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Abstract: Recently, methods for obtaining a high spatial resolution hyperspectral image (HR-HSI) by
fusing a low spatial resolution hyperspectral image (LR-HSI) and high spatial resolution multispectral
image (HR-MSI) have become increasingly popular. However, most fusion methods require knowing
the point spread function (PSF) or the spectral response function (SRF) in advance, which are uncertain
and thus limit the practicability of these fusion methods. To solve this problem, we propose a fast
fusion method based on the matrix truncated singular value decomposition (FTMSVD) without using
the SRF, in which our first finding about the similarity between the HR-HSI and HR-MSI is utilized
after matrix truncated singular value decomposition (TMSVD). We tested the FTMSVD method on
two simulated data sets, Pavia University and CAVE, and a real data set wherein the remote sensing
images are generated by two different spectral cameras, Sentinel 2 and Hyperion. The advantages of
FTMSVD method are demonstrated by the experimental results for all data sets. Compared with the
state-of-the-art non-blind methods, our proposed method can achieve more effective fusion results
while reducing the fusing time to less than 1% of such methods; moreover, our proposed method can
improve the PSNR value by up to 16 dB compared with the state-of-the-art blind methods.

Keywords: hyperspectral imaging super-resolution; image fusion; truncated singular value decomposition

1. Introduction

High spatial resolution hyperspectral images are of great significance in agriculture [1],
military [2–4], image processing [5,6], and remote sensing [7–10] because of their ability to
possess rich spectral and spatial information at the same time. However, due to limitations
of the physical components, the LR-HSI can only be obtained with low spatial information
but high spectral information, and the HR-MSI of the same scene has high spatial informa-
tion but low spectral information. The most common economical way to obtain HR-HSI is,
therefore, to fuse the LR-HSI and HR-MSI.

As we know, HR-MSI, LR-HSI, and HR-HSI are images of the same scene with different
degrees of spatial and spectral information. When applying most fusion methods, HR-MSI
is considered to contain most of the spatial information of HR-HSI, while LR-HSI contains
most of the spectral information of HR-HSI. For example, Dian et al. [11] assumed that
LR-HSI contains a large amount of spectral information of HR-HSI, and the spectral basis
was obtained from LR-HSI by TMSVD. Long et al. [12] found a significant correlation
between the singular values of HR-HSI and LR-HSI. For both methods, a TMSVD operation
is carried out on LR-HSI, and the different factor matrices from LR-HSI are used as prior
information in these proposed methods. We assume the HR-MSI should have properties
similar to LR-HSI and HR-HSI.

As mentioned, these works [11,12] have shown that the first two TMSVD factor matri-
ces of HR-HSI and LR-HSI have strong similarity. A feature of singular value decomposition
(SVD) is that most of the image information can be saved by only keeping the first few
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terms. Inspired by this, we can reasonably assume that HR-HSI can be represented as the
product of three TMSVD factor matrices. The last TMSVD factor matrix of HR-HSI contains
a lot of spatial information, and it obviously comes from HR-MSI. The relationship between
the second TMSVD factor matrix of LR-HSI and HR-HSI has been clearly experimentally
demonstrated in [12], but the relationship between first TMSVD factor matrix of LR-HSI
and HR-HSI was not clearly shown. We will verify the relationship of the first matrix as
shown in the experimental results that follow.

As shown in Figure 1, we found a strong correlation between HR-HSI and HR-MSI.
The values of the third TMSVD factor matrix from the HR-MSI and HR-HSI are similar or
opposite in the same position. As we can see from Figure 2, the first factor matrix value
from HR-HSI and LR-HSI by TMSVD are also approximately the same at the same position,
which can explain why the spectral basis comes from the LR-HSI based on matrix similarity,
where there was previously no tangible evidence to explain this. We estimate the three
SVD factor matrices of HR-HSI from LR-HSI and HR-MSI using TMSVD, and the three
factor matrices are then used to construct the HR-HSI, which is different from estimating
the spectral basis and the corresponding spectral coefficient matrix.

(a) Pavia University (b) CAVE

Figure 1. The correlation of the third factor matrix (the first row of matrix) after TMSVD of HR-HSI
and HR-MSI.

(a) Pavia University (b) CAVE

Figure 2. The correlation of the first factor matrix after TMSVD of HR-HSI and LR-HSI.

However, compared with SVD, TMSVD is limited by a truncated value. It only
saves part of the original matrix information, which will cause the loss of some critical
information. To further improve the fusion effect, we assume that the first TMSVD factor
matrix of HR-MSI also contains some information about HR-HSI. Therefore, we introduce
the first TMSVD factor matrix of HR-MSI into the fusion process.
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We integrate the prior information of TMSVD on HR-MSI and LR-HSI to reconstruct
HR-HSI, obtaining the factor matrices from LR-HSI and HR-MSI by TMSVD. We then
recombine the obtained factor matrices to obtain a rough HR-HSI and, through a multi-
plicative iterative process, can finally solve the optimization question.

The main contributions of this paper are as follows:

• We explain that the reason for the spectral basis comes from LR-HSI from the perspec-
tive of the matrix similarity after truncated singular value decomposition. No such
quantitative analysis has been conducted prior to our work.

• We found a strong correlation between HR-MSI and HR-HSI. All prior information
about TMSVD was integrated into a new proposed fusion model without using the
SRF and based only on the TMSVDfactor matrices from LR-HSI and HR-HSI.

• We propose a new idea for the hyperspectral fusion method. We reconstruct the
HR-HSI by estimating the three SVD factor matrices of HR-HSI from LR-HSI and
HR-MSI.

• We test our proposed method on two simulated data sets, Pavia University and CAVE,
and a real data set in which the remote sensing images are generated by two different
spectral cameras, Sentinel 2 and Hyperion. Compared with the non-blind methods,
our proposed method achieves a more effective fusio result while reducing fusing
time to less than 1% of such methods. Compared with the blind methods on the
simulated data sets, our proposed method can improve the PSNR value by up to 16 dB.
Moreover, our proposed method demonstrates a better performance on the real data
set, which validates its practicality.

The rest of this paper is organized as follows. In Section 2, some background knowl-
edge and the representative hyperspectral image super-resolution literature are presented.
The FTMSVD method is presented in Section 3. The experimental details are outlined
in Section 4. Presented in Section 5 are our experimental results and analysis, and the
conclusion is found in Section 6.

2. Related Work

In recent years, the exploration of hyperspectral image (HSI) super-resolution meth-
ods has been gradually increasing. These methods can be broadly divided into three
categories: matrix factorization-based methods, tensor factorization-based methods, and
other methods.

In the matrix factorization-based methods, it is assumed that HR-HSI is a matrix
formed by the multiplication of the spectral basis and the corresponding spectral coefficient
matrix. The fusion problem is transformed into the problem of how to estimate the spectral
basis and coefficient matrix. There are many ways to estimate the spectral basis and
coefficient matrix, such as non-negative dictionary learning [13], K-SVD [14], and online
dictionary learning [15]. Wycoff et al. [16] made full use of the prior information of non-
negativity and sparsity of HR-HSI and conducted non-negative sparse matrix factorization
for HR-MSI and LR-HSI to obtain the approximation of a non-negative spectral basis
and sparse coefficient matrix, and the alternative direction multiplier method (ADMM)
was then used in their optimization to obtain the HR-HSI. Akhtar et al. [17] estimated a
non-negative dictionary based on the principle of local similarity of images. In [18], the
spectral basis and coefficient matrix were learned from LR-HSI and MR-HSI under some
prior information. Huang et al. [19] proposed obtaining the learning spectral basis by using
K-SVD on LR-HSI. Han et al. [20] clustered image blocks and assumed that similar image
blocks can linearly represent the given block, learning of the local similarity of HR-HSI
was based on image segmentation. The method we propose in this paper is also a matrix
factorization-based method. However, our FTMSVD method differs in two aspects. Firstly,
in our FTMSVD method, information is directly obtained from LR-HSI and HR-MSI by
TMSVD without the need for a complex operation such as dictionary learning. Secondly, in
our proposed method, it is assumed that HR-HSI is composed of three SVD factor matrices,
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and we estimate the three SVD factor matrices of HR-HSI from LR-HSI and HR-MSI, but
not the spectral basis and coefficient matrix.

Tensor factorization-based methods allow for preserving the 3D characteristics of
hyperspectral images to a great extent. That is, tensors represent hyperspectral images,
and the structure information of the image is better preserved. The question for fusion
then concerns how to estimate the tensors. Dian et al. [21] used Tucker decomposition to
decompose HR-HSI into three dictionaries of three dimensions and used a kernel tensor
to describe the relationship between the dictionaries. Li et al. [22] proposed a method
based on coupled sparse tensor representation (CSTF) in which HR-HSI is regarded as a
three-dimensional tensor. The tensor could be approximated as a core tensor multiplied by
three subtensors. In [11], subspace representation and low-rank tensor representation are
combined. The spectral subspace is approximated by the singular value decomposition
of LR-HSI, and the coefficients are estimated by the low-rank tensor. Prvost et al. [23]
obtained the dictionary of the third modes by the operation of TMSVD, and they solved
the generalized Sylvester equation to obtain the kernel tensor.

Other methods mainly include the Bayesian-based and deep convolutional neural
network (CNN)-based methods. In the Bayesian-based methods, the prior distribution is
used to solve the fusion problem. A representative example is the proposal in [24]. The
method based on CNN also plays an important role in the realization of hyperspectral
image fusion. Dong et al. [25,26] constructed a deep CNN for solving single image super-
resolution and achieved excellent performance. Liu et al. [27] proposed a deep CNN named
SSAU-Net, by introducing the spectral-spatial attention module to extract the shallow and
deep features information from LR-HSI and HR-HSI. Work [28] cleverly combined subspace
representation with CNN denoisier, which only need to train on the gray images. This
method solves the difficult problem about the training for CNN model.

These methods are also roughly divided into two categories, depending on whether
PSF and SRF are known during the fusion process, as blind fusion methods and non-blind
fusion methods. Methods that are non-blind indicate that both PSF and SRF are known. On
the contrary, PSF and SRF are unknown in blind methods. Hysure (blind version) [29] and
CNMF [18] are blind methods in which the fusion process is achieved by estimating both
SRF and PSF from HR-MSI and LR-HSI. The method in [30] is also a blind method because
it only estimates the SRF and does not use the PSF during the fusion process. In either case,
our proposed method demonstrates good performance without using SRF. When the PSF
is known, we use it directly. If the PSF cannot be directly obtained, we can use the PSF that
we set. Our experiments demonstrate that our method achieves good results in both cases.

3. Fusion Model

We denote the target HR-HSI as a three-dimensional tensor Z ∈ RW×H×L, which has
W × H pixels and L bands. The LR-HSI is regarded as X ∈ Rw×h×L, which has w × h
pixels and L bands. Y ∈ RW×H×l represents the observed HR-MSI, with W × H pixels
and l bands. It is observed that w < W, h < H, and l < L. X can be seen as a spatially
downsampled version of Z , i.e.,

X = ZBS (1)

where X ∈ RL×wh and Z ∈ RL×WH represent mode-n matricization matrix of X and Z ,
respectively. The matrices B ∈ RWH×WH and S ∈ RWH×wh represent the convolutional
blur and downsampling matrix, respectively. In a practical situation, the PSF represents
B, which is uncertain, and S can be obtained by the proportion of spatial dimensions of
LR-HSI and HR-MSI.

The Y ∈ RW×H×l can also be seen as the spectral downsampling version of Z , i.e.,

Y = RZ (2)

where Y ∈ Rl×WH and R ∈ Rl×L represent the mode-n matricization matrix of Y and the
spectral response matrix, respectively. R represents the SRF, which is uncertain in most cases.
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In [31], SVD was used for image compression, because it can denoise and represent
most information of an image with a few elements. Therefore, if we can obtain the three
SVD factor matrices of Z, we can recover the original HR-HSI, i.e.,

Z = UΣVT (3)

where Uz ∈ RL×d, Σz ∈ Rd×d and VT
z ∈ Rd×WH are the corresponding factor matrices

of Z by SVD. However, it is difficult to directly obtain the SVD factor matrices of Z. To
approximate the SVD factor matrices of Z, we estimate the SVD factor matrices of Z from X
and Y by using TMSVD, i.e.,

Z = UzΣzVT
z (4)

where Uz ∈ RL×q, Σz ∈ Rq×q, and VT
z ∈ Rq×WH are the corresponding estimation factor

matrices obtained by TMSVD, and q is the truncated value. Therefore, Equations (1) and (2)
can be converted to the following equation.

X = UzΣzVT
z BS (5)

Y = RUzΣzVT
z (6)

The fusion problem turns into the problem of estimating three factor matrices Uz, Σz,
and VT

z from HR-MSI and LR-HSI. To distinguish it from the target matrix Z, we denote Zs
as the fusion matrix, i.e.,

Zs = UsΣsVT
s (7)

where Us ∈ RL×q, Σs ∈ Rq×q and VT
s ∈ Rq×WH are the corresponding factor matrices of

fusion result Zs by TMSVD. Since l < L, the truncated singular value q is constrained
below l, and we set l as the truncated singular value for the consistency of TMSVD factor
matrix dimensions. Through performing the TMSVD operation on Y and X with truncated
value q, we can obtain the TMSVD factor matrices of Y and X, respectively, i.e.,

Y = UyΣyVT
y (8)

X = UxΣxVT
x (9)

where Uy ∈ Rl×q, Σy ∈ Rq×q and VT
y ∈ Rq×WH , and Ux ∈ RL×q, Σx ∈ Rq×q and VT

x ∈
Rq×wh. They are the corresponding TMSVD factor matrices of X and Y.

As shown in Figures 1 and 2, |VT
y | ≈ |VT

z | and Ux ≈ Uz, and it was found in [12]
that Σz ≈ s f × Σx, where s f is the downsampling factor. Hence, we can obtain the
following equations.

Us = Uy (10)

Σs = s f × Σx (11)

VT
s = VT

y (12)

However, constrained by the spectral dimension of HR-MSI, the q value is limited in l.
Therefore, if we use Us, Σs and VT

s to reconstruct HR-HSI, much important information
about HR-HSI will be lost, and the fusion effect is unsatisfactory. Due to the features of
SVD, Uy also obtains information of Y, and Y contains most of the spatial information of Z,
so we introduce it in the reconstruction of VT

s to improve the fusion performance, i.e.,

VT
s = Uy ×VT

y (13)

The detailed process for estimating the SVD factor matrices of HR-HSI is presented in Algorithm 1.
Based on Equations (1) and (9), we can further optimize the quality of Zs as the

following equation, i.e.,

min
UsΣsVT

s

∥∥∥X−UsΣsVT
s BS

∥∥∥2

F
(14)
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where ‖A‖2
F means the Frobenius norm of A in this paper.

Algorithm 1 Estimate three rough SVD factor matrices of HR-HSI

Require: X Y
obtain the downsampling factor s f and the truncated value q from X and Y
[nr,∼, q] = size(Y)
[nr1,∼,∼] = size(X )
s f = nr/nr1
Matrix X and Y to X and Y
The truncated singular value decomposition on X and Y with truncated value q
[Ux, Σx,∼] = SVD(X, q)[
Uy,∼, VT

y

]
= SVD(Y, q)

Us = Ux
Σs = s f × Σx
VT

s = UyVT
y

return Us, Σs, VT
s

Because of the correlation in Figure 1 and [12], we assume that Σs and VT
s are approxi-

mately equal to Σz and VT
z , which means Σs and VT

s are fixed during the fusion process.
We therefore simplify Equation (14), i.e.,

min
Us
‖X−UsC‖2

F (15)

We set C = ΣsVT
s BS as constant throughout the fusion process. The meaning of C here

is similar to the coefficient matrix in the work [11], except that we get it directly by the
connection between HSI and MSI, without any additional operations. Note that there are
two cases of B. If PSF is known in practice, we use it directly. If PSF is unknown, we use
the one we set, which is a 5× 5 Gaussian blur (standard deviation 1) in this paper, and
solve the uncertainty of B in this way. Finally, a multiplicative iterative process as in [18] is
introduced to optimize Us in Equation (15), i.e.,

Us = Us.× (XCT)./(UsCCT) (16)

After several iterative rounds of optimization, we obtain a more accurate Us. We reconstruct
it using Σs and VT

s to obtain a satisfactory Z. The whole process of our method is shown in
Algorithm 2.

Algorithm 2 FTMSVD Algorithm

Require: X Y
Obtain the Us Σs VT

s via TMSVD with a truncated singular value q in Algorithm 1
if PSF is known then

Use it directly
else {PSF is unknown}

Set PSF as a 5× 5 Gaussian blur (standard deviation 1)
end if
Set C = ΣsVT

s BS
Z f = UsC
Use a multiplicative iterative processe to optimize the Us
for k = 1:K do

Update Us by Equation (16)
end for
Z f = UsΣsVT

s
Z = Z f
return Z
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4. Experiments
4.1. Data Set

To demonstrate the universality and effectiveness of our proposed FTMSVD method, we
conduct experiments on two simulated data sets, the CAVE [32] and Pavia University [33]
data sets. In addition, we test our proposed method on a real data set of remote sensing
images generated by Sentinel 2 and Hyperion spectral cameras.

In the CAVE data set, each HSI has 512× 512 pixels and 31 spectral bands and consists
of 32 indoor scenes with high quality and a spectral range from 400 to 700 nm. We removed
the final two fuzzy bands and kept the remaining 29 bands. The Pavia University data
set was acquired by the ROSIS sensor, which has 610× 340 space pixels with 115 spectral
bands (0.43–0.86 µm) from around Pavia University, northern Italy. We removed the final
fuzzy bands and kept the remaining 93 bands to use the upper left corner (256× 256× 93).
Compared with non-blind methods, we filter each HR-HSI band with the 7× 7 Gaussian
blur (standard deviation 2) and conduct downsampling every 32 pixels in two spatial modes
to simulate the LR-HSI in the simulated data sets. The HR-MSIs of the Pavia University
data set are obtained using the IKONOS class reflection spectral response filter [34]. The
HR-MSIs (RGB image) from the CAVE data set are generated by a Gf-1-16m multispectral
camera response function. Specifically, for the Pavia University data set, each LR-HSI is
8× 8× 93 and HR-MSI is 256× 256× 4. For the CAVE data set, the LR-HSI is 16× 16× 29
and the HR-MSI is 512× 512× 3. For comparison, we set the downsampling as 8 for
blind methods and kept other settings the same as for non-blind in generating the LR-HSI
(32× 32× 93) and the LR-HSI (64× 64× 29) from the Pavia University and CAVE data sets,
respectively. The HR-MSIs are the same as in non-blind fusion processes.

For the real remote sensing data set, the LR-HSI was obtained by the Hyperion sensor
on the Earth Observation 1 satellite, which has 220 spectral bands. Our experiments use
one part of it as the LR-HSI (100× 100× 89). The corresponding HR-MSI is 300× 300× 4,
generated by the Sentinel-2A satellite.

All experiments were implemented in MATLAB R2014a on localhost with 2.90 GHz
Intel i5-9400F CPU and 8.0 GB DDR3.

4.2. Experimental Settings

To demonstrate the superiority of our proposed method in different situations (non-
blind and blind), we organize the experiments in the following order.

First of all, through two simulated data sets, we compare our proposed method
with five state-of-the-art non-blind fusion methods, including Hysure(NB) (non-blind
version) [29], CSTF [22], STEREO(NB) (non-blind version) [35], NLSTF [21], and LTTR [36].
We chose the parameters to obtain the best performance for each method in different data
sets when the downsampling factor is 32. The experiment results demonstrate that our
method results in a better performance in less execution time. The specific parameters of
the five state-of-the-art methods are given below in Tables 1 and 2.

Table 1. Parameters of non-blind methods on the Pavia University data set.

Method Parameters

Hysure(NB) basis = ’VCA’, λϕ = 1× 10−7, λm = 1× 103, λB = λR = 10, mu = 0.05, iters = 200
CSTF nw = 400, nh = 400, ns = 8, and λ = 1× 10−6, β = 0.001, K = 20

STEREO(NB) λ = 1× 10−3, s_iter = 2, t_rank = 40, maxit = 5, kernel_length = 21
NLSTF W = H = 10, S = 14, K = 151, λ = 1× 10−6, λ1 = λ2 = λ3 = 1× 10−5

LTTR K = 3900, eta = 0.002
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Table 2. Parameters of non-blind methods on the CAVE data set.

Method Parameters

Hysure(NB) basis = ’VCA’, λϕ = 1× 10−1, λm = 1× 105, λB = λR = 10, mu = 0.05, iters = 200
CSTF nw = 400, nh = 400, ns = 10, and λ = 1× 10−5, β = 0.001, K = 20

STEREO(NB) λ = 1× 10−4, s_iter = 1, t_rank = 40, maxit = 100, kernel_length = 31
NLSTF W = H = 10, S = 14, K = 151, λ = 1× 10−6, λ1 = λ2 = λ3 = 1× 10−5

LTTR K = 760, eta = 0.0009

Secondly, we verify the validity of VT
s extracted from our finding in Figure 1 by using

a randomly selected factor matrix to replace VT
s and intuitively display the influence of VT

s .
We then compare our proposed method with five state-of-the-art blind methods

on two simulated data sets, in which the LR-HSI and HR-MSI are simulated based on
different SRF and PSF values. The compared blind methods we used include the Hysure
(https://github.com/alfaiate/HySure/ (blind version) accessed on 1 October 2022) [29],
CNMF [18], GSA [37], SFIMHS [38], and MAPSMM [39]. Our proposed FTMSVD method,
GSA, and SFIMHS do not require additional setting parameters. In fact, it is very difficult
to debug the optimal parameters in the real blind fusion scenario, so we keep the parameter
settings of Hysure, CNMF, and MAPSMM in the original literature for a realistic and
reliable comparison in blind fusion experiments.

After that, we will use the different PSF to replace the one we set in our proposed
method to show the impact of the fixed PSF and to further illustrate the generalization of
our proposed method.

Finally, we take the experiment on the real data set and show the fusion visual fidelity.

4.3. Quantitative Metrics

To evaluate the effectiveness of our proposed method in all aspects, we use subjective
and objective evaluation metrics. For the subjective metrics, we show the effectiveness of
our proposed method through the visual presentation of the fused images. We used six
objective indexes to simultaneously reflect the fusion results. Regarding the peak signal-to-
noise ratio (PSNR) [11], the larger the value of PSNR, the better the spatial reconstruction
quality of each band; regarding the Erreur Relative Globale Adimensionnelle de Synthese
(ERGAS) [40], the smaller the ERGAS, the better the overall quality of the fused image;
regarding spectral angle mapper (SAM) [34], the smaller the SAM, the better the quality
of fusion; regarding the structural similarity (SSIM) [41], which is used to evaluate the
similarity of two images by brightness, contrast, and structure, the closer the metric is to
1, the better the effect; regarding the universal Image Quality Index (UIQI) [42], which is
used to address simultaneously spectral and radiometric quality, the closer the UIQI is to
1 the better result and regarding fusion time, which is used to evaluate the speed of the
fusion method, the smaller the value, the faster the fusion.

5. Results and Analysis
5.1. Compared with Non-Blind Methods

The results of the non-blind situation are shown in Tables 3 and 4, and the values in
bold are the best results in the metric. All the data values in the table are the average of
the five experiments. For visual comparison, we introduce the image of the experimental
results for comparison. Figures 3 and 4 are the corresponding images. Table 3 shows the
average objective metrics on the Pavia University data set. Our FTMSVD method has the
best performance compared with other non-blind methods on all objective metrics, which
means that HR-HSI reconstructed by our FTMSVD method has the best spatial and spectral
qualities. More specifically, the PSNR of our FTMSVD method is higher than that of CSTF
method by 0.091 dB, but we reduce the execution time by about 258.485 s. From Table 4, it
can be seen that our proposed method achieves the best result on the CAVE data set. The
main improvement reason is that our method extracts the reconstruction information from

https://github.com/alfaiate/HySure/
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X and Y based directly on TMSVD and without complex operations. The optimization
we used is multiplicative iterative processes, which only optimize the Us in a short time.
The reason why the optimization is so fast is because the optimize process only works
on smaller matrices Us. Most matrix-based fusion methods take a large amount of time
because they need to optimize both the spectral subspace and the corresponding coefficient
matrix. In [11], the approximate estimation of subspace through LR-HSI can reduce the
operation, but the coefficient matrix is still very large, and the fusion time is long. The
data volume of the coefficient matrix is much larger than the spectral base. Due to the
discovery of Figure 1, we can make an approximate substitution of the last two SVD factor
matrices of HR-HSI by combining the work [12] with our findings. Therefore, we propose
the optimization method in Equation (15) only need to optimize a smaller matrix.

Table 3. Average quantitative results of the non−blind methods on the Pavia University data set.

Method PSNR ERGAS SAM UIQI SSIM TIME

Hysure(NB) 42.494 0.154 2.205 0.992 0.988 54.925
CSTF 43.077 0.144 2.140 0.993 0.989 258.772

STEREO(NB) 27.263 0.792 8.732 0.772 0.696 1.370
NLSTF 29.556 0.672 7.382 0.924 0.936 60.850
LTTR 32.438 0.676 7.675 0.908 0.932 236.399

FTMSVD 43.168 0.140 2.049 0.993 0.989 0.287

Table 4. Average quantitative results of the non−blind methods on the CAVE data set.

Method PSNR ERGAS SAM UIQI SSIM TIME

Hysure(NB) 40.138 0.423 15.350 0.934 0.956 220.819
CSTF 40.674 0.463 8.032 0.914 0.957 335.912

STEREO(NB) 31.348 0.690 16.927 0.739 0.837 16.549
NLSTF 24.648 1.518 14.377 0.717 0.814 185.460
LTTR 33.947 1.219 13.132 0.790 0.906 319.596

FTMSVD 41.115 0.387 13.916 0.937 0.959 0.835

Hysure(NB) CSTF STEREO(NB) NLSTF LTTR FTMSVD Truth

Figure 3. The first row shows the fused images by the competing method for Pavia University at
band 30. The second row shows the magnified version of the marked area. The third row shows the
error images of the test methods for Pavia University at band 30.
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Hysure(NB) CSTF STEREO(NB) NLSTF LTTR FTMSVD True

Figure 4. The first row shows the fused images by the competing methods for oil_painting_ms (CAVE
data set) at band 16. The second row shows the magnified version of the marked area. The third row
shows the error images of the test methods for oil_painting_ms at band 16.

As we can see from Figures 3 and 4, the first row shows the fused images of each
method at band 30, and the second row is the enlarged one of the marked area in the
first row. The third row shows the error images at band 30, and the more black pixels
there are, the closer the fused image is to the ground true image. Take a comprehensive
view from Figure 3, when the downsampling factor is 32, the Hysure(NB), CSTF and
our proposed method FTMSVD have the better visual effect than STEREO(NB), NLSTF
and LTTR. Although the error images of the Hysure(NB) appears to perform better than
FTMSVD on the CAVE data set, the FTMSVD still has a better performance than others.
In combination with Tables 3 and 4, FTMSVD method has better performance on both
data sets.

5.2. Impact of the VT
s to Fusion Effect

Here, we use a randomly selected factor matrix VT
R to replace VT

s in Algorithm 1 to
verify the impact of our finding in Figure 1 on the fusion result. Figure 5 shows the PSNR
values in two simulated data sets. One uses VT

s and the other uses VT
R. We can see that

in using VT
R, the value of PSNR is very low in the two data sets, which indicates poor

fusion effect. The PSNR is much higher when using VT
s in all data sets, which verifies

that VT
s can be effectively used to improve the fusion performance, and the improvement

effect is pronounced. The main reason for this result is that VT
s is directly obtained from

the truncated singular value decomposition on HR-MSI, which contains large spatial
information of HR-MSI. Due to the HR-MSI being a spectral downsampling of HR-HSI, VT

s
is a better approximation of VT

z . Therefore, we can obtain a better fusion result by using
VT

s to reconstruct HR-HSI.
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(a) Pavia University (b) CAVE

Figure 5. Impact of VT
s to the fusion effect.

5.3. Comparison with Blind Methods

To comprehensively evaluate the superiority of our proposed method in blind fusion
cases, we compare it with five state-of-the-art blind methods in this section. To make a
more direct comparison, we will compare the two simulated data sets, in which the HR-HSI
(which we obtain) can be compared with the fusion results of blind methods in terms of
objective metrics. We exchange the PSF of CAVE and Pavia University to generate six
LR-HSI and HR-MSI pairs. Here, we refer to the IKONOS class reflection spectral response
filter as SRF1 and the Gf-1-16m multispectral camera response as SRF2. The 7× 7 Gaussian
blur (standard deviation 2) is defined as PSF1, and the 3× 3 average blur is PSF2. Different
combinations of these are used to generate the LR-HSI and the HR-MSI. We keep the PSF1
for the Pavia University data set and only use different SRFs. We change both the SRF
and the PSF for the CAVE data set. The downsampling factor is 8. We compared the blind
methods on the simulated data sets according to the objective fusion metrics, and the image
of the fusion result of some data sets is visually displayed.

Table 5 shows the fusion result on the Pavia University data set. As we can see,
our proposed method achieved the best performance on most metrics in either case. The
PSNR value of our proposed method is much better than other blind methods, where
the maximum PSNR reached is almost 16 dB, and the minimum is almost 5 dB. The
improvement in PSNR demonstrates the superiority of our proposed method in the blind
fusion effect. Although the fusion time of our proposed method is not the best, it can
still achieve the second best fusion time, which is only slightly longer than the time for
the best performance. Table 6 shows the experimental results on the CAVE data set. Our
proposed method achieves the best result on all metrics except fusion time. In the case of
SRF1 and PSF2, our proposed method can achieve 43.274 dB for PSNR, while the second
best is only 36.445 dB. The fusion time of our proposed method is still a little longer than
that of SFIMHS, but the PSNR value of SFIMHS is only 22.503 dB. From Tables 5 and 6, our
proposed method is seen to be significantly better than other methods in terms of fusion
quality. Due to page limitations, we only show the fusion images using the SRF1 and PSF1
on both data sets. Figure 6 are the fusion images of six blind methods on two data sets. In
the upper left corner of each image is an enlargement of the portion marked in that image.
From the performance on the two data sets in Figure 6, we can intuitively see from the
visual fidelity that the image produced from our method is closer to the original image
than those of other compared blind methods. From Figure 6, we can intuitively see that
our fusion effect is closer to the original image than other compared blind methods. The
main reason is that the information we extract from LR-HSI and HR-MSI can effectively
simulate the corresponding three SVD factor matrices of HR-HSI, which saves the primary
spectral information of LR-HSI and the main spatial information of HR-MSI. In addition,
the method is independent of SRF, which allows avoiding the error and the time cost
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associated with SRF estimation. In addition, our proposed method does not depend on
SRF, which can avoid the error of estimating the SRF and save a lot of fusion time.

LR-HSI Hysure CNMF GSA MAPSMM SFIMHS FTMSVD True

Figure 6. The first row shows LR-HSI, fusion images, and ground truth images’ false-color images
in Pavia university data set (formed by bands 30th, 60th, and 90th). The second row shows LR-HSI,
fusion images, and ground truth images’ false-color images in CAVE data set (formed by bands 10th,
19th, and 28th). All fusion images and LR-HSI are obtained using SRF1 and PSF1.

Table 5. Average quantitative results of the blind methods on the Pavia University data set.

SRF & PSF Method PSNR ERGAS SAM UIQI SSIM TIME

SRF1 PSF1

Hysure 38.180 0.958 3.007 0.986 0.981 52.678
CNMF 26.323 3.527 6.099 0.824 0.805 14.823
GSA 27.599 3.152 8.029 0.919 0.910 0.882

MAPSMM 23.144 5.412 8.061 0.701 0.715 40.453
SFIMHS 23.974 4.959 6.831 0.766 0.778 0.301
FTMSVD 40.122 0.740 2.357 0.990 0.987 0.356

SRF1 PSF2

Hysure 36.445 1.148 3.264 0.980 0.974 53.378
CNMF 24.638 4.201 7.842 0.781 0.741 15.305
GSA 24.262 4.593 11.461 0.864 0.836 0.790

MAPSMM 21.634 6.349 9.348 0.586 0.617 41.387
SFIMHS 22.503 5.822 8.038 0.699 0.727 0.197
FTMSVD 43.274 0.548 2.014 0.994 0.989 0.380

To further contrast the superiority of our method, we compare the performance of the
compared methods in each spectral band. Figure 7 shows the change of PSNR for each
spectral band over two data sets. As we can see from Figure 7a, the FTMSVD has the best
performance than the other methods in each band. Figure 7b shows that the FTMSVD
performs better than the compared methods at the most of the spectral bands. A higher
PSNR value means that the spectral reflectance of the fusion result is more similar to the
ground truth, which further demonstrates the advantages of our method.

(a) Pavia University (b) CAVE

Figure 7. The PSNR of each spectral band for the compared methods using SRF1 and PSF1.
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Table 6. Average quantitative results of the blind methods on the CAVE data set.

SRF &
PSF Method PSNR ERGAS SAM UIQI SSIM TIME

SRF1 PSF1

Hysure 28.801 3.619 19.493 0.799 0.851 230.795
CNMF 30.735 3.251 7.411 0.792 0.874 54.099
GSA 33.646 2.262 10.210 0.875 0.910 1.061

MAPSMM 27.069 4.563 7.949 0.738 0.849 173.955
SFIMHS 26.309 5.136 6.834 0.797 0.880 0.276
FTMSVD 40.438 1.044 6.270 0.950 0.972 0.840

SRF1 PSF2

Hysure 26.977 4.463 22.177 0.740 0.805 243.398
CNMF 27.908 4.422 8.220 0.730 0.825 59.904
GSA 32.708 2.482 11.918 0.850 0.878 1.111

MAPSMM 26.093 5.095 8.784 0.662 0.813 166.409
SFIMHS 25.580 5.484 7.408 0.766 0.864 0.257
FTMSVD 41.614 0.964 5.147 0.954 0.979 0.961

SRF2 PSF1

Hysure 35.563 1.740 8.274 0.922 0.955 256.527
CNMF 31.860 2.630 7.276 0.817 0.896 51.648
GSA 34.974 1.967 9.306 0.898 0.926 1.066

MAPSMM 27.186 4.450 7.875 0.786 0.870 140.832
SFIMHS 26.792 4.664 6.533 0.813 0.885 0.250
FTMSVD 40.806 1.542 13.995 0.938 0.959 0.852

SRF2 PSF2

Hysure 35.344 1.795 8.126 0.919 0.953 249.050
CNMF 29.929 3.395 8.131 0.772 0.867 45.055
GSA 33.665 2.221 10.838 0.876 0.899 1.017

MAPSMM 26.235 4.962 8.388 0.741 0.849 138.072
SFIMHS 25.778 5.240 7.168 0.773 0.865 0.213
FTMSVD 41.123 1.535 13.977 0.938 0.959 0.733

5.4. The Impact of the PSF Set in the FTMSVD Method

Tables 7 and 8 show the impact of different typical blur types as PSF set in our method.
The data sets we used are the same as in Tables 5 and 6 with SRF1 and PSF1. PSFS1 is the
5× 5 Gaussian blur (standard deviation 1) (which we used in this paper), PSFS2 is the 5× 5
average blur, PSFS3 is the 7× 7 average blur, PSFS4 is the 9× 9 Gaussian blur (standard
deviation 2), and PSFS5 is the motion blur (len is 9 and theta is 0).

Table 7. The results of the different PSF set in FTMSVD on the Pavia University data set.

Method PSNR ERGAS SAM UIQI SSIM TIME

PSFS1 40.122 0.740 2.357 0.990 0.987 0.453
PSFS2 42.976 0.559 2.044 0.993 0.990 0.228
PSFS3 42.473 0.591 2.090 0.993 0.988 0.255
PSFS4 43.000 0.564 2.040 0.993 0.989 0.211
PSFS5 42.529 0.591 2.043 0.993 0.989 0.203

Table 8. The results of the different PSF set in FTMSVD on the CAVE data set.

Method PSNR ERGAS SAM UIQI SSIM TIME

PSFS1 40.438 1.044 6.270 0.950 0.972 0.994
PSFS2 41.431 0.977 5.478 0.955 0.978 0.737
PSFS3 41.448 0.987 5.089 0.953 0.977 0.818
PSFS4 41.544 0.976 5.084 0.954 0.978 0.792
PSFS5 41.171 0.994 5.507 0.955 0.978 0.804

As we can see from Tables 7 and 8, the PSF set in our proposed method can influence
the fusion effect, but no matter which PSF we used, the fusion result is better than for the
five compared blind methods in Tables 5 and 6. The main reason is that the PSF is only used
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to optimize the first SVD factor matrix Us, and Us mainly contains the spectral information
of HR-HSI, and its size of is smaller than VT

s . For different PSF, the optimization effect of
Us is not significantly different. Moreover, most spatial information of HR-HSI is in Σs and
VT

s and unaffected by PSF. In this way, our proposed method only needs to assume a fixed
PSF to replace its estimation. A multiplicative iterative process is then used to optimize Us,
which can take a concise time to converge, so our proposed method can achieve a good
fusion result within a short time.

5.5. Practicality of the Proposed Method

To demonstrate the practicality of our proposed method, we test our method with
the five blind methods on the real remote sensing data set. The LR-HSI (100× 100× 89)
and HR-MSI (300× 300× 4) are extracted from the real remote sensing data set. Figure 8
shows the LR-HSI, HR-MSI, and the corresponding fusion images of the different blind
methods with enlargement of the marked position. Since the HR-HSI of the real data set
is unknown, we directly compared the fusion effect from the fusion images. As Figure 8
shows, our proposed method has a better visual fidelity than others, and it is closer to the
HR-MSI, which demonstrates its practicality.

Hysure CNMF GSA MAPSMM

SFIMHS FTMSVD HR-MSI LR-HSI

Figure 8. The fusion results of the blind methods on the real data set (the first band).

6. Conclusions

In this paper, we find a strong correlation between the HR-MSI and HR-HSI. We
experimentally verified the reason why the basic spectral values can be estimated from
LR-HSI. We propose a fast fusion method based on TMSVD without SRF to implement
the process of HR-MSI and LR-HSI fusion, which is suitable for both non-blind and blind
fusion situations. Since LR-HSI contains the most spectral information of HR-HSI, the
spatial information is mainly in HR-MSI. We estimated the SVD factor matrices of HR-
HSI from HR-MSI and LR-HSI by TMSVD. Our proposed method solves the problems
associated with the uncertainty of PSF and SRF, and a satisfactory fusion result can be
rapidly produced. Our experimental results on the simulated hyperspectral data sets and
real remote sensing data set all indicate the superiority of our proposed method. However,
our pre-set PSF still has a slight impact on the fusion results of our proposed methods.
Therefore, it is necessary for us to estimate a more suitable PSF based on the LR-HSI in
future studies. The findings in this paper can be used as prior information for future fusion
methods. Moreover, estimating SVD factor matrices of HR-HSI also represents a novel
concept for conducting hyperspectral image fusion.
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