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Abstract: Compared with the existing modes of LiDAR, single-photon LiDAR (SPL) can acquire
terrain data more efficiently. However, influenced by the photon-sensitive detectors, the collected
point cloud data contain a large number of noisy points. Most of the existing denoising techniques
are based on the sparsity assumption of point cloud noise, which does not hold for SPL point clouds,
so the existing denoising methods cannot effectively remove the noisy points from SPL point clouds.
To solve the above problems, we proposed a novel multistage denoising strategy with fused multiscale
features. The multiscale features were fused to enrich contextual information of the point cloud at
different scales. In addition, we utilized multistage denoising to solve the problem that a single-
round denoising could not effectively remove enough noise points in some areas. Interestingly,
the multiscale features also prevent an increase in false-alarm ratio during multistage denoising.
The experimental results indicate that the proposed denoising approach achieved 97.58%, 99.59%,
95.70%, and 77.92% F1-scores in the urban, suburban, mountain, and water areas, respectively, and
it outperformed the existing denoising methods such as Statistical Outlier Removal. The proposed
approach significantly improved the denoising precision of airborne point clouds from single-photon
LiDAR, especially in water areas and dense urban areas.

Keywords: single-photon LiDAR; point cloud denoising; multiscale features; random forest

1. Introduction

Nowadays, airborne LiDAR is widely used for large-scale topographic mapping [1,2],
urban building extraction and modeling [3], and forest inventories [4,5]. Airborne LiDAR
can be divided into three categories based on the sensor: linear mode LiDAR (LML), Geiger
mode LiDAR, and single-photon LiDAR (SPL) [6]. With the development of single-photon
detection technology, SPL is equipped with photon-sensitive detectors, and therefore, it
needs only to detect a few returned photons to achieve ranging. This greatly enhances the
efficiency of data acquisition [7]. Researchers have found that SPL has great potential in
national mapping work [8,9]. Thus, SPL has been broadly employed in the 3D Elevation
Program (3DEP) [10] and European operational mapping projects [11]. However, SPL
captures a lot of noise, mainly caused by the dark counts from sensitive detectors, solar
backscatter from the atmosphere within the inspected surface and pixel field of view (FOV),
and laser backscatter from the atmosphere [12].

The noisy points from the LML are mostly because of the low outliers generated by
multiple path errors and are well removed using statistical or priori knowledge-based
techniques.
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The basic idea of the statistical methods is to calculate the point numbers within
each neighborhood or to calculate local point density to obtain a statistical histogram, and
finally, distinguish between noisy and non-noisy points based on a threshold value. The
basic idea of the priori knowledge-based methods is to apply morphological closing to
remove the low outliers and to apply morphological opening to connect the isolated ground
points. However, there will still be a large number of noise points in the SPL point clouds
after denoising using traditional methods, and further denoising is inevitable. (Figure 1).
Therefore, an effective SPL point cloud denoising method is urgently needed. There are
also many other significant problems that have to be solved. Two of these problems are
as follows:

Raw point cloud data from SPL

Top view of the point cloud

Denoised by Statistical Outlier Removal

Denoised by Radius Outlier Removal

Figure 1. The raw point clouds data from SPL and the denoising results using existing algorithms.
The three images in the right hand show the profile line in the area of the red line on the left.

1. The sparsity assumption of point cloud noise does not hold: The noise in the LML
point clouds is generally sparse, and many existing denoising algorithms have been
proposed based on the sparsity assumption. However, the high photon sensitivity of
SPL results in numerous noisy points. The noisy point density in the SPL point clouds
far exceeds that in the LML point clouds. Therefore, it is hard to remove the noisy
points in SPL using existing denoising algorithms (see the second and third rows of
Figure 1).

2. The noisy points cannot be identified with a clear mechanism of generation: The
noise in the LML point clouds is primarily due to low outliers generated by the
multiple path errors. The low outliers can be removed by morphological opening and
closing. In contrast, noisy points in the SPL point clouds are generated for various
uncertain reasons, thus, it is difficult to construct a denoising model using a priori
knowledge-based method [13].

To address these problems, we proposed a machine learning approach for SPL point
cloud denoising using multiscale features and multistage denoising techniques.
We utilized the multiscale features of the point cloud to extract the local information of the
point cloud under different receptive fields to obtain more comprehensive local features
of the point cloud and to train a more effective denoising model. Then, we proposed
to use multistage denoising to solve the problem of unsatisfactory single-round denoising
effect in some regions. Specifically, the steps of this paper’s approach are as follows. First,
we computed the point cloud multiscale features based on the multiscale neighborhoods.
Second, we introduced the random forests module to learn the multiscale features extracted
from the training point cloud data. Then, we used the trained classifier to denoise the
testing point cloud data. Finally, we carried out multiround denoising to improve the
denoising accuracy.
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In summary, our contributions are as follows: We proposed (1) a multiscale feature
fusion module that combined structural information from a larger context in the SPL point
clouds and (2) a multistage denoising approach that carried out multiround denoising
without significantly increasing the false-alarm ratio. The rest of this paper is organized
as follows. The summary of the related work on the SPL, point cloud denoising methods,
and the point cloud features are introduced in Section 2. Section 3 introduces the details of
the proposed approach for SPL point cloud denoising. The experiments and the denoising
results are illustrated in Section 4. Section 5 summarizes the main work of this paper.

2. Related Work
2.1. Single-Photon LiDAR

Linear mode LiDAR uses the Avalanche Photodiode (APD) detectors to capture re-
flected signals. Hundreds of photons are required for LML to reliably detect an object,
while the single-photon LiDAR system utilizes single-photon avalanche diode (SPAD)
detectors [14,15]. As for SPAD detectors, the photon sensitivity enables the SPL to detect
a single object with only a few photons and to perform terrain mapping at higher alti-
tudes [16]. Leica’s SPL100 is the first commercially available single-photon LiDAR system,
and it emits a very short laser pulse with a pulse duration of 400 ps, which is divided into
10 × 10 sub-beams by diffractive optical elements [17]. For each sub-beam, reflected signals
can be received in the form of photons by an individual SPAD detector. The SPAD detectors
will excite photoelectron pulses after receiving photons, and then the photon counting
module will obtain an effective Time of Flight (ToF) that can be employed to calculate the
position of a single object [18–22].

To minimize the influence of atmospheric and solar background noise, a range gate
technique is used in the single-photon detector. The returned photons are accepted
when the time corresponds to the range gate, otherwise, they are treated as noise [10,23].
Although the range gate technique can suppress some of the noise, a large number of noisy
points are still captured, thus, further denoising is still needed.

Like LML, SPL is a hybrid multisensor 3D information acquisition system. Take the
SPL100 as an example, in addition to the laser sensor, it contains a GNSS module for deter-
mining the position of the sensor platform, an IMU module for determining the attitude [18],
and an 80-megapixel camera to provide color information for the point cloud [17].

2.2. Point Cloud Denoising

In this section, we briefly review the previous approaches to denoise point clouds.
(1) Digital image processing based denoising approaches: Many early scholars pro-

jected 3D point cloud data to 2D digital images and then denoised them according to the
denoising algorithms of digital images [24]. Using these approaches to denoise the SPL
point clouds, a lot of information would be lost in the projection process from point cloud
data to digital images.

(2) Local statistical denoising approaches: Zhao et al. [25], Duan et al. [26], Zhang
et al. [27], Balta et al. [28] make use of the local information of the point clouds. First, the
point number or the point density is counted in each neighborhood to obtain the statistical
histogram of the point cloud, and then the appropriate threshold is set to complete the
judgment of noisy points. These approaches have been widely employed and have been
integrated into PCL (Point Cloud Library) and open3d. However, these approaches are all
proposed based on the sparsity assumption of point cloud noise. The large number of the
noise points in the original SPL point cloud does not satisfy this assumption, and the SPL
point cloud cannot be denoised well using these approaches.

(3) Clustering-based denoising approaches [29]: Earlier, many scholars often used
the DBSCAN clustering algorithm to classify noisy points [30]. Zhu et al. [31] found that
the DBSCAN algorithm did not work well in complex terrain and proposed the modified
ordering points to identify the clustering structure (OPTICS) approach. However, clustering
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denoising for SPL point clouds can only eliminate some nonclustered points, and the spatial
correlation between points cannot be well expressed if only using a single scale.

(4) Smoothing-based denoising approaches: The basic idea of smoothing-based de-
noising approaches is to adjust each point to the fitted surface to achieve a smoothing effect.
The main smoothing-based denoising techniques include the Mean-Shift algorithm [32],
moving least squares (MLS) [33], and bilateral filtering [34]. Han et al. [35] claimed that
MLS could be used to handle denoising problems by adjusting the points onto the fitted
surface iteratively and Digne and de Franchis [34] employed the bilateral filtering algorithm
to adjust the points along their normal. However, the amount of noise in the SPL point
cloud is much larger than that in the linear mode LiDAR point cloud, and only a small
number of outliers can be removed using these approaches.

(5) Hybrid denoising approaches: Hybrid denoising techniques usually fuse multiple
denoising algorithms based on the priori information of the noise to enhance denoising
precision. Zaman et al. [32] proposed an algorithm for fusing kernel density estimation
with particle swarm optimization, mean-shift, and bilateral filtering. To develop the process
of fusion denoising, we first need to figure out the noise generation mechanism of SPL
point cloud. However, the noise generation mechanism of SPL is completely different from
that of LML, and it is difficult for us to build a noise model, so it is not easy to choose a
suitable fusion denoising approach.

2.3. Point Cloud Features
2.3.1. Neighborhood Definition

SPL often collects amounts of point information without explicit connection among
points, but the connection among points is crucial for local feature description. For being
able to build the connection among points, it is inevitable to define a local neighborhood
containing the considered LiDAR points [36]. Generally, different strategies can be em-
ployed to establish the neighborhood of each LiDAR point. Among them, the following
methods of neighborhood definition are commonly used:

(1) Spherical neighborhood: a fixed radius of sphere r ∈ R should be defined, and all
points within r constitute the neighborhood of the LiDAR point; (2) k-neighborhood: a fixed
number k ∈ N has to be defined, and the nearest k points to the LiDAR point constitute
the neighborhood of the spatial LiDAR point; and (3) cylindrical neighborhood: a fixed
radius r ∈ R should be defined. When projected onto the ground, all the points within r
constitute the neighborhood of the LiDAR point [37,38].

2.3.2. Feature Selection

Feature extraction of the LiDAR point cloud has been extensively studied. Geo-
metric feature extraction approaches, proposed by Weinmann et al. [37], Blomley and
Weinmann [39], introduced local point density, verticality, and height difference to extract
neighborhood features. Many studies implied that eigenvalue-based LiDAR features were
potentially valuable for the description of local geometric features and Dittrich et al. [40]
validated eigenvalue-based LiDAR features’ robustness. Weinmann et al. [37], Singh and
Sreevalsan-Nair [41], Che et al. [42], Tomková et al. [43], Gallwey et al. [44], Ni et al. [45],
and Vetrivel et al. [46], Thomas et al. [47] calculated the eigenvalues and eigenvectors of
the covariance matrix in the neighborhood of each LiDAR point by Principal Component
Analysis (PCA) and performed the local geometric feature extraction of the point cloud
by eigenvalues and eigenvectors. Wang et al. [48], Yastikli and Cetin [49] utilized height-
based features, echo-based features, intensity features, texture features, and waveform
features to acquire the LiDAR point cloud classification. Lucas et al. [50] used echo-based
features, geometric features, and eigenvalue-based features to classify the vegetation. The
results suggest that classifiers trained with these features were able to successfully separate
vegetation from the background.
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2.3.3. Multiscale Construction

Brodu and Lague [51] first proposed a strategy to construct multiscale features by
computing geometric features at N scales and concatenating these features so that each
point has multiscale local neighborhood features. Experiments showed that multiscale
features improved the spatial resolution of the classification compared with a single scale.

The optimal neighborhood scale is not the same for different features, and
Dong et al. [52] recommended that we should choose the optimal neighborhood for different
local neighborhood features.

Neighborhood selection is a crucial part of feature extraction, therefore, Demantke
et al. [53] first estimated the optimal neighborhood of the point cloud and then calculated
the local geometric features based on the optimal neighborhood. After weighing the
computational cost against the optimal size of the neighborhood, Huang et al. [54] proposed
to extract geometric features using multiscale neighborhoods instead of directly estimating
the optimal size of the neighborhood. They extracted features at three neighborhood
scales for classifier training based on the point density, and the final classification precision
was better than that of the single-scale feature classification. Singh et al. [55] successfully
achieved the separation of bolts from roofs using a binary classifier trained with multiple
scale features.

3. Methodology
3.1. Architecture Overview

To resolve the problem that existing methods are not effective in removing SPL noise,
we proposed a multistage denoising approach using a classifier trained based on multiscale
features. The structure of the proposed network is shown in Figure 2. It largely contains three
parts: (1) the definition of multiscale point cloud neighborhoods, (2) the extraction of multiscale
point cloud features, and (3) the noisy point labeling by machine learning algorithms. In
the first part, we constructed multiscale neighborhoods of the point cloud using the KD tree.
In the second part, we computed the neighborhood-wise features of each LiDAR point on
multiple-scale neighborhoods, while the point-wise features were calculated by the intensity
and echo values of each point. Furthermore, all these features were concatenated to consist of
the multiscale features of the LiDAR point. In the third part, we applied a machine learning
algorithm to train a noisy point classifier for SPL point clouds using attribute information
consisting of echo-based, intensity-based, and eigenvalue-based features. Finally, we tested
the classifier on the test point cloud data. To enhance the denoising precision of the SPL point
clouds, we also carried out multistage denoising.

Train data

Test data

Input

Neighborhood definition Multi scale featureextraction

Output

Point cloud 
after denoising

Result n

voting

Random forest classifier

a

b

m

Point-wise features

Neighborhood-wise features

KD tree

Result 1

CART 1

Result 2

CART 2

……

CART n

EchoesIntensity

Linearity
(m)

Linearity
(b)

Linearity
(a)

Sphericity
(m)

Sphericity
(b)

Sphericity
(a)

Anisotropy
(m)

Anisotropy
(b)

Anisotropy
(a)

Concatenate

……

…… …… ……

Figure 2. Structure of the proposed network. There are three main parts: neighborhood definition, a
multiscale feature extraction, and a random forests module. In the neighborhood definition module,
a,b. . . m represent different scales.
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3.2. Multiscale Hybrid Features of Single-Photon LiDAR

After reviewing the relevant literature, we selected and calculated the point-wise
features and the neighborhood-wise features in our framework, which could be categorized
with respect to the following feature types:

3.2.1. Point-Wise Features

An SPL point cloud can be represented as a set of points P = {Pi|i = 1, · · ·n}, where
each LiDAR point Pi not only has its three coordinates (x, y, z) but also has an intensity
value (I), the number of returns (Rt), a return number (R), and RGB values, which can be
used in feature extraction. We acquired point-wise features using intensity-based features
and echo-based features obtained from the raw SPL point cloud data.

• Intensity-based features: The intensity values reflect the intensity of the reflected
signals by the object being measured. The intensity values can distinguish some noisy
points from building points, since the intensity of some background noisy points is
much lower than that of building points (Figure 3d).

• Echo-based features: N and Ne can describe the echo-based features, where N repre-
sents the total number of echoes contained in the current pulse and Ne stands for the
normalized number of echoes. Echo-based features can initially extract the vegetation
points, since there may be multiple echoes from the same pulse in the vegetation areas
(Figure 3e).

0

0.06

0.16

0.25

0.33

0

46

120

198

255

( b) Heigh difference (c) Normal change rate (d) Intensity

(e) number of returns (f) Anisotropy (g) Planarity

(h) Linearity (i) Sphericity (j) Surface variation

(a) Original Point Cloud

Figure 3. Original point cloud and some representative LiDAR point cloud features.

3.2.2. Neighborhood-Wise Features

The neighborhood-wise features are computed by relying on the local neighborhoods.
The local neighborhood around the point pc is a point set Ni including all the points within
a sphere with a fixed radius r centered at pc. The neighborhood-wise features can be
separated into height-based features and eigenvalue-based features.
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• Height-based features predominantly include height difference (∆z), height standard
deviation (σ2

z ), and normal change rate (C). The values of height-based features will be
larger in vegetated areas, high noise areas, and building boundaries, where there are
more undulations (Figure 3c). We can therefore use height-based features to highlight
smooth areas such as ground and building roofs.

• Eigenvalue-based features are widely used for local feature extraction from point
clouds, which can effectively portray the distribution of the point cloud in the neigh-
borhood. The eigenvalue-based features are based on the covariance matrix D ∈ R3×3

computed within the neighborhood Np following Equation (1):

D =

p1 − p̄
...

pn − p̄


Tp1 − p̄

...
pn − p̄

 (1)

Here, pi = (xi, yi, zi) is a point contained in the neighborhood NP. The geometric
center p̄ can be defined by Equation (2):

p̄ =
1
n

n

∑
i=1

pi (2)

Since the covariance matrix is a symmetric positive-definite matrix, its three eigen-
values λ1, λ2 , and λ3 (λ3 ≤ λ2 ≤ λ1) exist. Therefore, the eigenvalues can be used
to characterize the local neighborhood shapes by calculating the eigenvalue-based
features represented by Anisotropy (Aλ), Planarity (Pλ), Sphericity (Sλ), and Linearity
(Lλ), according to Equations (3)–(6):

Aλ =
λ1 − λ3

λ1
(3)

Pλ =
λ2 − λ3

λ1
(4)

Sλ =
λ3

λ1
(5)

Lλ =
λ1 − λ2

λ1
, (6)

as shown in Figure 3f–i.

3.2.3. Multiscale Neighborhood Features

The selection of the neighborhood size is a critical factor for extracting neighborhood-
wise features. However, for specific point cloud data, it is not trivial to find the optimal size
of the local neighborhood. For the same LiDAR point in the same point cloud, the local
features that appear linear in the neighborhood are shown in Figure 4a, those that appear
planar in the neighborhood are shown in Figure 4b, and those that appear scattered in the
neighborhood are shown in Figure 4c. Thus, for the same LiDAR point in the same point
cloud, the extracted local features are not the same in different sizes of local neighborhoods.
When combining the information from multiple-scale neighborhoods, we can extract finer
and more comprehensive local features. Based on the above analysis, we propose applying
the multiscale neighborhood features in the feature extraction process. The main idea of
the multiscale neighborhood is to combine neighborhood-wise features extracted from
different scale neighborhoods.
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(c)(b)(a)

Figure 4. Neighborhoods at different scales. In this representation, the red star is the centroid point
of the neighborhood, the blue points are the neighbors within the local neighborhood, and the black
points are the outside points of the local neighborhood. In the figure, (a–c) represent different scales.

Therefore, to fully capture local structures, the neighborhood-wise features were
calculated using three different neighborhood sizes (r); here, r = r1, r2, and r3, and in our
experiments, r1 = 5 m, r2 = 10 m, and r3 = 15 m. Then, the neighborhood-wise features
were concatenated to consist of the multiscale features for training the noisy point classifier.
The multiscale feature vector ( f ) for each point is given by Equation (7):

f = [Aλ(r1)
, Aλ(r2)

, Aλ(r3)
, Pλ(r1)

, Pλ(r2)
,

Pλ(r3)
, Sλ(r1)

, Sλ(r2)
, Sλ(r3)

, Lλ(r1)
,

Lλ(r2)
, Lλ(r3)

, N, Ne, I]T
(7)

The extracted multiscale features were used for training and testing the noisy point
classifier, which is covered in detail in Section 3.3.

3.3. Noise Removal Using Random Forests

Random forests are one of the most popular machine learning algorithms and are
based on the idea of ensemble learning, which combines several weak learners to create a
single strong learner. Random forests proposed by Breiman [56] consist of a set of unpruned
decision trees. They can perform well on large datasets without overfitting, and the feature
selection process can be automatically accomplished by the Gini coefficients during the
training phase. Random forests were employed to select the most significant features and
to distinguish between noisy and non-noisy points. Therefore, we did not need to select
the features manually.

In the training phase, we first computed the multiscale features of all points in the
point cloud of the training dataset and saved the results in the set U. Using a sampling with
replacement method, n points were drawn from the set U to form the set Ut, which was
used to train the tth decision tree of the random forests. N decision trees were constructed
in the same way, and experiments indicated that the random forests classifier was able
to create a good balance between classification precision and algorithm efficiency when
N = 500.

Decision tree generation is a crucial part of random forests classifier training. During
the training, we selected the classification and regression tree (CART). The classification and
regression tree can complete the construction of the decision tree by continuously splitting
the nodes through the Gini coefficients, which can be calculated using Equations (8) and (9).
Compared with other decision tree generation algorithms, CART can build trees more
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efficiently, since CART is a binary tree and the Gini coefficients are used in node splitting,
which can reduce a large number of logarithmic operations.

Gini(Uti) = 1−
|y|

∑
k=0

p2
k (8)

Gini_coe f f icient(Uti, a) =
V

∑
v=1

|UVj
ti |
|Uti|

Gini(U
Vj
ti ) (9)

Here, Uti is the feature set in the ith node in the tth decision tree, pk(k = 0, 1) is the

proportion of points of the class k in the set Uti, and U
Vj
ti is all points in the set Uti that take

a value of aVj on feature a.
In the testing phase, we first calculated the multiscale features for a single LiDAR

point in the SPL point cloud of the testing dataset, and then put the features into the trained
random forests classifier. Each CART in the random forests could give a unit prediction for
the point, and finally, the random forests classifier voted for the most popular label.

4. Experiment

We developed a prototype framework for the proposed approach of using multiscale
features to denoise airborne SPL point cloud data by using the C++ programming language.
We constructed the point cloud neighborhood using the KD tree and completed the feature
learning using random forests, in which the open source nanoflann [57] was used for the
implementation of the KD tree, and the ranger (random forests generator) [58] library was
utilized for the implementation of random forests.

The experiments were conducted on a computer running Windows 10(×64) with one
8-core AMD Ryzen 7 5800X CPU, 32 GB Random Access Memory (RAM), and a 4 TB hard
disk drive.

4.1. Datasets

We evaluated the performance of the proposed approach on the Navarra dataset
provided by the Cartographic Department of the Navarra government. In 2017, this dataset
was obtained using SPL100 from an altitude of about 4200 m above ground level (AGL)
with a 30-degree field of view, which produced a swath width of about 2260 m. Flying at a
speed of 90 m/s with an effective scan rate of 6 MHz led to an average point density of
14.5 points/m2.

Moreover, all LiDAR points can obtain the X, Y, and Z coordinates, intensity values,
and time stamps from the SPL100 system [59]. The detailed parameters of the dataset are
shown in Table 1. The point cloud can be colorized by the orthoimages obtained from the
RCD30 80 MPix RGBI camera [17]. According to the description, point clouds are auto-
matically classified by traditional classification methods, and then the labels were further
optimized by manual adjustment. The point cloud dataset with semantic information can
be downloaded for free via Amazon Web Services (AWS) [60]. In addition, we also checked
the labels manually once we had acquired the data.

In this experiment, we first selected a portion of the point cloud data from the Navarra
dataset as the training data, which contained a total of 1,809,827 points. Then, we used
four areas that were different from the training dataset as test data: urban, suburban,
mountain, and water areas (Figure 5). For the urban test data, we used data from some
parts of the largest city in the Navarra province, Pamplona, which contained a total of
342,622,218 points. The terrain was nearly flat, but there was a great variety of cate-
gories. The architectures included buildings, sports fields, and churches. In addition
to architectures, this area also covered a large number of rivers and vegetation. For the
mountain test data, we utilized data from some parts of Sorlada, which contained a total of
357,761,913 points and covered mainly trees, grassland, rocks, and a few other categories.
However, the topography was very reliefed with steep slopes. For the water test data,
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we employed data from Laguna de Pitillas and its vicinity, which contained a total of
264,319,000 points and was dominated by lakes and low vegetation. For the suburban test
data, we chiefly used the data from the area around Bevinsana, which contained a total of
240,141,925 points. The categories in this area were mostly trees and grasses, with few tall
categories and some topographic relief.

Table 1. Dataset information.

Dataset Name Navarra Dataset

LiDAR system SPL100
Point density 14.5 points/m2

Flight height 4200 m (AGL)
Field of view (FoV) 30°

Flight speed 90 m/s
Swath width 2260 m

Effective scan rate 6 MHz
Data coverage The Navarra province of Spain

Coordinate system ETRS89 / UTM zone 30 N (EPSG25830)

Figure 5. Experimental data distribution chart; (a) overview map of Navarra, background: Google
Earth; (b) the mountain area of Sorlada; (c) part of the urban area of Pamplona; (d) part of the suburb
area of Berbinzana; (e) Laguna de Pitillas Lake and its vicinity.

4.2. Evaluation Metrics

The purpose of denoising the SPL point clouds using machine learning is to determine
whether each point is a noisy or non-noisy point. To compare with existing denoising
methods, we applied the confusion matrix and employed four commonly used evalua-



Remote Sens. 2023, 15, 269 11 of 22

tion metrics: recall (R), precision (P), overall accuracy (OA), and F1-score (F1). They are
computed based on the confusion matrix as follows:

R =
TP

TP + FN
(10)

P =
TP

TP + FP
(11)

OA =
TP + TN

TP + TN + FP + FN
(12)

F1 =
2 · P · R
P + R

(13)

Here, TP refers to the number of predicted points, where the noisy point classifier
correctly predicts the noisy point as the noisy point, FN represents the number of predicted
points where the noisy point classifier incorrectly predicts the noisy point as the non-
noisy point, FP stands for the number of predicted points where the noisy point classifier
incorrectly predicts the non-noisy points as the noisy point, and TN signifies the number
of predicted points where the noisy point classifier correctly predicts the non-noisy point
as the non-noisy point.

4.3. Comparison of Experimental Results

We compared the performance of the proposed method with some classical point cloud
denoising approaches, such as Statistical Outlier Removal and Radius Outlier Removal, as
well as the denoising approach in the lastools toolkit. Statistical Outlier Removal and Radius
Outlier Removal achieved a great improvement by using statistical information within
local neighborhoods, which is broadly employed in data manipulation of the point cloud.
We implemented these approaches using PCL. Our approach used multiscale features and
identified noisy points using a random forests classifier. Our approach outperformed the
existing point cloud denoising and attained a better result in the four different areas.

4.3.1. Experiments in the Urban Area

The urban area was characterized by a wide variety of categories, including buildings,
rivers, and vegetation, meaning that point clouds had complex spatial geometry features.
We conducted comparative experiments on SPL point cloud data in the urban area to
compare the denoising effect of our approach with existing approaches.

Table 2 reveals that our approach outperformed the existing denoising approaches in
both accuracy and F1-score. We also used the original RandLA-Net [61] to train a noise
point classifier and conducted comparison experiments. To compare the denoising results
of our approach with other existing approaches, we visualized the example of denoising
results for urban areas in Figure 6. The figure contains data from nine sample point cloud
files, covering a total of 9 km2 of the urban area. Four figures in the top right-hand corner
exhibit local details by profile line figures. The middle four figures display the difference in
details of the profile lines after applying different methods of denoising, and the bottom four
figures depict the overall denoising results by Digital Surface Model (DSM) for convenient
comparison. Our method enabled a more comprehensive and more accurate labeling of
noisy points in the point cloud. As shown in the area marked by red dashed lines in the
middle row, existing denoising algorithms still reserved a large number of noisy points,
and many ground points were filtered out. This means that, as for SPL point clouds, the use
of machine learning to fully learn the local features of the point cloud can more accurately
identify noisy points, especially in areas with dense buildings and complex category types.
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Table 2. Performance evaluation of the compared approaches and ours in the urban area.

Methods Recall (%) Precision (%) Accuracy (%) F1-Score (%)

Radius Outlier Removal 82.63 98.51 93.71 89.87
Statistical Outlier Removal 65.34 99.55 88.19 78.89

Lastools’ Denoising Workflow 88.84 99.25 95.83 93.76
RandLA-Net 93.98 94.76 94.07 94.37

Ours 96.82 98.35 98.38 97.58

Statistical Outlier Removal

Ours

Lastools’ approach

Radius Outlier Removal

Urban

Ours

Ours

Statistical Outlier Removal Radius Outlier Removal Lastools’ approach

Ours Statistical Outlier Removal Radius Outlier Removal Lastools’ approach

Statistical Outlier Removal Radius Outlier Removal Lastools’ approach

area

Figure 6. Examples of the denoising results in the urban area. The four images in the upper right-
hand corner show the profile line in the area of the red line on the left. The third row represents
the profile line partial details for convenient comparison. The fourth row indicates the DSM gen-
erated by the different denoising methods. The bottom row indicates some details of the DSM to
facilitate comparison.

4.3.2. Experiments in the Suburban Area

In the suburban area, there were few tall categories, but there was some topographic
relief. A comparative experiment was carried out on the point cloud data of the suburban
area to compare the denoising effect of our approach with the existing approaches for SPL
point clouds data in the suburban area.

Table 3 shows that all four approaches obtained splendid denoising results due to
the presence of a relatively homogeneous category. However, our approach still achieved
a 2.69% improvement in F1-score compared with Radius Outlier Removal and a 3.20%
improvement compared with Statistical Outlier Removal. To the best of our knowledge,
both approaches are broadly employed for point cloud denoising, and Statistical Outlier
Removal has been integrated into the open source software named CloudCompare.
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Table 3. Performance evaluation of the compared approaches and ours in the suburban area.

Methods Recall (%) Precision (%) Accuracy (%) F1-Score (%)

Radius Outlier Removal 94.01 99.97 98.70 96.90
Statistical Outlier Removal 93.05 99.99 98.49 96.39

Lastools’ Denoising Workflow 88.52 99.98 97.22 93.91
RandLA-Net 98.81 99.20 98.81 99.01

Ours 99.86 99.31 99.82 99.59

We also visualized the denoising results for point cloud data from the suburban area
in Figure 7 to compare our denoising results with those of other approaches. As can be
seen from the results, our approach was able to remove the vast majority of noisy points
and to retain the original ground information well, as we introduced a multiscale fea-
ture extraction module, and the classifier was also able to fully learn the local structures.
Our proposed approach distinguished the noisy points from non-noisy points more accu-
rately than the existing approaches, especially for areas where the point cloud density was
not uniformly distributed. The denoising results of our method and existing methods are
shown in the profile line figures and DSM figures (Figure 7).

Statistical Outlier Removal

Ours

Lastools’ approach

Radius Outlier Removal

Suburban area

Ours

Ours

Statistical Outlier Removal Radius Outlier Removal Lastools’ approach

Ours Statistical Outlier Removal Radius Outlier Removal Lastools’ approach

Statistical Outlier Removal Radius Outlier Removal Lastools’ approach

Figure 7. Examples of the denoising results in the suburban area. The four images in the upper
right-hand corner show the profile line in the area of the red line on the left. The third row repre-
sents the profile line partial details for convenient comparison. The fourth row indicates the DSM
generated by the different denoising methods. The bottom row indicates some details of the DSM to
facilitate comparison.
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4.3.3. Experiments in the Mountain Area

To validate the generalization of the proposed denoising approach in different areas,
we conducted experiments on SPL point cloud data in the mountain area to compare the
performance of our approach with that of existing denoising approaches. Lastools integrates
a large number of tools for processing a large number of LiDAR point clouds, where lasnoise
can accurately determine whether each point is noisy or not based on the search size and
outliers of each point.

The results demonstrate that our approach outperformed the existing approaches (see
Table 4). The mountain area had a single feature type; therefore, both the proposed approach
and the existing approaches exhibited good denoising results. However, it can be observed
that our approach had better accuracy and F1-score than existing denoising approaches.

Table 4. Performance evaluation of the compared approaches and ours in the mountain area.

Methods Recall (%) Precision (%) Accuracy (%) F1-Score (%)

Radius Outlier Removal 88.86 99.04 97.46 93.68
Statistical Outlier Removal 87.90 99.44 97.33 93.32

Lastools’ Denoising Workflow 87.36 99.74 96.99 93.14
RandLA-Net 96.48 94.26 96.48 95.35

Ours 99.47 92.22 98.11 95.70

The example results in the mountain area are illustrated in Figure 8 for intuitive
comparison. As can be seen from the results, because the point density of many noisy
points in the SPL point cloud data was close to the point density of the features, a large
number of noisy points were retained as feature points after denoising using the existing
approaches. The proposed approach could remove the noisy points that were not removed
by the existing approaches while retaining the non-noising points, as shown in the profile
line images.

4.3.4. Experiments in the Water Area

The SPL point cloud data on the water surface are very sparse, caused by the poor
reflection of the laser by the water surface. Moreover, there is a large amount of water vapor
over the lake. Therefore, when the laser pulse detects the water vapor, it is backscattered
and picked up by the detector, making the number of noisy points on the lake high and
causing the denoising task to become difficult. Based on the above issues, comparative
experiments were conducted in the water area to compare the denoising results of our
approach with those of existing approaches.

Table 5 displays that our approach outperformed the classical denoising approaches.
Especially, our approach achieved an 11.48% accuracy improvement compared with the
Radius Outlier Removal and 12.01% compared with the Statistical Outlier Removal.

Examples of results in the water area are visualized in Figure 9 to compare our
denoising results with those of existing methods. As can be observed from the experimental
results, the existing denoising approaches could not identify the noisy points on the water
surface well due to their large number and density. Although the proposed denoising
approach was also affected by the sparse water surface point cloud data, the overall
denoising effect was still better than the existing denoising approaches, since we introduced
multiple neighborhood features to jointly train the noisy point classifier. Compared with
existing denoising approaches, the proposed approach could extract noisy points more
accurately and comprehensively, even on water surfaces with sparse point cloud data, as
shown in the profile line figures and the DSM figures (Figure 9).
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Statistical Outlier Removal

Ours

Lastools’ approach

Radius Outlier Removal

Mountain

Ours

Ours

Statistical Outlier Removal Radius Outlier Removal Lastools’ approach

Ours Statistical Outlier Removal Radius Outlier Removal Lastools’ approach

Statistical Outlier Removal Radius Outlier Removal Lastools’ approach

area

Figure 8. Examples of the denoising results in the mountain area. The four images in the upper
right-hand corner show the profile line in the area of the red line on the left. The third row repre-
sents the profile line partial details for convenient comparison. The fourth row indicates the DSM
generated by the different denoising methods. The bottom row indicates some details of the DSM to
facilitate comparison.

Table 5. Performance evaluation of the compared approaches and ours in the water area.

Methods Recall (%) Precision (%) Accuracy (%) F1-Score (%)

Radius Outlier Removal 37.58 87.11 71.57 52.51
Statistical Outlier Removal 31.19 98.63 71.04 47.40

Lastools’ Denoising Workflow 45.74 98.41 74.19 62.46
Ours 71.49 85.61 83.05 77.92

4.4. Result Analysis
4.4.1. Analysis of Multiscale Features

To verify whether multiscale features could improve the denoising precision of SPL
point cloud data compared with single-scale features, we also trained noisy point classifiers
for denoising using single-scale and multiscale features in the urban, suburban, mountain,
and water area data, respectively. Unlike single-scale features, multiscale features can fuse
neighborhood features from multiple scales. The results are presented in Table 6, indicating
the improved performance of accuracy and F1-score under multiscale features compared
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with single-scale features. The results suggest that our proposed approach achieved greater
accuracy and F1-score using multiscale features than single-scale features.

Statistical Outlier Removal

Ours

Lastools’ approach

Radius Outlier Removal

Water area

Ours

Ours

Statistical Outlier Removal Radius Outlier Removal Lastools’ approach

Ours Statistical Outlier Removal Radius Outlier Removal Lastools’ approach

Statistical Outlier Removal Radius Outlier Removal Lastools’ approach

Figure 9. Examples of the denoising results in the water area. The four images in the upper right-
hand corner show the profile line in the area of the red line on the left. The third row represents
the profile line partial details for convenient comparison. The fourth row indicates the DSM gen-
erated by the different denoising methods. The bottom row indicates some details of the DSM to
facilitate comparison.

Table 6. Performance evaluation of denoising by the proposed approach, using different scales in the
urban, suburban, mountain, and water areas.

Areas Metrics

Neighborhood
(m)

5 10 15 5, 10 5, 10, 15

Urban Accuracy 96.60 97.15 97.74 98.04 98.38
F1-score 94.97 95.72 96.61 97.08 97.58

Mountain Accuracy 94.82 95.33 95.37 96.91 98.11
F1-score 88.86 89.81 89.98 93.16 95.70

Suburban Accuracy 98.54 98.83 99.27 99.59 99.82
F1-score 96.70 97.28 98.31 99.06 99.59

Water Accuracy 77.35 79.66 79.44 82.65 83.05
F1-score 71.46 74.35 72.71 77.49 77.92
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We also visualized the denoising results for different scale features to compare the
impact of multiscale features with single-scale features on the denoising precision. From
the three-dimensional views shown in Figure 10, we could observe that the noise classifier
trained with multiscale features was able to remove more noisy points while retaining the
feature points well.

(a) (b) (c)

(d) (e) (f)

Figure 10. Analysis of single-scale and multiscale denoising results; (a) overview of the urban area;
(b) three-dimensional view after denoising in the 5 m neighborhood; (c) three-dimensional view after
denoising in the 10 m neighborhood; (d) raw SPL point cloud with noise; (e) three-dimensional view
after denoising in the 5 m and 10 m neighborhoods; (f) three-dimensional view after denoising in the
5 m, 10 m, and 15 m neighborhoods.

Figure 11 suggests that if only single-scale features are used, the optimal neighborhood
size is not the same for the different test data. In the urban and water areas, the best
denoising was achieved when the neighborhood size was taken as 10 m, while for mountain
and suburban areas, the best denoising was achieved when the neighborhood size was
taken as 15 m. However, when using multiscale neighborhoods, we can obtain features
from different neighborhoods. When using the random forests algorithm, the algorithm
will preferentially select the feature with the highest discrimination by the Gini coefficients
as the basis for classification. Thus, when we use a multiscale for feature learning, random
forests can consider more features and can automatically perform feature selection to train
a noisy point classifier that outperforms a single scale.

4.4.2. Analysis of Multistage Denoising

In point cloud processing, multistage denoising is often employed to improve the
denoising effect. To verify whether the proposed approach could substantially enhance the
denoising precision of SPL point cloud data after multistage denoising, we also performed
a study on the accuracy of multiround denoising for the water area data where the single-
round denoising results were generally poor. Table 7 shows the evaluation metrics after
two denoisings, as well as the evaluation metrics improvement on the water area data
using different denoising approaches. The results imply that our proposed denoising
approach achieved great improvement in the recall, precision, accuracy, and F1-score after
the second denoising (the accuracy was enhanced by 7.11%, and the F1-score was improved
by 10.68%).
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Figure 11. Visualization of the effect of single-scale versus multiscale neighborhood features on
denoising results on the four datasets.

Table 7. Performance evaluation of denoising by multiple denoising, using different denoising
approaches in the water area.

Methods Metric First Denoising Second Denoising Improvement

Radius Outlier Removal

Recall (%) 37.58 38.85 1.27
Precision (%) 87.11 84.12 −2.99
Accuracy (%) 71.57 71.35 −0.22
F1-score (%) 52.51 53.15 0.64

Statistical Outlier Removal

Recall (%) 31.19 38.05 6.86
Precision (%) 98.63 94.70 −3.93
Accuracy (%) 71.04 73.20 2.16
F1-score (%) 47.40 54.29 6.89

Lastools’ Denoising Workflow

Recall (%) 45.74 47.14 1.40
Precision (%) 98.41 97.64 −0.77
Accuracy (%) 74.19 74.66 0.47
F1-score (%) 62.46 63.58 1.12

Ours

Recall (%) 71.49 91.44 19.95
Precision (%) 85.61 85.94 0.33
Accuracy (%) 83.05 90.16 7.11
F1-score (%) 77.92 88.60 10.68

The example results of the first denoising and the second denoising of the water area
data are illustrated in Figure 12 for an intuitive comparison of the effect of multiple denois-
ing on the denoising evaluation metrics. Figure 12d,e indicates that the proposed approach
removed more noisy points after multiple denoising, while retaining the maximum amount
of feature information.
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(a)

(b) (c)

(d) (e)

Figure 12. Visualization of the effect of the multiple denoising in the water area using our proposed
approach. (a) overview of the water area; (b) three-dimensional view after the first denoising;
(c) profile after the first denoising; (d) three-dimensional view after the second denoising; (e) profile
after the second denoising.

Figure 13 depicts the improvement of the evaluation metrics after the second denoising
using different methods. We could see that the improvement in the denoising effect was
not obvious after using the existing methods to denoise the SPL point cloud data several
times. In contrast, after multiple denoising, the proposed approach improved the denoising
effect considerably better than the existing denoising methods.
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Figure 13. Visualization of the evaluation metrics improvement after multiple denoising.

5. Conclusions

This paper utilized the random forest approach and introduced multiscale features
and multistage denoising methods to improve the denoising accuracy of SPL point clouds.
To relieve the problem that the existing denoising methods cannot effectively remove
noise points from SPL point clouds, we first extracted multiscale features of SPL point
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clouds to obtain information under different receptive fields of the point clouds, and
then used random forest to train the noise point classifier. Furthermore, we introduced a
multistage denoising method by carrying out multiround denoising without significantly
increasing the false-alarm ratio, so as to solve the problem that single-round denoising
cannot effectively remove noise points in some areas.

We demonstrated the effectiveness of the proposed approach through sufficient exper-
iments. We also proved that the proposed approach outperformed the existing denoising
algorithms in the urban, suburban, mountain, and water areas. Unlike traditional de-
noising methods that only calculate statistical information, the proposed approach needs
to calculate multiscale neighborhood features, resulting in a larger computational effort.
However, from the results, the denoising accuracy of this method is much higher than
traditional methods, and there is basically no need for postprocessing after denoising by the
proposed approach. Furthermore, we evaluated the performance of the proposed approach
using metrics such as recall, precision, accuracy, and F1-score to verify its denoising capa-
bility for SPL point cloud data. This research, which provided sufficient experiments on
the denoising of SPL point cloud data, suggested that, compared with single-scale features,
multiscale features were superior in improving the noise point classification process, and
multiple denoising was introduced to further enhance the denoising precision. Addition-
ally, we found that the denoising accuracy of SPL point clouds using the original deep
learning network (RandLA-Net) was far better than traditional methods and may be better
if improved.
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