in the number of labeled samples, which is consistent with
the expectation. When only 5% of labeled samples are used to train CLISAR-Net, the
CNN requires 100% of labeled samples to achieve similar classification performance for
the three datasets. The performance of ST-CNN and Deform-CNN is always very close,
but ST-CNN is more difficult to train. The results of the scaled dataset exemplify the
superiority of CLISAR-Net at the ratios of 5%, 10%, and 20%. For the combined dataset,
as shown in Figure 11c, when 20% of labeled samples are used, the classification accuracy
of CLISAR-Net has a greater improvement than SVM and CNN-BiLSTM. Based on the
above analysis, it is reasonable to assume that discriminative deep representations were
learned in the unsupervised pretraining phase. As a result, CLISAR-Net can achieve good
performance by fine-tuning the classifier with only a small number of labeled samples.
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Figure 11. Comparison of the classification accuracy with different ratios of labeled training samples
for different methods. (a) Results of scaled dataset, (b) results of rotated dataset, and (c) results of
combined dataset.

5.2. Extended to Different Azimuth Angle Ranges

To evaluate the classification robustness of CLISAR-Net for the deformation ISAR
images when different azimuth angles are missing in the training set, the azimuth angle
γ in the training set of the combined deformation dataset is adjusted to 0◦∼269◦ and
90◦∼269◦, while the test set is kept constant. In the adjusted combined deformation
dataset, the numbers of samples in the training sets are 2116 and 1396, respectively, and
the number of samples in the test set is still 2840. Figure 12 shows the classification results
of CLISAR-Net for the test set when the ranges of the azimuth angle in the training set
are γ = 90◦∼359◦, γ = 0◦∼269◦, and γ = 90◦∼269◦. As can be seen in Figure 12, the
two polylines corresponding to γ = 90◦∼359◦ and γ = 0◦∼269◦ are intertwined, which
indicates that CLISAR-Net has robust classification performance when 1/4 of the azimuth
angles are missing in the training set. For the azimuth angle ranges from 90◦ to 269◦, the
classification accuracy of CLISAR-Net reaches 93.24% after fine-tuning the downstream
classifier using 100% of the labeled training samples, which is only 2.61% and 2.07% lower
than that when 1/4 of the azimuth angles are missing, respectively. However, it is not
difficult to find that when only 5% and 10% labeled training samples are used to fine-tune
the downstream classifier, high classification performance is achieved, even though 1/2
of the azimuth angles are missing in the training set. This reaffirms the conclusion that
CLISAR-Net can achieve superior classification accuracy when only a small amount of
labeled data are available.

Figure 12. Classification accuracy of CLISAR-Net when different ranges of the azimuth angle are
included in the training set of the combined deformation dataset.
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5.3. Visualization of Features

The CLISAR-Net performs well on the three datasets, and the essential reason is that
the convolutional encoder can extract the deep representations of unlabeled ISAR images
during pretraining. To explicitly view the extracted representations, 2D visualizations of
the feature representations are performed by t-SNE [53] for the combined deformation
dataset. As shown in Figure 13, the distance of points indicates the similarity between
samples. Samples of the same satellite are represented by points of the same color, where
dark blue points denote CALIPSO, red points indicate Cloudsat, pink points are Jason-3,
and cyan points are OCO-2.

Figure 13. T-SNE visualization of the features for the combined deformation dataset from (a) input
images, (b) pretraining of CLISAR-Net, (c) fine-tuning of CLISAR-Net, and (d) CNN-BiLSTM.

The features learned by CLISAR-Net in different training phases and the features
learned by CNN-BiLSTM, the best performing classification model in the supervised
methods, are visualized by t-SNE. In Figure 13, each point represents an ISAR image.
From the distribution of the input images, it can be seen that in the combined deformation
dataset, the points of different categories are widely distributed in different positions
and are completely indistinguishable. Figure 13b shows the distribution of the deep
representations obtained by unsupervised pretraining. Compared with Figure 13a, the
compactness within each category is increased significantly. OCO-2 is basically separable,
and most of the points of the other three categories are separable. The visualization results
show that unsupervised pretraining can embed the features of the input images into a
more discriminative space. In Figure 13c, the linear classifier in CLISAR-Net is fine-tuned
to create more compact category clusters based on Figure 13b and achieves better feature
separation for the four satellites. In Figure 13d, although the CNN-BiLSTM improved the
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feature separability of the four categories, the feature distribution of CALIPSO and Jason-3
still has partial overlap and coverage, so its classification performance is slightly inferior to
that of CLISAR-Net, which agrees with the classification results in Table 4.

6. Conclusions

In order to achieve deformation ISAR image classification, an unsupervised ISAR
image deep representation learning method is explored based on CL for the first time. The
training of CLISAR-Net consists of two phases, i.e., unsupervised pretraining and classifier
fine-tuning. In the pretraining phase, the base encoder is optimized by InfoNCE loss back-
propagation, and the evolution of the momentum encoder is realized by the momentum
update of the parameters. With the help of the discriminative representations obtained
by pretraining, high-precision classification of deformation ISAR images can be achieved
by retaining the convolutional encoder and fine-tuning the linear classifier. CLISAR-Net
demonstrates powerful classification performance in the experiments on scaled, rotated,
and combined deformation ISAR image datasets. Compared with traditional CNN-based
supervised learning methods, the added unsupervised pretraining phase in CLISAR-Net
makes the feature extractor capture more discriminative deep representations of defor-
mation ISAR images, which brings great convenience for downstream classification and
enables CLISAR-Net to achieve higher classification performance with a small number of
labeled samples.

Although the proposed CLISAR-Net requires two phases to achieve classification, the
encoder structure that extracts the feature of deformation ISAR images is simpler than
that of the CNN-based methods. Moreover, based on CL, CLISAR-Net opens the door for
researches of ISAR image classification based on unsupervised learning. In the future, ISAR
image classification will be performed by combining the EM scattering mechanism and
semantic information of the target under unsupervised conditions.

Author Contributions: Conceptualization, G.X. and P.N.; methodology, P.N., Y.L. and H.P.; software,
P.N., H.P. and H.D.; validation, P.N. and G.X.; investigation, P.N. and Y.L.; resources, Y.L. and H.L.;
data curation, P.N.; writing—original draft, P.N. and H.D.; writing—review and editing, P.N. and
G.X.; supervision, G.X. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Science Foundation of China (NSFC) under Grant
62071113, in part by the Natural Science Foundation of Jiangsu Province under Grant BK20211559.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kim, K.T.; Seo, D.K.; Kim, H.T. Efficient Classification of ISAR images. IEEE Trans. Antennas Propag. 2005, 53, 1611–1621.
2. Liu, L.; Zhou, F.; Bai, X.; Tao, M.; Zhang, Z. Joint Cross-Range Scaling and 3D Geometry Reconstruction of ISAR Targets Based on

Factorization Method. IEEE Trans. Image Process. 2016, 25, 1740–1750. [CrossRef]
3. Wagner, S.; Dommermuth, F.; Ender, J. Detection of Jet Engines via Sparse Decomposition of ISAR Images for Target Classification

Purposes. In Proceedings of the 2016 European Radar Conference (EuRAD), London, UK, 5–7 October 2016; pp. 77–80.
4. Huang, Y.; Liao, G.; Xiang, Y.; Zhang, L.; Li, J.; Nehorai, A. Low-rank Approximation via Generalized Reweighted Iterative

Nuclear and Frobenius Norms. IEEE Trans. Image Process. 2020, 29, 2244–2257. [CrossRef]
5. Du, Y.; Jiang, Y.; Wang, Y.; Zhou, W.; Liu, Z. ISAR Imaging for Low-Earth-Orbit Target Based on Coherent Integrated Smoothed

Generalized Cubic Phase Function. IEEE Trans. Geosci. Remote Sens. 2019, 58, 1205–1220. [CrossRef]
6. Xue, B.; Tong, N. Real-World ISAR Object Recognition Using Deep Multimodal Relation Learning. IEEE Trans. Cybern. 2019,

50, 4256–4267. [CrossRef] [PubMed]
7. Zhang, Y.; Yuan, H.; Li, H.; Chen, J.; Niu, M. Meta-Learner-Based Stacking Network on Space Target Recognition for ISAR Images.

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12132–12148. [CrossRef]
8. Lee, S.J.; Park, S.H.; Kim, K.T. Improved Classification Performance Using ISAR Images and Trace Transform. IEEE Trans. Aerosp.

Electron. Syst. 2017, 53, 950–965. [CrossRef]
9. Benedek, C.; Martorella, M. Moving Target Analysis in ISAR Image Sequences With a Multiframe Marked Point Process Model.

IEEE Trans. Geosci. Remote Sens. 2013, 52, 2234–2246. [CrossRef]
10. Islam, M.T.; Siddique, B.N.K.; Rahman, S.; Jabid, T. Image Recognition with Deep Learning. In Proceedings of the 2018

International Cnference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Bangkok, Thailand, 21–24 October 2018;
pp. 106–110.

http://doi.org/10.1109/TIP.2016.2526905
http://dx.doi.org/10.1109/TIP.2019.2949383
http://dx.doi.org/10.1109/TGRS.2019.2944629
http://dx.doi.org/10.1109/TCYB.2019.2933224
http://www.ncbi.nlm.nih.gov/pubmed/31449040
http://dx.doi.org/10.1109/JSTARS.2021.3128938
http://dx.doi.org/10.1109/TAES.2017.2667284
http://dx.doi.org/10.1109/TGRS.2013.2258927


Remote Sens. 2023, 15, 33 21 of 22

11. Karine, A.; Toumi, A.; Khenchaf, A.; El Hassouni, M. Radar Target Recognition Using Salient Keypoint Descriptors and Multitask
Sparse Representation. Remote Sens. 2018, 10, 843. [CrossRef]

12. Bai, Q.; Gao, G.; Zhang, X.; Yao, L.; Zhang, C. LSDNet: Light-weight CNN Model Driven by PNF for PolSAR Image Ship
Detection. IEEE J. Miniat. Air Space Syst. 2022, 3, 135–142. [CrossRef]

13. Gao, S.; Liu, H. RetinaNet-based Compact Polarization SAR Ship Detection. IEEE J. Miniat. Air Space Syst. 2022, 3, 146–152.
[CrossRef]

14. Zhang, L.; Gao, G.; Duan, D.; Zhang, X.; Yao, L.; Liu, J. A Novel Detector for Adaptive Detection of Weak and Small Ships in
Compact Polarimetric SAR. IEEE J. Miniat. Air Space Syst. 2022, 3, 153–160. [CrossRef]

15. Sun, Y.; Wang, Y.; Liu, H.; Wang, N.; Wang, J. SAR Target Recognition with Limited Training Data Based on Angular Rotation
Generative Network. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1928–1932. [CrossRef]

16. Wang, L.; Bai, X.; Gong, C.; Zhou, F. Hybrid Inference Network for Few-Shot SAR Automatic Target Recognition. IEEE Trans.
Geosci. Remote Sens. 2021, 59, 9257–9269. [CrossRef]

17. Yang, M.; Bai, X.; Wang, L.; Zhou, F. Mixed Loss Graph Attention Network for Few-Shot SAR Target Classification. IEEE Trans.
Geosci. Remote Sens. 2021, 60, 1–13. [CrossRef]

18. Raj, J.A.; Idicula, S.M.; Paul, B. One-Shot Learning-Based SAR Ship Classification Using New Hybrid Siamese Network. IEEE
Geosci. Remote Sens. Lett. 2021, 19, 1–5. [CrossRef]

19. Xue, R.; Bai, X.; Zhou, F. Spatial–Temporal Ensemble Convolution for Sequence SAR Target Classification. IEEE Trans. Geosci.
Remote Sens. 2020, 59, 1250–1262. [CrossRef]

20. Qian, X.; Liu, F.; Jiao, L.; Zhang, X.; Chen, P.; Li, L.; Cui, Y. A Hybrid Network With Structural Constraints for SAR Image Scene
Classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–17. [CrossRef]

21. Pereira, L.O.; Freitas, C.C.; Sant, S.J.; Reis, M.S. Evaluation of Optical and Radar Images Integration Methods for LULC
Classification in Amazon Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3062–3074. [CrossRef]

22. Hu, J.; Hong, D.; Zhu, X.X. MIMA: MAPPER-Induced Manifold Alignment for Semi-Supervised Fusion of Optical Image and
Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9025–9040. [CrossRef]

23. Huang, Z.; Dumitru, C.O.; Pan, Z.; Lei, B.; Datcu, M. Classification of Large-Scale High-Resolution SAR Images with Deep
Transfer Learning. IEEE Geosci. Remote Sens. Lett. 2020, 18, 107–111. [CrossRef]

24. Zhao, Y.; Jiang, M. Integration of Optical and SAR Imagery for Dual PolSAR Features Optimization and Land Cover Mapping.
IEEE J. Miniat. Air Space Syst. 2022, 3, 67–76. [CrossRef]

25. Xu, G.; Zhang, B.; Chen, J.; Wu, F.; Sheng, J.; Hong, W. Sparse Inverse Synthetic Aperture Radar Imaging Using Structured
Low-Rank Method. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [CrossRef]

26. Tien, S.C.; Chia, T.L.; Lu, Y. Using Invariants to Recognize Airplanes in Inverse Synthetic Aperture Radar Images. Opt. Eng. 2003,
42, 200–210.

27. Paladini, R.; Famil, L.F.; Pottier, E.; Martorella, M.; Berizzi, F.; Dalle Mese, E. Point Target Classification via Fast Lossless
and Sufficient Ω–Ψ–Φ Invariant Decomposition of High-Resolution and Fully Polarimetric SAR/ISAR Data. Proc. IEEE 2013,
101, 798–830. [CrossRef]

28. Paladini, R.; Martorella, M.; Berizzi, F. Classification of Man-Made Targets via Invariant Coherency-Mtrix Eigenvector Decompo-
sition of Polarimetric SAR/ISAR Images. IEEE Trans. Geosci. Remote Sens. 2021, 49, 3022–3034. [CrossRef]

29. Park, S.H.; Jung, J.H.; Kim, S.H.; Kim, K.T. Efficient Classification of ISAR Images Using 2D Fourier Transform and polar Mpping.
IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1726–1736. [CrossRef]

30. Lu, W.; Zhang, Y.; Yin, C.; Lin, C.; Xu, C.; Zhang, X. A Deformation Robust ISAR Image Satellite Target Rrecognition Method
Based on PT-CCNN. IEEE Access 2021, 9, 23432–23453. [CrossRef]

31. Bai, X.; Zhou, X.; Zhang, F.; Wang, L.; Xue, R.; Zhou, F. Robust Pol-ISAR Target Recognition Based on ST-MC-DCNN. IEEE Trans.
Geosci. Remote Sens. 2019, 57, 9912–9927. [CrossRef]

32. Xue, R.; Bai, X.; Zhou, F. SAISAR-Net: A Robust Sequential Adjustment ISAR Image Classification Network. IEEE Trans. Geosci.
Remote Sens. 2021, 60, 1–15. [CrossRef]

33. Zhou, X.; Bai, X.; Wang, L.; Zhou, F. Robust ISAR Target Recognition Based on ADRISAR-Net. IEEE Trans. Aerosp. Electron. Syst.
2022, 58, 5494–5505. [CrossRef]

34. Xue, R.; Bai, X.; Cao, X.; Zhou, F. Sequential ISAR Target Classification Based on Hybrid Transformer. IEEE Trans. Geosci. Remote
Sens. 2022, 60, 1–11. [CrossRef]

35. Jaderberg, M.; Simonyan, K.; Zisserman, A. Spatial Transformer Networks. In Proceedings of Advances in Neural Information
Processing Systems (NIPS), London, UK, 7–12 December 2015.

36. Lin, C. H.; Lucey, S. Inverse Compositional Spatial Transformer Networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2568–2576.

37. Misra, I.; Maaten, L. V. D. Self-Supervised Learning of Pretext-Invariant Representations. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–20 June 2020; pp. 6707–6717.

38. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A Simple Framework for Contrastive Learning of Visual Representations. arXiv
2020, arXiv: 2002.05709.

http://dx.doi.org/10.3390/rs10060843
http://dx.doi.org/10.1109/JMASS.2022.3203082
http://dx.doi.org/10.1109/JMASS.2022.3203214
http://dx.doi.org/10.1109/JMASS.2022.3204772
http://dx.doi.org/10.1109/LGRS.2019.2958379
http://dx.doi.org/10.1109/TGRS.2021.3051024
http://dx.doi.org/10.1109/TGRS.2021.3124336
http://dx.doi.org/10.1109/LGRS.2021.3103432
http://dx.doi.org/10.1109/TGRS.2020.2997288
http://dx.doi.org/10.1109/TGRS.2021.3059742
http://dx.doi.org/10.1109/JSTARS.2018.2853647
http://dx.doi.org/10.1109/TGRS.2019.2924113
http://dx.doi.org/10.1109/LGRS.2020.2965558
http://dx.doi.org/10.1109/JMASS.2022.3195955
http://dx.doi.org/10.1109/TGRS.2021.3118083
http://dx.doi.org/10.1109/JPROC.2012.2227894
http://dx.doi.org/10.1109/TGRS.2011.2116121
http://dx.doi.org/10.1109/TAES.2015.140184
http://dx.doi.org/10.1109/ACCESS.2021.3056671
http://dx.doi.org/10.1109/TGRS.2019.2930112
http://dx.doi.org/10.1109/TGRS.2021.3113655
http://dx.doi.org/10.1109/TAES.2022.3174826
http://dx.doi.org/10.1109/TGRS.2022.3155246


Remote Sens. 2023, 15, 33 22 of 22

39. He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum Contrast for Unsupervised Visual Representation Learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–20 June
2020; pp. 9729–9738.

40. Grill, J.B.; Strub, F.; Altché, F.; Tallec, C.; Richemond, P.; Buchatskaya, E.; Doersch, C.; Avila Pires, B.; Guo, Z.; Gheshlaghi Azar, M.; et al.
Bootstrap Your Own Latent-A New Approach to Self-Supervised Learning. In Proceedings of the Advances in Neural Information
Processing Systems, Vancouver, BC, Canada, 11–14 May 2020; pp. 21271–21284.

41. Li, J.; Zhou, P.; Xiong, C.; Hoi, S.C. Prototypical Contrastive Learning of Unsupervised Representations. arXiv 2020,
arXiv:2005.04966.

42. Wu, Z.; Xiong, Y.; Yu, S.X.; Lin, D. Unsupervised Feature Learning via Non-parametric Instance Discrimination. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake, UT, USA, 18–22 June 2018; pp. 3733–3742.

43. Oord, A.V.D.; Li, Y.; Vinyals, O. Representation Learning with Contrastive Predictive Coding. arXiv 2018, arXiv:1807.03748.
44. Tian, Y.; Krishnan, D.; Isola, P. Contrastive multiview coding. In Proceedings of European Conference on Computer Vision (ECCV);

Springer: Cham, Switzerland, 2020; pp. 776–794.
45. Zhou, Y.; Zhang, L.; Cao, Y. Attitude Estimation for Space Targets by Exploiting the Quadratic Phase Coefficients of Inverse

Synthetic Aperture Radar Imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3858–3872. [CrossRef]
46. Zhou Y.; Zhang L.; Cao Y. Dynamic Estimation of Spin Spacecraft Based on Multiple-Station ISAR Images. IEEE Trans. Geosci.

Remote Sens. 2020, 58, 2977–2989. [CrossRef]
47. Song, D.; Chen Q.; Li, K. An Adaptive Sparse Constraint ISAR High Resolution Imaging Algorithm Based on Mixed Norm.

Radioengineering 2022, 31, 477–485. [CrossRef]
48. Kang, B. S.; Kang, M. S.; Choi, I. O.; Kim, C. H.; Kim, K. T. Efficient Autofocus Chain for ISAR Imaging of Non-Uniformly Rotating

Target. IEEE Sens. J. 2017, 17, 5466–5478. [CrossRef]
49. Sohn, K. Improved Deep Metric Learning with Multi-class N-pair Loss Objective. In Proceedings of the Advances in Neural

Information Processing Systems (NIPS), Barcelona, Spain, 5–10 December 2016.
50. Zhang, L.; Zhang, S.; Zou, B.; Dong, H. Unsupervised Deep Representation Learning and Few-Shot Classification of PolSAR

Images. IEEE Trans. Geosci. Remote Sens. 2020, 60, 1–16. [CrossRef]
51. NASA 3D Resource. Available online: https://nasa3d.arc.nasa.gov/models (accessed on 1 January 2020 ).
52. Bai, X.; Xue, R.; Wang, L.; Zhou, F. Sequence SAR Image Classification Based on Bidirectional Convolution-Recurrent Network.

IEEE Trans. Geosci. Remote Sens. 2019, 57, 9223–9235. [CrossRef]
53. Van der Maaten, L.; Hinton, G. Visualizing Data Using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TGRS.2018.2888631
http://dx.doi.org/10.1109/TGRS.2019.2959270
http://dx.doi.org/10.13164/re.2022.0477
http://dx.doi.org/10.1109/JSEN.2017.2727507
http://dx.doi.org/10.1109/TGRS.2020.3038405
https://nasa3d.arc.nasa.gov/models
http://dx.doi.org/10.1109/TGRS.2019.2925636

	Introduction
	Causes of ISAR Image Deformation
	Proposed Method
	Unsupervised Pretraining With Unlabeled Data
	Structure of the Encoder
	Loss Function of CL
	Optimization of the Encoder

	Classifier Fine-Tuning With Labeled Data

	Experiments
	Data Generation
	Scaled Deformation Dataset
	Rotated Deformation Dataset
	Combined Deformation Dataset

	Experimental Setup
	Data Augmentations
	Parameter Settings
	Comparison Methods

	Classification Results
	Computational Cost

	Discussion
	Effect of Different Training Ratios
	Extended to Different Azimuth Angle Ranges
	Visualization of Features

	Conclusions
	References

