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Abstract: Accurate calculation of the whitecap fraction is of great importance for the estimation of air-
sea momentum flux, heat flux and sea-salt aerosol flux in Earth system models. Past whitecap fraction
parameterizations were mostly power functions of wind speed, lacking consideration of other factors,
while the single wind speed dependence makes it difficult to explain the variability of the whitecap
fraction. In this work, we constructed a novel multivariate whitecap fraction parameterization using
a deep neural network, which is diagnosed and interpreted. Compared with a recent developed
parameterization by Albert and coworkers, the new parameterization can reduce the computational
error of the whitecap fraction by about 15%, and it can better characterize the variability of the
whitecap fraction, which provides a reference for the uncertainty study of sea-salt aerosol estimation.
Through a permutation test, we ranked the importance of different input variables and revealed the
indispensable role of variables such as significant wave height, sea surface temperature, etc., in the
whitecap fraction parameterization.

Keywords: whitecap fraction; deep neural network; satellite; parameterization

1. Introduction

Whitecap fraction, hereinafter, W, is the percentage of whitecap coverage per unit of
sea surface area. Whitecaps are clusters of droplets and air bubbles at the air-sea interface,
generated by sea surface wave breaking [1]. Whitecaps appear white because of the
scattering of light. The formation of W is not only directly related to wind speed [2], but
also related to sea surface temperature [3,4], wave age [5], wave height [6], the wind-wave
Reynolds number [7], and other variables. Statistically, the global average W, although
only 2–5% [8,9], is crucial for air–sea interface momentum flux [10], heat flux [11], sea-salt
aerosol estimation [12], and Earth system model development. For this reason, an accurate
parameterization of the W is essential. In the past, photographic measurements have been
widely used to estimate the W.

A number of W observations have been made by previous studies and various param-
eterizations have been proposed (Wang et al.: Table 1 [13]). Most of the parameterizations
are nonlinear functions obtained by fitting in situ observations of wind speed and W. These
wind speed-dependent W parameterizations are used in the sea spray source function
(SSSF). The W parameterization adopted in the most commonly used SSSF [14] was pro-
posed by Monahan and O’Muircheartaigh [2] (hereafter M80, see Table 1, Table 1 shows
three W physical parameterizations and their abbreviations used in this paper). Some
studies investigate the influence of other factors (e.g., wave height, sea surface temper-
ature) on W besides wind speed, while most of them consider only one of those factors
as a univariate variable. On one hand, this is due to the limited understanding of the
formation mechanism of whitecaps as well as the increasing complexity of modeling with
multiple factors. On the other hand, validation of the parameterization relies on a large
amount of observational data, while multivariate synergistic in situ observations are diffi-
cult and scarce. Furthermore, many in situ observation datasets are obtained in nearshore

Remote Sens. 2023, 15, 241. https://doi.org/10.3390/rs15010241 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15010241
https://doi.org/10.3390/rs15010241
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-2312-1553
https://doi.org/10.3390/rs15010241
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15010241?type=check_update&version=2


Remote Sens. 2023, 15, 241 2 of 15

or high-latitude regions, and thus, W values are only available under certain conditions
and cannot encompass all scenarios [1]. Therefore, a W parameterization based on such
limited datasets is not universally applicable. A reliable, globally applicable, multivariate
W parameterization is still under development.

To obtain a global distribution of W, Anguelova et al. [1,15–17] developed a new
algorithm to calculate the global distribution of W directly from satellite data, produced a
W database, and quantified the effects of different variables on W. The long-term global
satellite-based W database can be used for W parameterization. Based on this database,
Salisbury et al. [15] proposed a new parameterization for W (hereafter S13). Although their
results tend to overestimate W at low wind speeds compared to M80, the S13 agrees well
with the parameterization of Goddijn-Murphy et al. [18]. Albert et al. [19] (hereafter A16)
improved S13 by adding sea surface temperature as a predictor to characterize W variability.
The above parameterizations based on satellite-derived W data give a completely different
spatial distribution of W than the conventional scheme (M80), and subsequently directly
affect the calculation of sea-salt aerosol mass fluxes. The sea-salt aerosol calculated with the
A16 brings significant improvements to the aerosol model implemented by the European
Centre for Medium-Range Weather Forecasts (ECMWF) compared to that calculated with
the M80 parameterization [20]. Considering multiple factors affecting the occurrence of
whitecaps, we need to consider more variables in the W parameterization to reproduce the
observed W more accurately.

Table 1. The three W parameterization schemes used in the paper and their abbreviations, W37 is the
satellite-derived W data at 37 GHz, T is the sea surface temperature, U10 is the wind speed at 10 m.
The a(T) and b(T) are formulas related to T, see reference for details.

Reference Equation Abbreviation

Monahan and O’Muircheartaigh [2] W = 3.84× 10−4U3.41
10 M80

Salisbury et al. [15] W37 = 3.97× 10−2U1.59
10 S13

Albert et al. [19] W37 = a(T)[U10 + b(T)]2 A16

Despite the suitability of satellite-based W data to study and derive multifactor W pa-
rameterization study, there remains a large gap in the physical modeling due to the complex
formation processes of whitecaps. Fortunately, neural network-based parameterization
can avoid complex physical modeling. With the development of computer hardware and
software, neural networks have been successfully applied in many perspectives of marine
sciences, such as the ocean element forecast [21,22] and ocean feature identification [23,24],
attributable to their great ability to solve nonlinear problems. Meanwhile, attempts have
been made to develop new parameterizations using neural networks to simulate complex
atmospheric and oceanic processes more accurately, such as ocean mesoscale parameteriza-
tion [25,26] and vertical mixing parameterization [27,28]. Artificial intelligence (AI) also
provides a feasible path for multivariate W parameterization. At present, some studies on
the application of AI to W data are mainly on the processing of whitecap images, and to
our knowledge, there is no study on the development of multivariate parameterization for
W using AI. The purpose of this paper is to apply a deep neural network (DNN) to develop
a new multivariate W parameterization. An attempt will be made to interpret the neural
network to better understand the effect of different factors on W and its variability.

The rest of the paper is structured as follows: the satellite and reanalysis data are
introduced in Section 2.1, the DNN model and different traditional parameterizations are
described in Section 2.2, and the results of the new parameterization are evaluated and
discussed in Section 3. Finally, a discussion and conclusion are given in Sections 4 and 5.
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2. Data and Methods
2.1. Data

To produce the dataset required for model training, the ECMWF fifth-generation
reanalysis dataset (ERA5), is used. The ERA5 covers the last 70 years of global climate and
weather reanalysis data [29]. In this study, we use the monthly average reanalysis data for
October 2006 from ERA5, including significant wave height (SWH), mean wave period
(MWP), sea surface temperature (SST), mean wind direction, and mean wave direction.
The spatial resolution of the wind variables is 0.25◦ × 0.25◦, and the spatial resolution of
the wave variables is 0.5◦ × 0.5◦. For consistency with previous studies, the wind speed
(WSP) used in Section 3 is from the QuikSCAT satellite, which is used for the modeling in
S13 and A16.

The label data for model training and evaluating the W parameterization is from
Salisbury et al. [15], and we follow Wang et al. [13] to digitize the satellite-derived W data
in October 2006 at 37 GHz with a resolution of 0.5◦ × 0.5◦, a frequency band that better
represents [15]. In order to better characterize the global variability of the model, the
latitudinal range of the data is 60◦S–60◦N, as this latitude range has the most complete W
values, a total of 121,893 data points. In addition, the QuikSCAT and ERA5 data are all
interpolated onto the W dataset grids.

Figure 1 shows the binscatter plot of the different variables and W values, implying
the possible relationships between them. The darker the scatter color is, the more data
points are in the range. We define the deviation of wind direction from wave direction as
∆θ. When ∆θ is 180◦ or −180◦, it means the wind and waves are in opposite directions,
and when ∆θ is 0◦, they are in the same direction. In general, there is a significant linear
relationship between W and WSP, SWH, SST, and MWP, while the correlation between ∆θ
and W is not significant. As the wind speed increases, the W value increases, consistent
with the previous findings in the observations and the dependence of W on wind speed
as expressed in many parameterizations. Figure 1b reflects a strong positive correlation
between SWH and W. Noticeably, most of the previous parameterizations only consider the
relationship between wind speed and W, and ignore the effect of wave height. Although
wind speed and SWH have a strong linear dependence, it is impossible to completely
represent the information of SWH by wind speed alone. SST shows an obvious negative
correlation with satellite-based W data. There is, however, no definite conclusion on the
relationship between SST and W [19], since W observations are scarce and mostly focused
on high-latitude cold water [1]. In addition, the effect of MWP is considered, as shown
in Figure 1d where MWP has a weak positive correlation with W. The ∆θ does not give a
very intuitive correlation with W. However, it is interesting to observe that whitecaps are
more likely to appear when the wind and waves are moving in the same direction (∆θ = 0),
and the high values of W are mainly concentrated in that case. Therefore, it is necessary to
consider the ∆θ in the parameterization of W.

2.2. Methods

Figure 2 shows the structure of the whitecap fraction parameterization based on the
DNN, which has a 5-layer structure, including an input layer, an output layer, and three
hidden layers. The number of neurons in the three hidden layers is 16, 8, and 4. To better
learn the nonlinear variation of whitecaps, the rectified linear unit [30] is used as the
activation function of each neuron. Therefore, it can be regarded as constructing a new
function W(SWH, WSP, SST, MWP, ∆θ) through DNN to obtain the W value, the inputs
are SWH, WSP, SST, MWP, and ∆θ, the output is the satellite-derived W data. All of the
input data are normalized as shown in Equation (1).

Xnom =
X− Xmin

Xmax − Xmin
(1)

where X is the original data, Xnom is the normalized data, Xmax is the maximum value in
the dataset, and Xmin is the minimum value in the dataset.
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QuikSCAT (WSP); (b) significant wave height (SWH); (c) sea surface temperature (SST); (d) mean
wave period (MWP); (e) deviation of wind direction from wave direction (∆θ).
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Figure 2. Structure of DNN-based whitecap fraction (W) parameterization, σ is the neuron in the
hidden layer.

The DNN continuously updates the weights in the hidden layer by calculating the
error between the output and the label until the optimal model is obtained, using satellite-
derived W data as the label for training and adding early-stopping to prevent the model
from overfitting. The ratio of the model training data and validation data is 7:3. The batch
size is set to 256, Epoch is set to 100, and the mean solution error is chosen as the loss
function during training. Since this study only has one monthly average whitecap mapping
for October 2006, the amount of data is not sufficient, and the strict division between
training and testing sets will affect the model’s characterization of the global variability of
the whitecap, so this study uses the DNN as a fitting method and uses the same dataset as
the training and validation datasets. In the evaluation of the validation dataset, the root
mean square error (RMSE), mean absolute error (MAE), and coefficient (R) are mainly used,
as shown in Equations (2)–(4).

RMSE =

√√√√ 1
N

N

∑
i=1

(
W∗i −Wi

)2 (2)

MAE =
1
N

N

∑
i=1
|W∗i −Wi| (3)

R =
∑N

i=1
(
Wi −W

)(
W∗i −W∗

)√
∑N

i=1
(
Wi −W

)2·
√

∑N
i=1
(
W∗i −W∗

)2
(4)

where N is the total number of data, i denotes cases, Wi is the value of satellite-derived W
data, W∗i is the W value calculated by the parameterization, W is the average value of satellite-
derived W data, and W∗ is the average of the W value calculated by the parameterization.

Figure 3 shows the variation of W with wind speed for the three schemes (Table 1),
where the SST in A16 is taken as 10, 20, and 30 ◦C, respectively. It can be seen that the
difference in W between A16 and S13 is not significant even at different SST, and the
dependence of A16 on wind is slightly smaller than that of S13. Compared with M80, the
W of S13 and A16 are larger at low wind speeds and smaller at high wind speeds.
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temperatures in A16 are 10, 20, and 30 ◦C, respectively.

3. Results

By training the DNN model using variables such as wind speed, significant wave
height, and so on, we obtain a new parameterization W(SWH, WSP, SST, MWP, ∆θ) for
the whitecap fraction (W). In the following, the new scheme is evaluated (Section 3.1) and
explained (Section 3.2) in detail using the October 2006 satellite-derived W data.

3.1. Evaluation of W Parameterization

In this first section, the DNN-based W parameterization (NN-W) is evaluated. Figure 4
shows the spatial distribution of the results of different W parameterizations. In general,
all of the schemes can portray the spatial distribution of W well, basically consistent in
magnitude. The W values calculated by these schemes show a spatial variability with
latitude, indicating the high dependence of W on wind speed. Specifically, the W derived
from the satellite has an obvious high-value annual distribution band at 50◦ in the southern
hemisphere. By comparing the wind speed field in October 2006, we find that the variation
of W cannot be perfectly explained by the modalities of wind speed alone, so it is necessary
to add more physical variables to simulate W. The result of M80 is shown in Figure 4b,
although this solution can accurately reflect the distribution of the high-value region of
W at mid-latitudes, the value of W for low latitudes is significantly lower than that of
satellite-based W data, probably due to the relatively low wind speed at low latitudes [15].
The spatial distribution presented by the two parameterization schemes in Figure 4c,d is
quite consistent; on one hand, due to the fact that both schemes are developed by fitting
the same dataset, and on the other hand, because even though A16 additionally takes into
account the effect of sea surface temperature, there are other important factors missing.
The results of NN-W show a smoother spatial distribution of W compared to the other
schemes, but the underestimation of high values of W may be due to the modulation effect
of predictors such as significant wave height and mean wave period, which reduces the
high dependence of the model on wind speed to a certain extent.
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To further illustrate the reliability of NN-W, Figure 5 compares the binscatter plot of
NN-W with other parameterizations of W. In Figure 5a, it can be seen that M80 clearly
underestimates the value of W when the W value is low (which may correspond to low
wind speeds). The difference between S13 and A16 is small, and the scatter distribution is
generally symmetrical along the diagonal, while A16 is closer to the diagonal for W values
of 0.5–1.5%, indicating that A16 works better, especially at low and medium W values.
In comparison, the NN-W produces a more symmetric and concentrated distribution of
W along the diagonal with fewer outliers compared to other schemes from low to high
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W values, indicating that the DNN-based W parameterization has a better representation
of W values. This might be related to the fact that the scheme relies on more than just
wind speed.
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The computational accuracy of the NN-W is evaluated. Table 2 quantifies the accuracy
of the four parameterizations using RMSE, MAE, and R. The NN-W produces the best
result with a RMSE of only 0.22%, which is 14.6% lower compared to the A16, and the
difference between the results of the two schemes statistically passes the t-test with a 95%
confidence level. Meanwhile, the NN-W produces the smallest MAE. The R is the spatial
correlation of W values, and the change in R values from the four schemes indicates that
the NN-W can most accurately capture the spatial variation of the W values.

Table 2. Evaluation of the RMSE, MAE, and R metric in different parameterizations.

M80 S13 A16 NN-W

RMSE (%) 0.53 0.27 0.26 0.22
MAE (%) 0.50 0.20 0.19 0.16

R 0.83 0.86 0.87 0.91

The ability of the NN-W scheme to represent the variability (spread) of W is evaluated
as well. Figure 6a,b shows the scatter plots of the calculated W of A16 and NN-W parame-
terizations against the satellite-based W data, respectively. In general, both schemes reflect
the increase in W values with wind speed. Although A16 has some of the variability of W
at low and medium wind speeds, the variability becomes insignificant at high wind speeds,
which may be related to the fact that only one additional variable, SST, is considered [19].
In contrast, NN-W can better represent the W variability at the same wind speed. This
leads to one of the most important conclusions of this study: the W parameterization based
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on the DNN model can better characterize the variability of satellite-based W data, and the
variability shows a trend of increasing and then decreasing with increasing wind speed. In
other words, the NN-W can explain the variability of W caused by non-wind speed factors
much better than A16, indicating that it is useful to consider multiple factors in the W
parameterization to simulate the variability of W. The algorithm for W is still being refined
and the latitudinal variation of the satellite W may change in the future, which could lead
to a change in W variability [17].
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3.2. Understanding of W Parameterization

In this subsection, we will try to interpret the NN-W. Figure 7 shows the bias of W
values calculated by the NN-W and the A16. It can be seen that the positive W bias is mainly
dominant in the northern hemisphere and in the equatorial region, while in the southern
hemisphere, the W bias is alternately positive and negative in all directions. The larger bias
of W values in the nearshore may be related to the more complex mechanism of whitecap
generation. Anguelova et al. [31] summarized the main factors influencing the spatial
variability of W in different regions globally. The SWH and the fetch (g(SWH/WSP)2)
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explain most of the variability of W at higher latitudes, and the main contribution of SST to
variability is concentrated at low latitudes. Comparing to Figure 6 in [31], we find that the
positive bias of the W value in Figure 7 is mainly concentrated in the area dominated by
the wind, and the negative bias is mainly concentrated in the field dominated by the SWH.
This shows that the W parameterization based on the DNN reduces the influence of wind
on W in the area dominated by SWH and further enhances the W in the wind-dominated
area compared with the A16.
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Since sea-salt aerosol production is linearly related to the W, the deviation of W
calculated with the NN-W from W calculated with A16 will directly affect the sea-salt
aerosol estimation. S13 and A16 will not differ much in the total ocean sea-salt aerosol
estimation since both schemes produce a low variability of W (Figure 6a). In contrast, the
NN-W parameterization could account for more variability of W (Figure 6b) and tend to
reduce the uncertainties in sea-salt aerosol estimation.

In order to explain the importance of different variables in the W parameterization, a
permutation test is performed on the NN-W parameterization, i.e., one of the variables in
the input data is randomly disrupted and then input into the DNN for calculation. Here,
we use the variation of RMSE to evaluate the importance of different predictors. The greater
the change of RMSE, the more important the variable is, since this indicates that the change
of that variable has a greater impact on the accuracy. From Figure 8, the importance of the
predictor, in descending order, is: WSP, SWH, ∆θ, SST, and MWP. This not only further
proves the role of wind speed in the W parameterization, but also shows that SWH is one
of the indispensable variables in the W parameterization [15]. Surprisingly, the importance
of ∆θ turns out to be nearly equal to that of SST. It is not difficult to understand that a ∆θ
of zero (the same wind and wave direction) may make the wave height higher and, thus,
produce more whitecaps. This is different from the effects of the deviation of wind and
current directions. Winds following currents may decrease W [32]. These main factors,
contributing to the spread of W, may also be the main source of uncertainty in sea-salt
aerosol estimates. All results here are limited by the use of only one month of W data. If
more W data were obtained, we could discuss the main factors influencing the variability
of W in different regions from the neural network perspective.
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4. Discussion
4.1. Data Selection and Uncertainty

In the course of our study, we found that the uncertainty of the input data affects the
accuracy of the W parameterization; for example, there are some differences in the wind
speed data from ECMWF and QuikSCAT [15], which can increase the uncertainty of the
W parameterization in use. Although the W scheme can be adjusted by correcting the
deviation of wind speed from different sources, this is not rigorous. In contrast, the neural
network-based W parameterization overcomes this problem well by transfer learning,
which makes the NN-W more promising for use. Noticeably, there are two limitations
in our parameterization. First, we use the wind speeds from QuikSCAT with maximum
wind speeds usually below 24 m/s. Second, the neural network may be inaccurate for
forecasting when the inputs are beyond the threshold of the training data. Thus, our model
may not necessarily be accurate in some conditions, such as at high wind speed conditions.
The parameterization could be further improved with more in situ data.

4.2. Comparison with Classic Machine Learning Methods

Besides the DNN, classic machine learning methods may also obtain valuable parame-
terization, such as the Light Gradient Boosting Machine (LightGBM). From the experiment
based on the LightGBM (Lgb-W), the RMSE, MAE, and R of the W are 0.15, 0.11, and 0.96,
respectively. The results of Lgb-W seem to be better than NN-W. When we analyze the
feature importance of variables (see Figure 9), however, it is found that the importance of
the features is unexpected. In the Lgb-W, the wind speed is the least important factor and
the mean wave period is the most important one. This is clearly incorrect. As the focus
of this study is on how to use a neural network to characterize the variability of W and
interpret it in a reasonable way, from this perspective, NN-W is more appropriate and has
more potential to be used for W estimates.
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4.3. Adding Physical Constraints to the Model

As the application of artificial intelligence in earth system science continues to grow, it
has been found that it is difficult to make further breakthroughs in forecast accuracy by
simply applying a particular algorithm to the forecast or the identification of variables.
Even when multiple models are used for forecasting, the improvement is limited [33].
On one hand, neural networks are like a black box with no insight into their internal
mechanisms, and direct use of existing models for forecasting may lead to mass or energy
non-conservation; on the other hand, forecasting results without physical constraints may
run counter to physical cognition. To solve these problems, attempts have been made
to add some known physical formulas or laws as constraints in neural networks [34,35].
Previously, the simultaneous observations in the W observation dataset had only a few
variables and a small amount of data. This posed difficulties in developing multivariate W
parameterizations using in-situ observation datasets directly. However, those W parameter-
ization schemes were developed based on observational data, and while available, they are
not globally applicable and have only regional representativeness. Still, their incorporation
into the NN-W parameterization may improve regional simulation accuracy. In this paper,
we tried to add some widely used W parameterization as physical constraints, such as M80,
during the model’s training, but only obtained worse results. We consider the following
two main reasons for this situation. First, although M80 is a widely used W parameteriza-
tion, it still has limitations, especially in the inversion of satellite-derived W data where the
effect is worse than that of a single NN-W. Secondly, the current W parameterization is still
dominated by the empirical function of wind speed, which cannot be considered as the real
physical formulation of W. Therefore, when using a physic-informed neural network for
parameterization research, more universal physical formulas should be chosen and fewer
empirical physical formulas should be used to bring out the real effect of a physic-informed
neural network.
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5. Conclusions

The purpose of this study was to develop a new multivariate W parameterization
using DNN to better characterize the variability of W due to various factors and to interpret
it in some way from a neural network perspective. The NN-W uses SWH, WSP, SST,
MWP, and ∆θ as inputs, and the satellite-derived W data as labels for training, resulting
in a new intelligent W(SWH, WSP, SST, MWP, ∆θ) parameterization. This scheme not
only outperforms A16 in the accuracy of W values calculation and can reduce the RMSE
of W values by 15%, but also better explains the variability of W. Compared with A16,
the new W parameterization clearly reflects the effect of significant wave height on W.
However, the addition of multiple factors makes W parameterization less dependent on
wind speed, which may be the reason for lower W values by NN-W. The importance of
different input variables in the neural network is ranked by permutation test, and the
importance is ranked from largest to smallest: WSP, SWH, ∆θ, SST, and MWP. This further
deepens the understanding of W and is extremely informative for modeling the physical
parameterization of W.

The improved description of W variability by NN-W is expected to better explain the
uncertainties in the parameterization of sea-salt aerosol fluxes as well as calculate air-sea
momentum flux. Besides, W also influences the calculation of air-sea heat fluxes, since the
generation of sea spray is sensitive to W [36]. Our future work will focus on combining
different parameterizations with satellite-derived data to develop a multivariate global
W parameterization, and on assessing the impact of NN-W on the uncertainty of sea-salt
aerosol flux parameterizations.
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