
Citation: Yang, S.; Qin, H.; Yan, X.;

Yuan, S.; Zeng, Q. Mid-Wave Infrared

Snapshot Compressive Spectral

Imager with Deep Infrared Denoising

Prior. Remote Sens. 2023, 15, 280.

https://doi.org/10.3390/rs15010280

Academic Editors: Benoit Vozel,

Xiangtao Zheng, Yanfeng Gu and

Geng Zhang

Received: 18 November 2022

Revised: 27 December 2022

Accepted: 29 December 2022

Published: 3 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Mid-Wave Infrared Snapshot Compressive Spectral Imager
with Deep Infrared Denoising Prior
Shuowen Yang 1, Hanlin Qin 1,*, Xiang Yan 1 , Shuai Yuan 1 and Qingjie Zeng 2

1 School of Optoelectronic Engineering, Xidian University, Xi’an 710071, China
2 Xi’an Institute of Modern Control Technology, Xi’an 710065, China
* Correspondence: hlqin@mail.xidian.edu.cn

Abstract: Although various infrared imaging spectrometers have been studied, most of them are
developed under the Nyquist sampling theorem, which severely burdens 3D data acquisition, storage,
transmission, and processing, in terms of both hardware and software. Recently, computational
imaging, which avoids direct imaging, has been investigated for its potential in the visible field.
However, it has been rarely studied in the infrared domain, as it suffers from inconsistency in
spectral response and reconstruction. To address this, we propose a novel mid-wave infrared
snapshot compressive spectral imager (MWIR-SCSI). This design scheme provides a high degree of
randomness in the measurement projection, which is more conducive to the reconstruction of image
information and makes spectral correction implementable. Furthermore, leveraging the explainability
of model-based algorithms and the high efficiency of deep learning algorithms, we designed a deep
infrared denoising prior plug-in for the optimization algorithm to perform in terms of both imaging
quality and reconstruction speed. The system calibration obtains 111 real coded masks, filling the gap
between theory and practice. Experimental results on simulation datasets and real infrared scenarios
prove the efficacy of the designed deep infrared denoising prior plug-in and the proposed acquisition
architecture that acquires mid-infrared spectral images of 640 pixels × 512 pixels × 111 spectral
channels at an acquisition frame rate of 50 fps.

Keywords: spectral imaging; compressive sensing; mid-wave infrared; deep denoising prior

1. Introduction

The mid-wavelength infrared (MWIR) region spanning 3.0–5.0 µm contains the charac-
teristic vibrational absorption bands of most molecules as well as the atmospheric transmis-
sion window and is, therefore, of critical importance in various applications. Meanwhile,
spectral imaging is a technique used to acquire narrow-band spatial and spectral signa-
tures from the scene, making identification and quantification easier. In recent years, the
unification between them, the mid-wave infrared spectral imager, is a promising tool that
displays unique and robust mid-infrared spectral fingerprints, which can be widely applied
in remote sensing [1], planetary exploration [2], medical diagnosis [3,4], and industrial
emissions monitoring [5].

Various techniques have been developed for MWIR spectral imagers, such as narrow-
band filters [6,7], Fourier transform IR spectroscopy [8,9], acousto-optical tuning [10,11],
and frequency up-conversion [4,12,13]. Nevertheless, these Nyquist-sampling-based meth-
ods acquire spectral images at a certain given sampling rate in spatial dimension M× N or
spectral dimension L. This process requires the scanning of a large number of data cube
slices that grows linearly in proportion to the desired spatio-spectral resolution M× N × L,
which is inadequate for dynamic scenes and causes a heavy computing burden for stor-
age, transmission, and processing. Additionally, the complexity and high cost associated
with Nyquist sampling are prohibitive for various applications. To alleviate these issues,
compressive sensing (CS) [14] provides a new approach for new data acquisition schemes
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in the imaging field. This theorem enables the reconstruction of sparse or compressible
images from measurements requiring fewer samples than is needed for Nyquist sampling.

Most signals can be compressed during acquisition because they are sparse or can be
represented sparsely [14]. At the same time, the sensing phase recovers the original signal
from a small number of compressed signals. On this basis, compressive spectral imaging
compresses the three-dimension (x, y, λ) data cube to a measurement on the low-dimension
detector, and the reconstruction algorithms recover the three-dimension (3D) data cube
from the measurement. In the compressed process, different wavelengths in the 3D data
cube are modulated by different coded masks, and the coded signals are then integrated
into the detector. Coded aperture snapshot spectral imaging (CASSI) [15] is based on
the pioneering work that used a static coded aperture and two dispersers to implement
compressive spectral imaging, known as DD-CASSI. Following this, single-disperser CASSI
was invented [16] to achieve modulation with a single disperser. To supplement the coded
information for reconstruction, multi-frame CASSI [17] (MS-CASSI) was proposed to use
many different coded apertures to modulate. In addition, by replacing the traditional coded
aperture with a colored one, Arce et al. [18] proposed colored coded aperture compressive
spectral imaging (CC-CASSI) to extend the compressive capabilities. Lin et al. [19] designed
spatial–spectral encoded compressive spectral imaging (SS-CASSI) to provide a higher
degree of randomness in the measurement. To leverage the side information for facilitating
reconstruction, dual-camera compressive spectral imaging (DCCHI) has been intensively
studied [20–23]. Recently, motivated by the spectral variant responses of different media,
more types of spectral imaging systems have also been explored [24–26].

Compared to mature compressive spectral imaging at visible wavelengths, there
are a few studies on imaging at infrared wavelengths. Mahalanobis et al. [27] used the
CS structure of mid-wave infrared wavelengths to prove that measurements obtained
by a small infrared focal plane array (IRFPA), which can recover high spatial resolution
information. Zhang et al. [28], to improve the reconstruction strategy, used an imaging
calibration method coupled with a parallel computing accelerated reconstruction algorithm
to speed up mid-wave infrared imaging. Wu et al. [29] researched system patterns for
mid-wave infrared image super-resolution by IRFPA compressive sensing, described the
generation process of the digital micro-mirrors device (DMD), and modified the block-based
reconstruction algorithm. Further, Wu et al. [30] proposed calibration-based non-uniformity
correction and the stray light correction method for mid-wave infrared imaging to improve
image sharpness and reduce the blocky effect in the recovered images.

CS has paved the way for infrared imaging using a low-resolution detector that benefits
from replacing an expensive IRFPA [31–34]. The spectral and spatial resolution is achieved
using a fully integrated spectrometer and a DMD, respectively. However, to 3D reconstruct
spectral images M× N × L, the scene needs to be sequentially encoded η times (η refers to
the sampling rate) by DMD with size M× N, which severely prolongs the data acquisition
time. Instead of sequential acquisition, snapshot computational spectral imaging utilizes
a coded aperture to implement static encoding, and a 2D detector is used to capture
compressed data, which meets the demands of compressive sensing reconstruction [35].
In this way, Sullenberger et al. [36] proposed a long-wave infrared computational re-
configurable imaging spectrometer, which adopts a dual-disperser re-imaging design
with a static coded aperture. It realizes the diversity of coding via the device motion or
IRFPA scanning. Nevertheless, this method depends on multiple exposures to capture
enough measurement sequences for completely recovering spectral images, which hinders
instantaneous imaging. Furthermore, spectral calibration is relatively complicated due to
the re-imaging design of the system structure.

To address the above issues, a novel mid-wave infrared snapshot compressive spectral
imager is proposed that utilizes an infrared static coded mask and a dispersion element
to modulate the spatial and spectral information of scenes. A 2D, multiplexed projection
of the 3D data cube representing the signal is captured by an IRFPA. Instead of coding
the spectrum in a spatially uniform manner, e.g., CASSI [16], which places fundamental
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limits on the performance of the compressive reconstruction algorithms, a spatio-spectral
encoded optical design is able to increase the degree of randomness to preserve more
encoded information. Moreover, from a functional perspective, the snapshot structure
reduces the difficulty of calibration and improves the acquisition speed with a single-shot
capture procedure.

For our system, the infrared spectral images can be reconstructed from two-dimensional
measurements by solving an l0, l1, and lp (0 < p < 1) relaxation optimization problem using
prior knowledge [28,37,38]. However, these optimization-based algorithms have a low
reconstruction speed and limited performance. Recently, deep learning approaches exhibit
promising potential in resolving the reconstruction problem of visible snapshot compressive
imaging for a rapid and raised effect [35,39–46]. However, these system-specific networks
are hard to apply directly to our task due to the lack of infrared hyperspectral datasets for
network training. Inspired by the plug-and-play (PnP) framework proposed for inverse
problems [47], we designed an infrared denoising network as a prior for infrared spectral
image reconstruction, combining the advantages of optimization-based and deep network
algorithms. That is, an ingenious, quick, and high-accuracy algorithm is exploited to solve
the reconstruction problem of our mid-wave infrared snapshot compressive spectral imager.
In conclusion, our major contributions are as follows:

1. A novel mid-wave infrared snapshot compressive spectral imager that utilizes an
infrared static coded mask and a dispersion element to modulate the spatial and spectral
dimensions of scenes is presented. The spatio-spectral encoded optical design increases the
degree of randomness to preserve more encoded information. Furthermore, the snapshot
structure can reduce the difficulty of calibration and improve the acquisition speed with a
single-shot capture procedure.

2. To integrate the best of traditional optimization-based and deep learning algorithms,
an infrared denoising network as a prior for infrared spectral image reconstruction is
designed to resolve the inverse problem of our mid-wave infrared snapshot compressive
spectral imager.

3. Experimental results on both a simulation dataset and real infrared scenarios demon-
strate the efficacy of the designed deep infrared denoising prior and the proposed acquisition
architecture that acquires mid-infrared spectral images of 640 pixels × 512 pixels × 111 spectral
channels at an acquisition frame rate of 50 fps.

2. A Compressive Spectral Imaging Model

The basic idea of compressive spectral imaging is to encode a 3D spatio-spectral data
cube to a 2D detector forming a snapshot 2D measurement, as shown in Figure 1. The
spectral scene is spatially encoded by the coded mask. The prism spectrally disperses the
encoded scene. At last, a detector captures the spatial-spectral encoding scene.

Figure 1. Sensing process of compressive spectral imaging.

For the spectral data cube of the scene X ∈ Rnx×ny×B, where nx, ny, and B denote
the width, height, and the number of spectral bands, respectively, and is compressed by B
coded masks A ∈ Rnx×ny×B into the measurements Y ∈ Rnx×ny . We can mathematically
form this process as



Remote Sens. 2023, 15, 280 4 of 19

Y =
B

∑
b=1

Ab � Xb + M (1)

where b denotes the b-th coded mask and the corresponding spectral image. M ∈ Rnx×ny

denotes the measurement noise. � denotes the element-wise product. By vectorizing
y = vec(Y) ∈ Rnxny , x = vec(X) ∈ RnxnyB, and m = vec(M) ∈ Rnxny , Equation (1) can be
written in matrix-vector form as

y = Ax + m (2)

After obtaining the measurement y, the spectral images can be recovered from recon-
struction algorithms.

3. Optical Sensing and Reconstruction of the Proposed Architecture

A conceptual diagram of the MWIR-SCSI optical setup is presented in Figure 2. The
scene’s infrared radiation is collected by an objective lens and then dispersed into the
spectral plane by the prism. After a relay lens, a coded mask is mounted in front of the
image plane, which allows the mask to modulate the spectral scene in both spatial and
spectral dimensions. The encoded spectral image is focused onto the 2D IRFPA by the
last relay lens. The captured 2D radiance field sampled by our system includes light
multiplexed from the spatio-spectral encoded of the entire scene. The mathematical model
of the sensing process is represented as follows:

Figure 2. Illustration of the MWIR-SCSI sampling scheme.

The scene information of a 3D spectral clip in discrete form is denoted by Z(i, j, λ),
where 1 ≤ i ≤ W and 1 ≤ j ≤ H are the spatial coordinates, and 1 ≤ λ ≤ Ω denotes the
spectral channels. Therefore, we can write the IRFPA measurement obtained during the
entire interval as follows:

g(i, j) =
Ω

∑
λ=1

w(λ)O(i, j− σ(λ))z(i, j− σ(λ), λ) (3)

where O(i, j) is the transfer function of the coded mask, w(λ) is the point spread function
(PSF) achieved by the optical system, and σ(λ) denotes the dispersion function of the
dispersion element. We can rewrite the formula of Equation (3), as follows:

G = ΦZ (4)

where G ∈ RWH×1 is a representation of g by vectorization, and Z = (z1, z2, . . . , zλ)
T ∈

RWHΩ×1 denotes the vectorized representation of the original spectral images. Since
the spectral images are dispersed to different positions on the coded aperture, the spec-
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tral images are encoded by different sensing matrices ϕk, k = 1, . . . , λ. Thus, we let
Φ ∈ RWH×WHΩ denote the sensing matrices of the coded spectral images, and it can
be expressed as

Φ = [Diag(ϕ1), Diag(ϕ2), . . . , Diag(ϕλ)] (5)

where Diag(·) is a diagonal matrix, and the vector ϕk forms diagonal elements. The entire
sensing process is depicted in Figure 3.

Figure 3. Sensing model of the proposed MWIR-SCSI. The left side shows the measurement (coded
image), the top side shows the coded mask, and the right side shows the spectral images.

Thus, the spectral images reconstruction is formulated as a recovery problem of a
fitting data term with an additional regularization term:

Z̃ = arg min
Z
‖G−ΦZ‖2

2 + ρK(Z) (6)

where ρ denotes the Lagrange parameter that balances sparsity and the regularization term
K(Z) during optimization. We further solve Equation (6) using the PnP algorithm with a
deep infrared denoising prior, described in the next section.

4. A Deep Infrared Denoising Prior for Hyperspectral Image Reconstruction

In the optimization-based methods, the GAP-TV algorithm has shown impressive
performance in compressive sensing reconstruction [48]. The generalized alternating
projection (GAP) framework applies a faster denoiser and total variation (TV), but the
denoiser cannot achieve high-quality results. Recently, deep learning approaches have been
used to resolve recovery problems of visible snapshot compressive imaging for rapid and
raised effects [35,39–42,44–46]. However, these system-specific networks cannot be directly
applied to our task due to the lack of infrared hyperspectral datasets for network training.
From the idea of the recent advance of the PnP image restoration, it has demonstrated
that a proper denoiser can act as the image prior for optimization-based algorithms to
solve the recovery problem of Equation (6). To leverage the advantage of GAP, a deep
infrared denoising network is designed as the spatio-spectral prior and integrated into
GAP for reconstruction. The GAP solution to the recovery problem of Equation (6) can be
represented as

Z(t+1) = v(t) + ΦT(ΦΦT)−1(G−Φv(t)) (7)

v(k+1) = Dσ(F(t+1)) (8)

where (t) is the iteration number. The data is first projected on a linear manifold G = ΦF
in Equation (7), and the projected data are then denoised during iteration in Equation (8).

A great challenge in our task of using deep denoisers as a prior is that the contrast of
the infrared image is low, various noise levels from different IRFPAs appear in the captured
infrared image, and the inconspicuous features of the infrared image are difficult to extract.
Therefore, the denoiser should be robust to adapt to different noise levels. We designed a
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deep infrared denoising network, as shown in Figure 4, and employed it in the denoising
step of Equation (8), which can be formulated as

Dσ(Z(t+1)) = arg min
v

g(v) +
1
2

∥∥∥Z(t+1) − v
∥∥∥2

2
(9)

where g(v) is the regularization term. Given the noisy infrared image v, the clean infrared
image can be obtained by our deep infrared denoising network.

To adapt the character of the infrared image, the noisy infrared image is down-sampled
into four sub-images by convolution, as shown in Figure 4, and we then concatenate an
estimated noise level map with noise deviation σ of additive white Gaussian noise (AWGN)
as an input of the network. A data cube of size W

2 ×
H
2 × (4C + 1) is then transported

into a CNN with 14 convolution blocks ([Conv + ReLU] × 14). The residual learning
strategy is adopted for a faster convergence [49]. A convolutional kernel of size 3× 3
and zero padding are employed to maintain the feature map size during convolution. To
produce the denoised infrared image with its original image size W × H, the PixelShuffle
operation [50,51] is applied to up-sample at the last step. Hereby, the denoised infrared
image is obtained and then served for the next iteration. Our code is available at https:
//github.com/shuowenyang/GAP-DIDNet (accessed on 28 December 2022).

Figure 4. Network structure of the proposed deep infrared denoising prior.

5. Simulation Results
5.1. Training Details of the Infrared Denoising Network

We used a cooled mid-wave infrared camera (TB-M640-CL) to obtain 100 infrared
images of size 640× 512 (see Figure 5). We then cropped images into patches with a size
of 64× 64, and applied data augmentation methods (flip, rotation, and scale) to increase
the number of training samples. A similar operation was performed on another 20 images
for testing. We added AWGN with a noise level of σ ∈ [0, 75] to the original images to
generate a noisy version. PyTorch [52] was used for the implementation, and ADAM [53]
was chosen as the optimizer. The training epochs were set to 100 with a learning rate
starting from 10−3, which decayed 10 times every 50 training epochs.

Figure 5. Representative infrared images captured by the cooled mid-wave infrared camera (TB-
M640-CL). The features of most images are not clear.

5.2. Algorithm Evaluation

We conducted simulation experiments to demonstrate the hardware principle and
the proposed reconstruction algorithm. For the simulation data, we employed the pub-
licly available datasets CAVE [54], KAIST [55], and Harvard [56] and transformed the

https://github.com/shuowenyang/GAP-DIDNet
https://github.com/shuowenyang/GAP-DIDNet
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images into grayscale images. We then generated measurements following our MWIR-SCSI
framework using the shifting random binary mask. The proposed reconstruction algorithm
competes with other popular methods, including TwIST [57], GAP-TV [48], GAP-3DTV [58],
AutoEncoder [55], TSA-Net [59], and HDNet [60]. We assessed the performance of these
competing methods by four metrics: peak signal-to-noise ratio (PSNR), structural similarity
(SSIM) [61], the spectral angular mapper (SAM) [62], and running time.

The average PSNR, SSIM, and SAM on the entire CAVE and KAIST datasets con-
structed by the aforementioned algorithms are listed in Table 1. We can observe that the
PSNR and SSIM values of the optimization-based GAP algorithms are much higher than the
CNN-based TSA-Net. The table also shows that the AutoEncoder method is outstanding,
as it can outperform the other methods. It achieved the best results in the SAM. The reason
for this may be that this algorithm learns nonlinear spectral representations from real-world
hyperspectral datasets. As a comparison, the proposed algorithm achieves a further promo-
tion in PSNR and SSIM and ranks second in terms of SAM. It can be observed that the GAP
algorithms can achieve considerable results compared with the ordinary reconstruction
methods TwIST and TSA-Net. This indicates that the PnP framework can perform substan-
tially well in spectral image reconstruction. However, the traditional denoisers (TV and
3DTV) are insufficient. In terms of the performance comparison of our proposed algorithm
and the learning-based algorithms, our algorithm is excellent in PSNR and SSIM and ranks
second in terms of the SAM because our algorithm plugs in a deep denoiser, exploiting the
advantages of both optimization-based algorithms and learning-based algorithms.

Table 1. Average PSNR and SSIM comparison of competing methods on the CAVE, KAIST, and
Harvard datasets.

Datasets Index TwIST GAP-TV GAP-3DTV AutoEncoder TSA-Net HDNet Ours

CAVE
PSNR 23.74 29.07 29.15 32.46 26.10 32.18 33.03
SSIM 0.8523 0.9219 0.8866 0.9235 0.8105 0.9024 0.9257
SAM 16.4033 11.5969 14.7321 4.7991 15.8743 13.7483 11.1254

KAIST
PSNR 23.78 35.60 28.25 32.64 23.65 33.58 35.73
SSIM 0.8623 0.9468 0.8708 0.9475 0.7910 0.9428 0.9494
SAM 15.2222 6.0389 12.3403 3.0663 14.2571 7.9834 5.8549

Harvard
PSNR 22.84 30.23 28.19 31.84 23.28 32.02 32.73
SSIM 0.8346 0.9204 0.8739 0.9214 0.8043 0.9312 0.9345
SAM 16.3466 11.9845 14.8793 5.2893 14.9385 12.3812 10.4895

Further, to evaluate the fidelity of reconstructed spectral images, we tried to calculate
the accuracy, precision, recall, and F1-score for verification. Because the original and
reconstructed spectral images are grayscale instead of binary, we normalized the values
between 0 and 1, and we then set the values of the images greater than 0.5 to 1 to calculate
these indexes, as shown in Table 2. The results show that the learning-based algorithms are
capable of achieving a higher fidelity than the optimization-based ones. In particular, the
proposed method produces the best results.

Table 2. Mean accuracy, precision, recall, and F1-score of the reconstructed spectral images of
different algorithms.

Index TwIST GAP-TV GAP-3DTV AutoEncoder TSA-Net HDNet Ours

Accuracy 0.4749 0.4821 0.4892 0.4938 0.4873 0.4645 0.4921
Precision 0.6085 0.5599 0.8334 0.7792 0.7694 0.7812 0.7799

Recall 0.3090 0.2818 0.6889 0.8528 0.8498 0.8752 0.8787
F1-score 0.3968 0.2644 0.7454 0.8139 0.8123 0.8203 0.8209
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In terms of running time, the reconstruction of the CAVE data of spatial size 512× 512,
the KAIST data of spatial size 256× 256, and the Harvard data of spatial size 1040× 1392
is shown in Table 3 for each method. The codes of the optimization-based methods were
written using MATLAB and run on a CPU. The deep-learning-based methods were written
in Python and run on a GPU. With the increase in image size, the time consumption also
increases, but for deep learning algorithms, parallel operation can effectively save time. It
is observed that the GAP-based methods have a speed advantage, but the reconstruction
results of these algorithms are far from optimum. The AutoEncoder method requires a
high amount of training time to obtain the spectral prior. The time-consuming TSA-Net
benefits from deep learning. Although our strategy requires iterative processing during the
estimation, it demonstrates an acceptable amount of time consumption for the network test
on the GPU by combining the pre-trained deep denoiser.

Table 3. CPU and GPU execution time (second) comparison of different methods on the CAVE,
KAIST, and Harvard datasets.

Algorithm
CAVE KAIST Harvard

Programming Language Platform
CPU GPU CPU GPU CPU GPU

TwIST 441.4 - 111.8 - 1788.3 -
Matlab Intel Core i3-6100 CPUGAP-TV 49.3 - 12.7 - 210.5 -

GAP-3DTV 29.7 - 7.4 - 130.8 -

AutoEncoder - 414.2 - 103.5 - 1639.5 Python + TensorFlow

NVIDIA GTX 1080Ti GPUTSA-Net - 48.6 - 12.4 - 201.4
Python + PytorchHDNet - 38.4 - 9.5 - 158.4

Ours - 26.8 - 6.7 - 124.9

To visualize the experimental results, the spatial details and spectral accuracy of
the reconstructed results by different algorithms on images from the CAVE, KAIST, and
Harvard datasets are compared in Figures 6, 7 and 8, respectively. The reconstructed
frames of TwIST are not clean. GAP-TV can provide visually decent results, whereas
GAP-3DTV suffers from blurry details. Although AutoEncoder, TSA-Net, and HDNet, as
CNN-based methods, can recover most spatial details, some areas have blurred edges and
lost detail, especially using the TSA-Net algorithm. By contrast, our method benefits from
both the GAP and the deep denoiser, and thus displays sharper edges and higher visual
quality. Significantly, the drawback of learning-based methods is even more obvious in
large-size images because they rely heavily on training data, and more training parameters
are required. Optimization-based algorithms can fill this gap. Thus, the combination of
learning-based and optimization-based methods, i.e., the proposed method, can maintain
performance well. Furthermore, the reconstructed spectral curves of the four special regions
were plotted to compare the spectral accuracy, shown in Figures 9–11. The reconstructed
spectral curves of the proposed method have a higher consistency with the ground-truth
spectra. The spectral curves of TwIST and GAP-3DTV deviate from the ground truth
the most.
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Figure 6. Reconstructed spectral images of stu f f ed toys with a size of 512× 512 from the CAVE dataset. We
show the reconstructed result of four bands (wavelength: 420, 500, 600, and 700 nm) by different algorithms.

Figure 7. Reconstructed spectral images with a size of 256× 256 from the KAIST dataset. We show the
reconstructed results of four bands (wavelength: 420, 500, 600, and 700 nm) by different algorithms.

Figure 8. Reconstructed spectral images with a size of 1040× 1392 from the Harvard dataset. We show
the reconstructed results of four bands (wavelength: 420, 500, 600, and 700 nm) by different algorithms.
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Figure 9. Grayscale image and corresponding compressive measurement by the spatio-spectral
encoding of stu f f ed toys from the CAVE dataset. The right two columns display the reconstructed
spectral curves on special regions to compare the spectral accuracy. (a) The spectral curves at point a;
(b) The spectral curves at point b; (c) The spectral curves at point c; (d) The spectral curves at point d.

Figure 10. Grayscale image and corresponding compressive measurement by the spatio-spectral
encoding from the KAIST dataset. The right two columns display the reconstructed spectral curves
on special regions to compare the spectral accuracy. (a) The spectral curves at point a; (b) The spectral
curves at point b; (c) The spectral curves at point c; (d) The spectral curves at point d.
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Figure 11. Grayscale image and corresponding compressive measurement by the spatio-spectral
encoding from the Harvard dataset. The right two columns display the reconstructed spectral curves
on special regions to compare the spectral accuracy. (a) The spectral curves at point a; (b) The spectral
curves at point b; (c) The spectral curves at point c; (d) The spectral curves at point d.

6. Experiment Results
6.1. MWIR Snapshot Compressive Spectral Imager Design

To experimentally evaluate the effectiveness of the proposed architecture, a proof-of-
concept MWIR-SCSI system was established, as shown in Figure 12. An objective lens (focal
length: 127 mm; diameter: 50 mm) was used to optically form the scene’s infrared radiation on
the prism (customized AL2O3). The dispersed spectral scene was coded by a coded aperture,
which is a lithographically patterned chrome-on-Ge mask. In our experiments, the mask we
used was a Gaussian random pattern with the same resolution and pixel pitch as the IRFPA.
Furthermore, each mask pixel was represented by a 1 × 1 window of IRFPA pixel subsets,
so the maximum modulation resolution was 640 × 512. To flexibly adjust the mask-IRFPA
distance, another relay lens (focal length 125 mm, f) was used to transfer the spatio-spectral
modulation of the scene onto the IRFPA with a resolution 640 × 512 and a pixel size of 15 µm.

Figure 12. Experiment setup implemented in the laboratory.
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6.2. Spatial, Temporal, and Spectral Resolution

In our MWIR-SCSI system, the spatial resolution and temporal resolution are deter-
mined by the IRFPA and its frame rate, respectively. Therefore, our MWIR-SCSI system can
capture a maximum spatial resolution of 640 × 512 and a maximum temporal resolution
of 50 fps. Both the dispersed spectrum width on the IRFPA plane and the IRFPA pixel
size determine the spectral resolution. The calculation process of spectral resolution is
as follows:

Figure 13a shows the optical path in the AL2O3 prism. The outgoing ray angle γ̂ is
represented in Equation (10):

γ̂(c) = arcsin
(

β− arcsin
sinγ

n(c)

)
(10)

where n(·) denotes the refractive index of the AL2O3 prism, with incident light wavelength
c, β indicates the angle of the AL2O3 prism, γ denotes the angle of incidence, and y
represents the position between the image plane and the prism. The spectral resolution can
be calculated by Equation (11):

Rspe =
ψ

τ
=

f (tan(γ̂(ce)− y)− tan(γ̂(cs)− y))
τ

(11)

where ψ denotes the dispersed spectrum width, τ denotes the IRFPA array size, and f
denotes the imaging focal length. ce and cs are the maximum and minimum wavelengths
in the angle of refraction of the outgoing rays, respectively. Figure 13b shows the spectral
resolution Rspe curve from 3.7 µm to 4.8 µm in MWIR-SCSI.

Figure 13. (a) Optical path in the AL2O3 prism: β denotes the prism angle, γ denotes the incident
angle, y denotes the angle of the prism’s surface with the imaging plane, and γ̂ denotes the outgoing
ray angle. (b) Spectrum width in our proposed system with a different incident angle γ.

6.3. System Calibration

Equation (6) indicates the features of this coding pattern Φ have a great influence on
the fidelity of the estimated spectral images. In most simulation experiments, the coding
pattern is regarded as a binary pattern, whereas the infrared radiation does not entirely
penetrate the coded mask or reflect completely in the experiment. In addition, the response
of the IRFPA to infrared radiation is inconsistent, which is also the case with other infrared
optical components. As a result, the coding pattern used in the reconstruction cannot be
regarded as a binary pattern but as a grayscale pattern.

Therefore, system calibration is necessary to correct this theoretical error to reconstruct
accurate spectral images. The response of our system or the PSF to each pixel source of the
different spectral scenes can be obtained to achieve this process. We simplify this operation
by obtaining the experimental coded matrix Φ. Specifically, we uniformly illuminate the
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MWIR-SCSI system with each monochromatic wavelength of light in 10 nm increments
from 3.7 µm to 4.8 µm and capture 111 monochrome images of the coded mask.

Some of the results are shown in Figure 14. We can see that from 3.7 µm to 4.8 µm, the
coded mask shift with different displacements, as well as the dispersion at the shorter end of
the spectrum, is less than that at the longer end, which demonstrates the non-linear spectral
response of the entire system, covering the non-linearity of the prism dispersion. All of
the mask images of 111 spectral channels contain the information that the reconstruction
algorithm attempts to recover. The wavelength curve according to the position of the cross
on the template images is shown in Figure 15. Essentially, this nonlinear curve discretely
represents the dispersion coefficient of the proposed MWIR-SCSI system.

Figure 14. The MWIR-SCSI system response to uniform illumination of the coded mask at 11 different
monochromatic wavelengths.

Figure 15. The blue dots denote the position of the cross at the top of the coded mask as a function of
wavelength and show nonlinear dispersion through a prism.
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Similar to the process above, we set the values of the captured coded mask images
greater than 0.5 to 1. We generated a 0–1 Gaussian random matrix to produce the coded
aperture (Figure 12). Thus, the accuracy, precision, recall, and F1-score can be calculated,
as shown in Table 4. These values are not very high, which indicates the theoretical and
practical gap caused by the nonlinear response of the system.

Table 4. Accuracy, precision, recall, and F1-score results of the coded mask images of different
wavelengths.

Index 3.7 µm 3.8 µm 3.9 µm 4.0 µm 4.1 µm 4.2 µm 4.3 µm 4.4 µm 4.5 µm 4.6 µm 4.7 µm 4.8 µm

Accuracy 0.8453 0.8343 0.7984 0.8394 0.8473 0.8743 0.8323 0.8423 0.85023 0.8446 0.8564 0.8395
Precision 0.6574 0.6473 0.6473 0.7073 0.6378 0.6874 0.6594 0.5894 0.6058 0.6128 0.6392 0.6483

Recall 0.6673 0.6534 0.6889 0.7183 0.6483 0.6984 0.6639 0.5984 0.6139 0.6229 0.6432 0.6558
F1-score 0.6704 0.6606 0.6912 0.7291 0.6503 0.7049 0.6784 0.6084 0.6294 0.6384 0.6593 0.6639

6.4. Results and Discussion

To demonstrate the spectral imaging capability, our MWIR-SCSI system recorded
measurement images at mid-wave infrared wavelengths from the sample combustion
process (candle flame) at live video frame rates, as shown in Figure 16a. The partial results
of 32 wavelength channels between 3.7 and 4.8 µm using the proposed reconstruction
method are shown in Figure 17. In order to demonstrate the hyperspectral image acquisition
capability of the proposed MWIR-SCSI system for dynamic targets, we measured another
candle flame in motion, as shown in Figure 16b. Similarly, the restored results by the
proposed reconstruction method are shown in Figure 18. Our system and algorithm were
able to obtain the candle flame details well and distinguish significant spectral differences.
The longer the wavelength, the darker the outer flame, and the brighter the inner flame.
This observation can be explained by the temperature variation—the temperature of the
outer flame is higher than that of the inner flame, so more radiation energy is distributed
over shorter wavelengths, while the radiation energy of the inner flame is higher over
longer wavelengths. The spectral curves selected from the outer and inner flame are
presented in Figure 16c. The strong CO2 absorption in the gap at 4.3 µm is also clearly
presented in the figure. This provides a reliable way to identify the chemical composition
of different flames by imaging at different wavelengths.

In mid-wave infrared, we have reported another low-cost computational spectral
imaging system [34], which leverages the DMD and spectrometer to collect measurement
signals through multiple encoding. This strategy only conducts spatial coding, whereas the
proposed MWIR-SCSI system simultaneously performs spatial and spectral coding. Table 5
lists the significant differences between these devices. The MWIR-SCSI system makes it
possible to achieve fast acquisition through single encoding. However, the main limitation
of the MWIR-SCSI system is that traditional optimization algorithms require high amounts
of time for reconstruction. Fortunately, the future development of deep learning methods
can effectively address this problem.

Table 5. The major differences between the two computational mid-wave infrared spectral imagers.

Mode Coding Scheme Spatial Resolution Spectral Resolution Spectral Channel Acquisition Time Reconstructed Time Cost(Pixels) (Second) (Second)

Single-pixel spatial 64 × 48 2 100 4 2293 low
Snapshot spatial & spectral 640 × 512 10 111 0.02 107 high
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Figure 16. (a) Single frame measurement image of candle flame captured by our MWIR-SCSI;
(b) another frame measurement image of candle flames captured by our MWIR-SCSI; (c) the spectral
curves selected from the outer flame and inner flame, respectively.

Figure 17. Reconstructed spectral images by our reconstruction method.
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Figure 18. Reconstructed spectral images by our reconstruction method.

7. Conclusions

In this work, we present a novel mid-wave infrared snapshot compressive spectral
imager based on a prism and a coded aperture to produce spatio-spectral coded to the
benefit of reconstruction. In addition, as an important step in the infrared imaging sys-
tem, convenient and practical calibration methods are implemented in our system. We
acquire 111 real coded masks in which the displacement reflects the non-linear spectral
response of the entire system. To address inconsistencies in infrared image noise levels
and missing datasets, the image reconstruction problem in our system is formulated as an
inverse problem with the GAP plug-in deep infrared denoising network, ensuring smooth
reconstructed images in spatial and spectral dimensions. Compared to traditional scanning
architectures, the proposed MWIR-SCSI performs well in dynamic scenes because objects
can be sparsely sampled at live video frame rates. Extensive results on a simulation dataset
and real infrared scenarios obtained by our system have demonstrated the performance of
both the proposed system and the method.
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