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Abstract: Radar is often affected by various clutter backgrounds in complex environments, so clutter
suppression has important practical significance for radar target detection. The clutter suppression
process conforms to the blind source separation (BSS) model. The principal skewness analysis (PSA)
algorithm is a BSS algorithm with third-order statistics as the objective function, and its running
speed is faster than the conventional BSS algorithm. Still, the PSA algorithm has the problem of error
accumulation. This paper improves the PSA algorithm and proposes a parallel PSA (PPSA) algorithm.
PPSA can estimate the directions corresponding to each independent component simultaneously and
avoid the problem of error accumulation. PPSA uses parallel instead of serial computing, significantly
improving the running speed. In this paper, the PPSA algorithm is applied to radar target detection.
The simulation data and real data experiments verify the effectiveness and superiority of the PPSA
algorithm in suppressing clutter.

Keywords: clutter suppression; target detection; blind source separation (BSS); principal skewness
analysis (PSA); parallel

1. Introduction

The moving targets of interest are often obscured by solid clutter and cannot be easily
detected. Clutter suppression processing must be performed to improve the detection
performance of the radar system for moving targets. There are many radar clutter suppres-
sion technologies, mainly multi-antenna cancellation technology [1–5], multi-dimensional
domain filtering technology [6–8], dual-parameter constant false alarm rate detection tech-
nology [9], etc. Space-time adaptive processing (STAP) is a technique to distinguish moving
objects and clutter from space-time two-dimensional, and it can effectively suppress clut-
ter [10], so it is widely used. However, the traditional STAP method usually needs to
select a certain number of range unit echo data around the unit to be detected as training
samples. According to the well-known RMB criterion [9], to obtain the clutter suppression
performance with an average performance loss of no more than 3dB relative to the optimal
processing, it requires at least twice the system degrees of freedom of IID training samples.
However, the number of samples obtained in actual radar operating scenarios is usually
less than twice the system degrees of freedom, so this will seriously reduce the clutter
suppression effect.

To solve the problem of insufficient training samples, Qian et al. applied the blind
source separation (BBS) algorithm to clutter suppression [11]. The radar echo signal can be
regarded as a linear combination of target echo and clutter echo [12]. Clutter suppression
separates the radar target signal from the mixed data, a process that conforms to the BSS
model [13]. Since the clutter signal and the target signal are independent, the BSS method
can be used to distinguish the target signal and the clutter signal.

In the research field of BSS, independent component analysis (ICA) has become a
critical signal-processing method in recent years. ICA is a higher-order statistical data
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analysis that seeks to maximize non-Gaussian quantities to separate independent signal
sources [14]. Heranlt and Jutten first proposed the idea in 1986. FastICA is an improved
algorithm of ICA, which can select indicators such as skewness, negentropy, and kurtosis as
non-Gaussian metrics [15]. The FastICA algorithm can achieve three times the convergence
speed, which is better than most commonly used ICA algorithms [16]. However, each
iteration of FastICA needs to involve all pixels to find the optimal projection direction,
which is time-consuming when dealing with high-dimensional data. To solve this problem,
Geng [17] proposed a principal skewness analysis (PSA) method. PSA can be thought
of as a third-order generalization of PCA. Meanwhile, it is also equivalent to FastICA
when choosing skewness as the non-Gaussian metric. On this basis, Geng et al. further
proposed momentum PSA (MPSA) [18] and principal kurtosis analysis (PKA) [19]. PSA and
MPSA use the orthogonal complement strategy in the solution process, but supersymmetric
tensors do not have natural orthogonality [20]. Thus, except for the first eigenpair, all other
solutions obtained by PSA inevitably deviate from the exact eigenpair of the co-skewness
tensor. To alleviate this problem, Geng et al. [21] proposed a new non-orthogonal PSA
(NPSA) algorithm. NPSA offers a unique search strategy by introducing the Kronecker
product, which can search for solutions in a larger space and obtain more precise solutions
for each eigenpair. Unfortunately, the NPSA algorithm still obtains approximate solutions
of eigenpairs.

Regarding the issue above, this paper proposes a new parallel principle of skewness
analysis (PPSA) algorithm. Different from the random initialization of the existing PSA
algorithm, PPSA uses the eigenvector of the co-skewness tensor slice as the initial value.
Unlike the existing PSA algorithm that imposes constraints and solves each eigenpair in
turn, PPSA no longer imposes restrictions and solves each eigenpair in parallel. Compared
with the existing PSA method, which can only obtain approximate solutions, the PPSA
algorithm can accurately obtain real solutions.

Finally, this paper applies the PPSA algorithm to radar target detection. The PPSA
algorithm uses the skewness value to decompose the radar echo to separate radar clutter
and target. We compared our method to other well-known methods in the literature to
demonstrate its superiority. The signal-to-noise ratio (SNR) in simulation datasets and
visual results in real datasets are used to demonstrate the performance analysis. The
experimental results show that the PPSA method is superior.

2. Background
2.1. Preliminaries

Following [22], an Nth-order tensor is defined as R ∈ RI1×I2×...IN , where is the order
of R, also called the way or mode. For N = 1, it is a vector. For N = 2, it is a matrix.
For N ≥ 3, it is a higher order tensor. The element of R is denoted by Ri1,i2,...iN , iN ∈
{1, 2, . . . , In}, 1 ≤ n ≤ N. Fibers, the higher-order analogue of matrix rows and columns,
are defined by fixing every index except one. Slices are two-dimensional sections of a
tensor, defined by fixing all except two indices. For a third-order tensor R ∈ RI1×I2×I3 , as
shown in Figure 1, its three different slices are called horizontal, lateral and frontal slices,
which can be denoted by Ri::, R:j:, and R::k, respectively. A tensor is called supersymmetric
if its elements remain invariant under any permutation of the indices. The co-skewness
tensor is supersymmetric.
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2.2. PSA Algorithm

In the PSA algorithm, the co-skewness tensor is constructed, similar to constructing
the covariance matrix in PCA, to calculate the skewness of the image in the direction.
We assume that the image dataset is X = [x1, xi2, . . . , xiN ] ∈ RL×N , where xi is the L× 1
vector and N is the number of pixels. The image should first be centered and whitened by
R = FT(X−m), where m = (1/N)∑N

i=1 xi is the mean vector and R = [r1, r2, · · · , rN ] is the
whitened image. F = ED−0.5 is called the whitening operator, where E is the eigenvector
matrix of the covariance matrix, and D is the corresponding eigenvalue diagonal matrix.
Then, the co-skewness tensor is calculated by the following formula:

S =
1
N

N

∑
i=1

r ◦ r ◦ r (1)

The above formula “◦” represents the outer product of two vectors. Clearly, S is a
supersymmetric tensor with a size of L× L× L. Then, the skewness of the image in any
direction u can be calculated by the following formula:

skew(u) = S×1 u×2 u×3 u (2)

where u ∈ RL×1 is a unit vector, i.e., uTu = 1. So the optimized model is the following:{
max

u
S×1 u×2 u×3 u

s.t. uTu = 1.
(3)

Solving the above equation using the Lagrangian method:

S×1 u×3 u = λu (4)

Using the fixed-point method to calculate each u for each unit, which can be expressed
as follows: {

u = S×1 u×3 u
u = u/‖u‖2

(5)

If it has a fixed point, the solution u is called the first principal skewness direction and
λ is its skewness. Likewise, (λ, u) is also called the eigenvalue/eigenvector pair of a tensor,
introduced by Lim [23] and Qi [24].

To prevent the second eigenvector from converging to the same eigenvector, the
algorithm generates a new tensor calculation in the orthogonal complement space of u.

S = S×1 P⊥u ×2 P⊥u ×3 P⊥u (6)

where P⊥u = I− u(uTu)−1uT is the orthogonal complement projection operator of u and I
is the L× L identity matrix.
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Then, the same iterative method is used for the new tensor S to obtain the second
eigenvector, and the following process is also carried out in the same way until L eigenpairs
are obtained.

3. Parallel PSA Algorithm
3.1. Limitations of Existing PSA Algorithms

The existing PSA algorithm initialization adopts random generation of the initial
value, which means that given different initialization, it may converge to other solutions
(eigenpairs) [25]. And the existing PSA algorithm can only obtain the approximate solutions
of eigenpairs.

We give a simple example here to illustrate these two phenomena more intuitively.
Consider a supersymmetric tensor S ∈ R2×2×2, whose two frontal slices are as follows:

S1 =

[
2 −1
−1 0.8

]
, S2 =

[
−1 0.8
0.8 0.3

]
Eventually, the obtained two eigenvectors are the following:

u1 = [0.8812,−0.4727]T, u2 = [0.3757, 0.9267]T

and their inner product is uT
1 u2 = −0.1070, which means that they are nonorthogonal.

However, when using the PSA and MPSA methods to solve when the initial value is
closer to u1, it will first converge to uPSA

1 , and then generate the initial value uPSA
2 , according

to the orthogonal constraint principle. The final convergence result is the following:

uPSA
1 = [0.8812,−0.4727]T, uPSA

2 = [0.4727, 0.8812]T

When the initial value is closer to u2, it will first converge to uPSA
2 , and then generate

the initial value uPSA
1 , according to the principle of orthogonal constraints. The final

convergence result is the following:

uPSA
1 = [0.3756, 0.9268]T, uPSA

2 = [0.9268,−0.3756]T

The above results are shown in Figure 2.
When using the NPSA methods to solve, when the initial value is closer to u1, the

results obtained by the NPSA algorithm are the following:

uNPSA
1 = [0.8812,−0.4727]T, uNPSA

2 = [0.3351, 0.9422]T

When the initial value is closer to u2, the results obtained by the NPSA algorithm are
the following:

uNPSA
1 = [0.3756, 0.9268]T, uNPSA

2 = [0.8799,−0.4752]T

The above results are shown in Figure 3.
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This simple example intuitively illustrates that the existing PSA algorithm cannot
accurately obtain the actual eigenpairs of the co-skewness tensors. It is also demonstrated
that existing PSA algorithms randomly generate initial values, converging to different
eigenpair for each run. What is more, these problems will become more obvious as the
tensor dimension increases. The solution of a 3-order 2-dimensional supersymmetric tensor
may connect to two different eigenpairs. However, the solution of a 3-order n-dimensional
supersymmetric tensor may obtain n! different eigenpairs. Computational errors arising
from solving eigenpairs will accumulate in subsequent eigenpair computations, and this
will cause computational errors to increase as the order of computation increases. Therefore,
designing an accurate and stable method for calculating and solving is very important.

3.2. PPSA

Regarding the issue above, this paper improves the PSA algorithm and proposes a
high-precision PPSA algorithm. PPSA uses the eigenvector of the co-skewness tensor slice
as the initial value, which avoids the problem of different results each time caused by
random initialization. PPSA uses parallel computing instead of serial computing, which
avoids the problem of error accumulation.

Solving the actual eigenpair of the co-skewness tensor can be understood as solving
the local maximum value solution of the tensor [25]. When we use the fixed-point iterative
method to solve, as long as the initial value falls in each convergence region of the co-
skewness tensor, we can obtain all maximal solutions accurately. Therefore, the problem
of solving the eigenpair of the co-skewness tensor can be transformed into the problem
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of initial value selection. Standard initialization methods include random initialization
and random initialization based on orthogonal constraints. Although methods of random
initialization can be solved accurately, they are greatly affected by the initial value and are
not repeatable. Therefore, it is crucial to design a method that can repeat the initial value
and solve the eigenpair of the co-skewness tensor stably and accurately.

The PPSA algorithm fully considers the data structures and selects the eigenvector of
the slice of the co-skewness tensor as the initial value of the iteration. First, this method
is repeatable. Second, this approach is parallel because co-skewness tensor slices are
real symmetric matrices. The eigenvectors corresponding to different eigenvalues of the
symmetric matrix are orthogonal to each other. At last, this method produces a stable and
accurate solution compared to the orthogonal random initialization method because we
believe it will provide an initial guess around the optimal solution.

Next, we briefly prove this conjecture. Suppose S ∈ R[3,n], if λ is an eigenvalue
of the co-skewness tensor S, let u be the unit eigenvector of S with respect to λ, u =

[a1, a2, · · · , an]
T, and uTu = 1. Solving S ×1 u ×3 u = λu, it is equivalent to solve the

following formula: 
uT × S::1 × u = λa1
uT × S::2 × u = λa2
...

...
... =

...
uT × S::n × u = λan

(7)

From Equation (7), it can be known that solving the local extremum solution of the
co-skewness tensor is equivalent to finding the maxima and minima jointly by multiple
principal component analyses. Taking the eigenvector of the slice of the co-skewness tensor
as the initial value of the iteration can be understood as approximating the extreme point
of the joint principal component from the extreme point of a single principal component.
Therefore, the initial value generated by this initialization method is closer to the actual
eigenpair than randomly selecting the initial value.

For convenience, the pseudo-code of PPSA is summarized in Algorithm 1.

Algorithm 1 PPSA

Input: Input data R ∈ RL×N .
Output: output transformation matrix U, Y = UTR̃.
1: whiten the data to obtain R̃.
2: calculate the co-skewness tensor S according to (1).
3: calculate all eigenvectors of slices of tensor (S1::), denoted as V
% main loop: %
4: for i = 1 : L do
5: k = 0

6: u(k)i = V(:, i)
7: while stop conditions are not meet do
8: u(k+1)

i = S×1 u(k+1)
i ×3 u(k+1)

i
9: u(k+1)

i = u(k+1)
i /‖u(k+1)

i ‖2
10: end while
11: U:i = u(k+1)

i
12: end for
% output %
13: Y = UTR̃;//U is the final principal skewness transformation matrix, and Y is the transformed image.

It should be noted that the loop termination condition in step 7 in the PPSA algorithm
includes the minimum allowable error ε and the maximum number of loops K. In this
paper, ε is set to 0.0001, and K is set to 1000. U is the final non-orthogonal principal
skewness transformation matrix.
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Also calculate the example in the above Section 3.1, repeat the above operation with
the PPSA algorithm, and the results obtained are the following:

uPPSA
1 = [0.8812,−0.4727]T, uPPSA

2 = [0.3756, 0.9268]T

As shown in Figure 4, it is obvious that the results obtained by PPSA are almost
perfectly coincident with the actual eigenpairs u1, u2, and the solution results are unique.
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3.3. Complexity Analysis

This section theoretically compares the computational complexity of the PSA algorithm
and the PPSA algorithm. The difference between the PPSA and the PSA algorithm is
the order of orthogonalization. PSA is solved iteratively first, and then the orthogonal
constraints are imposed. The PPSA algorithm is orthogonalized first and then solved
iteratively. Since the basic process of both methods is the same, only the computational
complexity of the primary loop solution needs to be considered. For data of size L×M,
the PSA algorithm only needs to loop L times. Assuming that each loop requires K
iterations, where K is the average number of iterations, the PSA algorithm must perform
KL operations. Similarly, for data of size L×M, the PPSA algorithm only needs to loop L
times, assuming that each loop needs to iterate H times, so the PPSA algorithm eventually
needs HL operations, generally H ≤ K. Although the algorithm complexity of PPSA is
at the same level as that of PSA, the main advantage of the PPSA algorithm over the PSA
algorithm is that the PPSA algorithm is parallel, so it can use parallel computing to improve
the running speed. It can be seen from the running speed comparison experiments that
when processing high-dimensional data, the PPSA algorithm runs faster after parallel
accelerated calculation.

4. Experiment

In this paper, the PPSA algorithm is applied to blind image separation (BIS) and radar
target detection, and a comparative experiment is carried out with several classical methods.
All algorithms are completed on a laptop with CPU AMD Ryzen 7 5800H, 16 GB RAM,
@3.20 GHz, and all programs are programmed and implemented on MATLAB R2021a.

4.1. Experiment 1: Blind Image Separation

In this paper, the PPSA algorithm is firstly applied to the problem of blind image
separation (BIS). The purpose of BIS is to estimate the mixing matrix, denoted as B. To
evaluate the separation performance of the PPSA algorithm, we compare it with algorithms
such as FastICA [15], PSA [17], MPSA [18], NPSA [21], and MSDP [25]. In this experiment,
this paper selects n grayscale images with a size of 256 × 256 pixels as the source image,
where n is 2~6 respectively. Since the real source image is known, we can compare it with
the results obtained by each algorithm. Due to space limitations, we did not show all
the experimental results, but only selected the case of n = 3 for display. The results are
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shown in Figure 5. To ensure the reliability of the conclusions, we also conducted two other
combinations of experiments, in each combination we randomly selected three different
source images for the experiments.

From the experimental results, all the above algorithms can separate the source image
from the mixed image. In order to quantitatively evaluate the performance of the above six
algorithms, we use five evaluation indicators to evaluate the separation results obtained
by the above six algorithms. The five evaluation indicators are intersymbol interference
(ISI) [21], total mean square error (TMSE) [21], correlation coefficient (ρ) [21], peak signal-
to-noise ratio (PSNR) [21] and running time (T). It is worth noting that except for the PPSA
algorithm and the MSDP algorithm, the results obtained by the other four algorithms are
random, so we take the average of 10 runs as the final result.
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Figure 5. The results of FastICA, PSA, MPSA, NPSA, MSDP and PPSA. The first and second column
are the three source images and randomly mixed images as the reference. (a) source image 1, (b)
source image 2, (c) source image 3, (d) mixed image 1, (e) mixed image 2, (f) mixed image 3, (g) IC1
of FastICA, (h) IC2 of FastICA, (i) IC3 of FastICA, (j) IC1 of PSA, (k) IC2 of PSA, (l) IC3 of PSA, (m)
IC1 of MPSA, (n) IC2 of MPSA, (o) IC3 of MPSA, (p) IC1 of NPSA, (q) IC2 of NPSA, (r) IC3 of NPSA,
(s) IC1 of MSDP, (t) IC2 of MSDP, (u) IC3 of MSDP, (v) IC1 of PPSA, (w) IC2 of PPSA, (x) IC3 of PPSA.

Table 1 shows the ISI, TMSE, ρ, PSNR, and T of the six algorithms under three different
combinations in detail. For the ISI, TMSE, and T, the smaller the index value, the better
the algorithm performs; for the ρ and PSNR, the larger the index value, the better the
algorithm performs [21]. From Table 1, it can be found that the results obtained by the
PPSA and MSDP algorithms are entirely consistent. Because the MSDP algorithm can
accurately obtain the eigenpair of the tensor [25], this shows that the PPSA algorithm
can also accurately obtain the actual solution. The PPSA and MSDP algorithms have the
smallest ISI and TMSE in all the combinations. It can also be seen that PPSA has the smallest
T in all the combinations. And compared with the other four algorithms, the ρ and PSNR
obtained by the PPSA algorithm also have advantages in all combinations.

Finally, combined with the comparison results of several indices, it shows that the
PPSA algorithm has more accurate and robust performance in BIS applications.
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Table 1. Comparison of FastICA, PSA, MPSA, NPSA, MSDP and PPSA for the index of five different
combinations. An average result of the runs is computed.

Index FastICA PSA MPSA NPSA MSDP PPSA

1

ISI 0.6757 0.0681 0.0551 0.0253 0.0203 0.0203

TMSE 3.2856 × 10−11 2.5547 × 10−11 2.5548 × 10−11 3.8168 × 10−11 1.8645 × 10−11 1.8645 × 10−11

ρ
0.9544
0.9889
0.9968

0.9954
0.9992
1.0000

0.9954
0.9988
1.0000

0.9992
0.99997
1.0000

0.9998
0.9992
1.0000

0.9998
0.9992
1.0000

PSNR/dB
66.1696
70.0325
79.2579

76.6105
72.6448
90.9901

77.7449
73.7954
90.4324

83.6350
74.4358
91.1667

85.9129
74.4870
91.3285

85.9129
74.4870
91.3285

T/s 0.0042 0.0011 0.0010 0.0043 2.8594 0.0009

2

ISI 0.4844 0.1442 0.1524 0.0787 0.0745 0.0745

TMSE 3.2241 × 10−11 2.6798 × 10−11 2.6337 × 10−11 2.5154 × 10−11 1.9555 × 10−14 1.9555 × 10−14

ρ
0.9749
0.9900
0.9970

0.9967
0.9905
0.9999

0.9967
0.9907
0.9998

0.9995
0.9920
1.0000

0.9997
0.9921
1.0000

0.9997
0.9921
1.0000

PSNR/dB
69.1886
73.7143
76.9175

74.9389
73.1186
89.0466

75.6708
74.3531
90.4683

83.4588
70.1218
94.0776

83.7674
70.6017
94.7823

83.7674
70.6017
94.7823

T/s 0.0052 0.0011 0.0010 0.0042 3.1046 0.0008

3

ISI 0.2965 0.0405 0.0452 0.0041 0.0006 0.0006

TMSE 2.6603 × 10−10 2.6628 × 10−10 1.9986 × 10−10 3.4050 × 10−10 1.7480 × 10−10 1.7480 × 10−10

ρ
0.9756
0.9950
0.9969

0.9966
0.9994
0.9998

0.9962
0.9995
0.9999

0.9997
1.0000
1.0000

1.0000
1.0000
1.0000

1.0000
1.0000
1.0000

PSNR/dB
69.9228
61.8123
82.3327

83.2559
61.1492
87.5416

78.8206
58.8872
90.4749

91.4669
61.2297
94.0424

96.6388
64.0212
95.1910

96.6388
64.0212
95.1910

T/s 0.0048 0.0012 0.0009 0.0033 2.9786 0.0007

4.2. Experiment 2: Moving Target Detection under Low SNR

In this section, firstly, we apply the PPSA algorithm to moving object detection under
a low SNR. This section uses a simulation dataset to verify the effect of the PPSA algorithm
on noise suppression. We compared the PPSA algorithm with incoherent accumulation,
coherent accumulation, FastICA [15], PSA [17], MPSA [18], and NPSA [21]. Quantitative
and visual results are compared.

The simulation data set experiment is as follows. We generate radar echo data ac-
cording to the radar system parameters given in Table 2 and generate targets according
to the target parameters in Table 3. We simulate 30 received pulse echoes for the previ-
ously defined radar and target. Figure 6a shows the original signal of the simulation, and
Figure 6b–f are the results after noise suppression by algorithms such as FastICA, PSA,
MPSA, NPSA, and PPSA, respectively.

Table 2. Radar system parameters.

Parameter Numerical Value

pulse repetition frequency/Hz 30,000
radar wavelength/m 0.03

Pulse train length 200
Radar operating frequency range/GHz 5~15

Antenna height/m 100
bandwidth 3 M

Sampling Rate 6 M
Receiver gain/dB 20
Noise figure/dB 0
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Table 3. Movement target parameters.

Parameter Target 1 Target 2

distance/m 2024.66 3518.63
radar cross section/m2 1.00 1.00

radial velocity/m/s 30 60
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From Figure 6a, we find that target 1 is visible, while target 2 is overwhelmed by
noise. From Figure 6b–d, we can see that FastICA, PSA, and MPSA can separate the targets,
but there are many interferences in their obtained results. From Figure 6e,f, we can see
that NPSA and PPSA can effectively and accurately separate target 1 and target 2, and the
separation effect of the PPSA algorithm is better.

Different from the existing PSA algorithm that solves each eigenpair in sequence, the
PPSA algorithm can solve each eigenpair in parallel, so the PPSA algorithm can use Parfor
to accelerate the calculation in parallel. We will use Parfor’s PPSA algorithm for parallel
accelerated computing named FastPPSA. The principle of FastPPSA is the same as that
of the PPSA algorithm, except that FastPPSA adopts Parfar parallel acceleration. We then
compared the running times of the above algorithms, and the evaluation times are shown
in Table 4.

Table 4. Running time evaluation of BSS Algorithm.

Method FastICA PSA MPSA NPSA PPSA FastPPSA

Time (s) 1.5076 5.9706 5.8058 7.9262 5.7963 0.8143

Table 4 shows that the FastPPSA algorithm is superior to other BSS algorithms in
terms of computational efficiency.

Then, we compare the PPSA algorithm with traditional incoherent and coherent
accumulation algorithms. The results are shown in Figure 7. Figure 7a shows the original
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signal of the simulation, and Figure 7b–d are the results of incoherent accumulation,
coherent accumulation, and the PPSA algorithm, respectively.
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As shown in Figure 7, it can be seen that the above methods can effectively suppress
the noise. In order to objectively and quantitatively evaluate the performance of each
algorithm, the radar echo’s target SNR is defined as the ratio of the amplitude of the target
signal to the mean value of the echo amplitude of the surrounding area. The quantitative
results are shown in Tables 5 and 6.

Table 5. SNR comparison of target 1.

Method Target 1 Echo
Amplitude

Mean Noise
Amplitude SNR/dB

original signal 1.0000 0.1238 18.1456
noncoherent 1.0000 0.0601 24.4225

coherent 1.0000 0.0291 30.7221
PPSA 1.0000 0.0237 32.5050

Table 6. SNR comparison of target 2.

Method Target 2 Echo
Amplitude

Mean Noise
Amplitude SNR/dB

original signal 0.3040 0.1238 7.8031
noncoherent 0.2801 0.0601 13.3688

coherent 0.3351 0.0291 21.2256
PPSA 1.0000 0.0687 23.2609



Remote Sens. 2023, 15, 288 12 of 23

Tables 5 and 6 show that the PPSA algorithm obtains the highest SNR result, and the
SNR has been significantly improved compared with the original signal.

To intuitively evaluate the clutter effect of the above algorithms, we perform CFAR
detection on the results processed by each algorithm. In the simulation experiments in this
paper, the unit average CFAR is used, the false alarm probability is (10−3), the protection
unit is 2, and the reference unit is 10. The target detection results are shown in Figure 8.
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The detection performance of objects is shown in Figure 8. It can be seen that the
incoherent accumulation and coherent accumulation can only detect target 1 but cannot
effectively detect target 2.

In contrast, the PPSA algorithm can effectively detect two moving targets, so the
noise suppression performance of PPSA is better than that of incoherent and Coherent
accumulation.

4.3. Experiment 2: Single-Channel Complex Background Micro-Moving Target Detection

This section applies the PPSA algorithm to detect tiny moving objects in a complex
single-channel background. In this section, we also use the simulation data set to verify the
effect of the PPSA algorithm on clutter suppression. We compared the PPSA algorithm with
three-pulse canceler(TPC) [7], staggered pulse canceler(SPC) [7], FastICA [15], PSA [17],
MPSA [18], and NPSA [21]. Quantitative and visual results were compared.

The simulation data set experiment is as follows. In this paper, radar echo data is
generated according to the radar system parameters given in Table 2, and moving targets
are generated according to the moving target parameters in Table 7. It is important to note
that we set the speed of target 2 as a blind speed. We set the Doppler signature of the target
with the pulse repetition frequency, a setting that prevents the MTI radar from detecting the
target. The clutter signal was generated using the simplest clutter model (constant gamma
model) with the gamma value set to −20 dB. This gamma value is typical of flat ground
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clutter. Finally, we simulated 20 pulse echoes using the above radar system parameters
and moving target parameters. Figure 9a shows the original signal of the simulation, and
Figure 9b–f show the results of algorithms such as FastICA, PSA, MPSA, NPSA, and PPSA,
respectively.

Table 7. Movement target parameters.

Parameter Sports Goal 1 Sports Goal 2

distance/m 2000 3000
radar cross section/m2 1 1

radial velocity/m/s −80 blind speed
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FastICA, (c) the result of PSA, (d) the result of MPSA, (e) the result of NPSA, (f) the result of PPSA.

As shown in Figure 9a, the clutter is visible, and the clutter completely submerges the
target signal. From Figure 9b–d, it can be seen that FastICA, PSA, and MPSA can separate
the targets, but they have many interferences. Additionally, their solutions are affected by
random initial values, resulting in different results for each run. From Figure 9e,f, NPSA
and PPSA can effectively and accurately separate target 1 and target 2.

Then we compare the running time of the above algorithms, and the evaluation time
is shown in Table 8.

Table 8. Running time evaluation of BSS Algorithm.

Method FastICA PSA MPSA NPSA PPSA FastPPSA

Time (s) 0.7189 1.6342 1.5340 1.7045 1.5023 0.2196

Table 8 shows that the FastPPSA method has advantages over the other algorithms
mentioned above in terms of running time.

We then compare the PPSA algorithm with the traditional three-pulse and staggered
pulse canceler. The results are shown in Figure 10. Figure 10a shows the original signal of



Remote Sens. 2023, 15, 288 14 of 23

the simulation, and Figure 10b–d are the results of three-pulse canceler, staggered pulse
canceler, and PPSA, respectively.
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Figure 10b shows that after the three-pulse canceler, a peak appears at target 1, and
there is no obvious peak at target 2. From Figure 10c,d, it can be seen that the clutter is
effectively suppressed, and there are obvious peaks where the two targets are located.

In many cases, the primary interference affecting radar detection performance is not
noise but clutter. Therefore, the signal-to-clutter ratio (SCR) is often more critical than the
SNR. To objectively evaluate the performance of the algorithm, this paper defines the SCR
as the ratio of the square of the amplitude of the target signal to the court of the amplitude
of the clutter echo. The quantitative results are shown in Tables 9 and 10.

Table 9. SCNR comparison of target 1.

Method Target 1 Echo
Amplitude

Clutter Amplitude
Value SCNR/dB

original signal 1.4316 × 10−4 1.0000 −76.8836
TPC 1.0000 0.1176 18.5919
SPC 1.0000 0.0842 21.4938

PPSA 1.0000 0.0309 30.2008

Table 10. SCNR comparison of target 2.

Method Target 2 Echo
Amplitude

Clutter Amplitude
Value SCNR/dB

original signal 2.2708 × 10−5 1.0000 −92.8764
TPC 0.2022 0.1176 4.7075
SPC 0.3003 0.0842 11.0449

PPSA 1.0000 0.0799 21.9491
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From Tables 9 and 10, it can be seen that the PPSA obtains the highest SCR, so its
clutter suppression effect is better.

In order to intuitively evaluate the clutter effect of the above algorithms, we perform
CFAR detection on the results processed by each algorithm. The CFAR detection results are
shown in Figure 11.
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As shown in Figure 11, it can be seen that the three-pulse canceler cannot effectively
detect the target. In contrast, the staggered pulse canceler can effectively detect target 1,
but cannot detect target 2. However, PPSA can effectively detect both target 1 and target 2.
The PPSA algorithm significantly improves the SCR of small targets, which is beneficial
for detecting small targets in a robust and cluttered environment. Therefore, whether
it is comparing quantitative or visual results, the superiority of the PPSA algorithm in
suppressing clutter is verified.

4.4. Experiment 3: Detection of Small Targets in Multi-Channel Complex Background

This section applies the PPSA algorithm to the multi-channel complex background
micro-moving target detection problem. In this section, we also use the simulation data set
to verify the effect of the PPSA algorithm. We compared the PPSA algorithm with adaptive
shifted phase centering (ADPCA) [3], sampling matrix inversion (SMI) [26], FastICA [15],
PSA [17], MPSA [18], and NPSA [21]. Quantitative and visual results were compared.

The simulation data set experiment is as follows. In this paper, radar echo data is
generated according to the radar system parameters given in Table 11 and moving targets
are generated according to the moving target parameters in Table 12. It is important to note
that the radar transmits and receives signals using a 6-element uniform linear array antenna
with antenna elements spaced at half the wavelength of the waveform. The total number
of received signals includes return signals from a combination of targets, clutter, noise,
and jammers. Finally, we simulated 10 received pulses using the above radar system and
moving target parameters. The signal is a data cube of size 200 × 10 × 6. Figure 12a shows
the simulated raw signal, where clutter dominates the radar return and masks the target
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signal. At this stage, we cannot detect the target without further processing. Figure 12b–f
show the results of FastICA, PSA, MPSA, NPSA, and PPSA.

Table 11. Radar system parameters.

Parameter Numerical Value

pulse repetition frequency/Hz 50000
radar wavelength/m 0.0749

Pulse train length 200
Radar operating frequency range/GHz 4

Antenna height/m 3000
aircraft speed (m/s) 100

Sampling Rate 1 M

Table 12. Movement target parameters.

Parameter Sports Goal 1 Sports Goal 2

distance/m 14,457 22,825
radar cross section/m2 1 0.6

radial velocity/m/s 30 60
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Figure 12. The BSS results for FastICA, PSA, MPSA, NPSA, and PPSA. (a) Echo data, (b) the result of
FastICA, (c) the result of PSA, (d) the result of MPSA, (e) the result of NPSA, (f) the result of PPSA.

As shown in Figure 12a, the clutter is visible, and the clutter completely submerges
the target signal. From Figure 12b–d, it can be seen that FastICA, PSA, and MPSA can
separate the target. Still, there are many interferences in the results obtained, which is not
conducive to subsequent detection processing. From Figure 12e,f, it can be seen that NPSA
and PPSA can effectively and accurately separate target 1 and target 2, and the separation
effect of PPSA is better. Then, we compare the running time of the above algorithms, and
the evaluation time is shown in Table 13.
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Table 13. Running time evaluation of BSS Algorithm.

Method FastICA PSA MPSA NPSA PPSA FastPPSA

Time (s) 5.5095 61.3586 60.9625 74.6430 60.3657 10.7760

Table 13 shows that the FastPPSA method still has advantages in running time. The
FastICA outperformed the FastPPSA in running time, but its processing effect is poor.

Then we compare the PPSA algorithm with traditional ADPCA and SMI. The re-
sults are shown in Figure 13. Figure 13a shows the original signal of the simulation,
and Figure 13b–d are the results after noise suppression of the ADPCA, SMI, and PPSA
algorithms, respectively.
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As shown in Figure 13b, it can be seen that the clutter suppression effect of the ADPCA
algorithm is poor, and there are no obvious peaks at target 1 and target 2. Figure 13c shows
that after the SMI algorithm processing, a peak appears at target 1, and there is no obvious
peak at target 2. Figure 13d shows that the PPSA algorithm can effectively suppress the
clutter, and there are obvious peaks where the two targets are located. The quantitative
results are shown in Tables 14 and 15.

Table 14. SCNR comparison of target 1.

Method Target 1 Echo
Amplitude

Clutter Amplitude
Value SCNR/dB

original signal 0.0103 1.0000 −39.7433
ADPCA 0.4363 0.3821 1.1522

SMI 1.0000 0.0123 38.2019
PPSA 1.0000 0.0135 37.3933
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Table 15. SCNR comparison of target 2.

Method Target 2 Echo
Amplitude

Clutter Amplitude
Value SCNR/dB

original signal 0.0080 1.0000 −41.9382
ADPCA 0.3148 0.3821 −1.6828

SMI 0.2876 0.0123 6.5317
PPSA 1.0000 0.0165 35.6503

Tables 14 and 15 show that the PPSA method still has advantages in SCR. The PPSA
algorithm obtains a slightly lower SNR than that obtained by SMI in target 1, but its SNR
in target 2 is much greater than that obtained by SMI. To visually evaluate the clutter effect
of the above algorithms, we perform CFAR detection on the results processed by each
algorithm. The CFAR detection results are shown in Figure 14.
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Figure 14. The CFAR detection results for ADPCA, SMI, and PPSA. (a) The result of ADPCA, (b) the
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As shown in Figure 14a, it can be seen that ADPCA cannot effectively detect the target.
From Figure 14b, it can be seen that SMI can effectively detect target 1, but cannot detect
target 2. Figure 14c,d show that PPSA can effectively detect targets 1 and 2.

Therefore, whether it is the comparison of quantitative results or visual results, the
superiority of the PPSA algorithm for clutter suppression of small moving targets in the
multi-channel complex background is verified.

4.5. Experiment 4: Real Radar Echo Data Target Detection Experiment

In this section, we use the measured data to evaluate the performance of the proposed
PPSA method. We compared the PPSA algorithm with FastICA [15], PSA [17], MPSA [18],
and NPSA [21]. Quantitative and visual results were compared.

The “Radar to Ocean Detection” dataset was measured at the Yangma Island Exper-
imental Site in Yantai in October 2021 [27]. This paper selects the staring mode radar
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echo data numbered “20210106150614_01_staring.mat” as the test data. The size of the
one-dimensional echo signal corresponding to each pulse is 2224, and the number of pulses
is 3650. The number of data pulses is enormous; here, we only need to select the first
100 pulses for experimental processing. Due to short-range clutter with solid energy and
strong randomness in the radar echo, the false alarm rate of target detection directly on the
echo data is very high. Therefore, we first preprocess the echo data. For pulse-echo data
with many sampling points, the energy of sea clutter is much larger than that of the target.
Therefore, when performing singular value decomposition on such echo data, it is generally
believed that the enormous value corresponds to the sea clutter component, and the smaller
singular value corresponds to the target and noise components. At the boundary point, the
radar echo data can be divided into cluttered and target areas. Only the target area must be
detected, significantly reducing the false alarm rate. By SVD processing the above data, we
determine the radar echo signal with a distance of less than 2 km as the cluttered area and
the rest of the radar echo signal as the target area. We mainly perform object detection on
the data of the target area. The target region data is first preprocessed by dimensionality
reduction (DR) using the widely used principal component analysis (PCA) method. Here,
we select the top 12 main components (PCs) for subsequent analysis because the sum of
variances for the top 12 and all PCs is 99.9%. Figure 15a shows the original signal after
preprocessing, and Figure 15b–f are the results after noise suppression of algorithms such
as FastICA, PSA, MPSA, NPSA, and PPSA, respectively.
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Figure 15. The BSS results for FastICA, PSA, MPSA, NPSA, and PPSA. (a) Echo data, (b) the result of
FastICA, (c) the result of PSA, (d) the result of MPSA, (e) the result of NPSA, (f) the result of PPSA.

As shown in Figure 15a, there is a lot of clutter in the echo, and the target signal is weak.
From Figure 15b–d, it can be seen that FastICA, PSA, and MPSA can separate the target,
but they have a lot of interference and cannot effectively detect the target. Figure 15e,f
shows that NPSA and PPSA can effectively and accurately separate target 1 and target 2,
and the separation effect of PPSA is better. Next, we compare the PPSA algorithm with the
original echo signal. Figure 16a shows the measured original signal, Figure 16b is the result
after SVD processing, Figure 16c is the target area, and Figure 16d is the result after noise
sup-pression by the PPSA algorithm.
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Figure 16. The clutter suppression results for PPSA. (a) Echo data, (b) the result of SVD, (c) the result
of the target area, (d) the result of noncoherent accumulation, (e) the result of coherent accumulation,
(f) the result of PPSA.

As shown in Figure 16, it can be seen that the PPSA algorithm can effectively suppress
clutter. The quantitative results are shown in Table 16.

Table 16. SCNR comparison of target 1.

Method Target 1 Echo
Amplitude

Clutter Amplitude
Value SCNR/dB

original signal 0.8767 0.1798 13.7612
noncoherent 0.9425 0.1384 16.6639

coherent 1.0000 0.0342 29.3310
PPSA 1.0000 0.0242 32.3237

Table 16 shows that the SCR of the target is significantly improved after processing by
the PPSA algorithm. To evaluate the clutter effect of the above algorithms, we performed
CFAR detection on the results processed by the PPSA algorithm. This section adopts the
unit average CFAR. The false alarm probability is (10-6), the protection unit is 5, and the
reference unit is 15. The target detection results are shown in Figure 17.

As shown in Figure 17, it can be seen that CFAR detection directly on the target area
cannot effectively detect the target. However, after the clutter suppression by the PPSA
algorithm, the target can be effectively detected.

Therefore, comparing quantitative and visual results both verify the effectiveness of
the PPSA algorithm in suppressing clutter.
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Figure 17. The CFAR detection results for PPSA. (a) The result of target area, (b) the result of
noncoherent accumulation, (c) the result of coherent accumulation, (d) the result of PPSA.

In addition, we also compare the running speed of the above FastICA, PSA, MPSA,
NPSA, PPSA and FastPPSA algorithms. Figure 18 plots thesix algorithms’ running time
curves at different frequency bands.

As shown in Figure 18, it can be seen that the time consumption of FastPPSA is less
than other algorithms. Each iteration of FastICA needs to involve all pixels to find the best
projection direction, which means that the more pulse-echo sampling points, the more time
it takes to solve. FastPPSA uses Parfor parallel computing, which makes it faster when
dealing with high-dimensional data.
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Figure 18. Time consumption comparison of FastICA, PSA, MPSA, NPSA, PPSA, and FastPPSA.

5. Conclusions

Aiming at the problem that the existing PSA algorithm cannot accurately obtain the
real solution, this paper improves the original PSA algorithm and proposes a high-precision
parallel PSA algorithm. Unlike the current PSA algorithm that solves eigenpairs serially,
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the PPSA algorithm no longer imposes any constraints. Still, it selects the eigenvectors of
the forward tensor slice as the initial value for a free iterative solution, effectively avoiding
the imposition of constraints error. By comparing the algorithm with the existing PSA
algorithm, it is verified that it has better accuracy and robustness in blind image separation
and radar target detection.

It should be noted that PSA, NPSA, and PPSA all focus on the third-order skewness of
the dataset. For other datasets, skewness may not always be the best choice. In this case,
other metrics, such as fourth-order kurtosis or higher-order statistics, can be used instead.
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