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Abstract: The paper investigates the usage of LiDAR (light detection and ranging) data for the
automation of mapping vegetation with respect to the evaluation of the ecological succession pro-
cess. The study was performed for the repository of the “Fryderyk” mine (southern Poland). The
post-flotation area analyzed is a unique refuge habitat—Natura2000, PLH240008—where a forest
succession has occurred for several dozen years. Airborne laser scanning (ALS) point clouds were
used for deriving detailed information about the morphometry of the spoil heap and about the
secondary forest succession process—mainly vegetation parameters i.e., height and canopy cover.
The area of the spoil heap is irregular with a flat top and steep slopes above 20◦. Analyses of ALS
point clouds (2011 and 2019), confirmed progression in the forest succession process, and land cover
changes especially in wooded or bushed areas. Precise vegetation parameters (3D LiDAR metrics)
were calculated and provided the following parameters: mean value of vegetation height as 6.84 m
(2011) and 8.41 m (2019), and canopy cover as 30.0% (2011) and 42.0% (2019). Changes in vegetation
volume (3D area) were shown: 2011—310,558 m3, 2019—325,266 m3, vegetation removal—85,136 m3,
increasing ecological succession—99,880 m3.

Keywords: forest succession; airborne laser scanning (ALS); LiDAR metrics

1. Introduction

Industrial activity related to extraction has a major impact on the natural environ-
ment [1,2]. The mapping and monitoring of vegetation growing on the reclaimed areas are
of wide scientific interest. Upper Silesia (southern Poland) is an area very rich in deposits
of fossil raw materials, which have been mined for hundreds of years by various mining
branches in Poland [3]. The most commonly mined resource in the area was hard coal, but
others such as zinc–lead ores were also mined. The Upper Silesia area is the most extensive
industrial and urbanization area in Central Europe and has been recognized as one of the
most polluted with heavy metals [4–6].

Among the characteristic facilities that arise during the mining and processing of
zinc–lead ores are tailings piles. These facilities are characterized by very high concen-
trations of heavy metals [7], which pose a major threat to the balance of the ecosystems
they enter [8]. Once introduced into the environment, they function in it for a very long
time. Particularly dangerous are heavy metals of metallurgical origin, which, once they
enter soils, are virtually indelible from them and can negatively affect the environment for
another 200 years [9].

Therefore, monitoring the impact of pollutants (heavy metals) on ecological succession
on such sites is a very important and interesting issue [7,10]. The realization of this task
is made possible by modern geoinformatics technologies, which allow us to present the
changes in ecosystems over decades in a clear and very readable way.
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Nowadays, developing solutions to provide information on the biometrical features
of vegetation is worth particular attention [11]. The availability of spatial geodata, es-
pecially remote sensing products, derives objective information about the surrounding
environment. The possibility of using geoinformation methods for spatial management
in the environment or environmental protection has a multitude of examples in research.
Widely used in this aim is LiDAR (light detection and ranging) technology, which allows
the provision of large-scale research for the topography description and structure of the
growing vegetation [12–17]. Determining indicators to show the spatial range or structure
of vegetation, including the dynamic process of vegetation development in post-industrial
areas, is a wide area of scientific interest.

Strategies aimed to map and characterize secondary succession are usually based
on traditional measurements where successional stages are not considered. Secondary
succession is defined as natural regeneration following complete forest clearance from
anthropogenic or natural disturbances. The transitions between successional stages play a
key role in ecosystem regeneration. We can evaluate the use of the LiDAR data to charac-
terize changes in forest structure starting in early to intermediate and intermediate to late
forest succession. The vertical forest structure can be analyzed using cross-sections selected
between forest transitions. LiDAR techniques can identify forest structure differences
between successional stages.

The focus of this manuscript is to document the use of airborne LiDAR, to quantify the
extent of secondary forest succession for the post-industrial area. The goal is to determine
land cover changes to describe the forest succession process and provide selected indices
characterizing spatial structures of vegetation on the repository of the mine “Fryderyk”
in Tarnowskie Góry (South Poland). In this aspect, the analysis of temporal and spatial
changes in vegetation cover was performed using two series of LiDAR data—airborne laser
scanning (ALS) point clouds in the years 2011 and 2019. The presented study indicates the
possibility of automation of the process of monitoring shrubby and wooded areas developing
in post-industrial areas by using modern geoinformation methods and LiDAR technology.

2. Methods

The study works were carried out for the area of the spoil heap of the “Fryderyk” mine
in Tarnowskie Góry. The tested object is located in the Upper Silesian Industrial Region
(50◦24′54′ ′N, 18◦51′17′ ′E; a large industrial region in the south of Poland, Figure 1, [7,18]).
The post-flotation spoil tip covers an area of over 6 ha. It is an above-grade heap with a flat
top and fairly steep slopes (slope angle of 45–50◦). It is 13–15 m high in the southeastern
part, and 17 m high in the western and northern parts.

The studied anthropogenic site is a tailings pile built from a mixture of zinc–lead ore
waste (galena) and waste rock (dolomite). The stored formations are characterized by a
very high content of heavy metals (Zn, Pb, and Cd), and alkaline reactions [7,19]. The
formation of the repository began in 1840 and ended in the year 1912 [20]. No reclamation
work was carried out on the heap, the existing vegetation has entered the path of ecological
succession. The studied site is overgrown, among others, with woody species (mainly Scots
pine) and rare and protected galman grasslands [21].

The post-flotation analyzed area is a unique refuge habitat—Natura2000, PLH240008—
and is characterized by significant examples of the secondary forest succession process
(Figure 2; [22]).

In 2017, the surveyed site was inscribed on the UNESCO World Heritage List. Due
to the special protection of natural value, woody vegetation was removed on part of the
site to restore the communities of galmanum vegetation as a result of the project “Good
practices for enhancing biodiversity and active protection of galmanum vegetation in the
Silesia-Krakow region—BioGalmany” [23].
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Figure 2. The spoil heap of “Fryderyk” mine in Tarnowskie Góry—examples of the forest
succession process.

The BioGalmany project [23] was co-financed by the European Union under the
European Cohesion Fund (Operational Program Infrastructure and Environment 2014–2020;
Priority: Environmental protection, including adaptation to climate change; Action: Good
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practice activities related to the protection of endangered species and natural habitats).
The project implementation period was from 1 April 2018 to 31 December 2021. The
Project aim was to restore, strengthen and maintain appropriate habitat conditions for the
preservation of biodiversity of galmanum vegetation (Violetea calaminariae) in the Natura
2000 areas created in the Silesia-Krakow region and in the places where valuable fragments
of galmanum vegetation occur, so far not covered by any form of protection.

In this paper, LiDAR data were used to indicate the comprehensive characteristics of
growing vegetation. Analyses were performed using the following materials:

• ALS point clouds—two series: 2011 and 2019, parameters: 4 reflections as a minimum,
12 points/m2, altitude accuracy ≤ 0.15 m, situational accuracy ≤ 0.50 m; source:
pl. ISOK Project—Informatics System of the Country Protection from Extraordinary
Threat; Main Office of Geodesy and Cartography, Poland [24].

• Orthophotomaps: 2011 and 2019, GSD: 0.25 m, coordinates system: PL-PUWG1992,
(ISOK Project [24]).

• Cadastral data (portals: WebEwid and Geoportal).

In the ISOK project [24] the territory of Poland is covered with ALS data points of
various densities ranging from 4 points per m2 to as many as 20 points per m2 (in cities).
Airborne LiDAR provides a representation of land as a cloud of measurement points
with defined XYZ coordinates. The files are saved in LAS format and, apart from point
coordinates, they also contain, among other things, information on the class of a specific
point, or signal reflection intensity. The points are assigned RGB values (reflecting blue,
green, and red) obtained from aerial images.

LiDAR measurements in LAS (LAZ) files from the ISOK project are provided free of
charge and can be used for any purpose. Data can be downloaded from www.geoportal.
gov.pl, (accessed on 1 October 2022). section “Data for download” [24]. The procedure
for processing ALS data was started by creating models: DTM—digital terrain model
(automated approximation of the “ground” points); DSM—digital surface model (points
from the other classes). It was carried out using the functions GridSurfaceCreate and
CanopyModel in FUSION software [25]. The normalized DSM (nDSM) was prepared in
ArcGIS Pro (ESRI) as a difference between the DSM and DTM (nDSM = DSM-DTM). The
characteristics of the “Fryderyk” spoil heap morphometry were presented also as DTM,
DSM hillshades in grayscale.

Analysis of precise information (2D and 3D structure) of vegetation was performed
using the FUSION procedures [25]. The height of vegetation (GridMetrics and CloudMetrics
functions) was generated as a value of the 95th percentile (P95)—the height below which
there exist 95% points (the relative altitude of the point clouds) [26,27]. The standard
deviation of the height was also calculated (Stddev, FUSION). The canopy cover was gener-
ated using the Cover (FUSION) procedure [28] and takes values of 0%–100%. The vertical
vegetation structure was visualized in the form of histograms using the Densitymetrics
(FUSION) method (the number of laser points reflected from the vegetation in 1-meter
vertical intervals for the raster pixel. The vegetation parameters were presented as raster
maps (pixel size: 1.0 m) to derive the spatial biomass indicators of forming vegetation at
the spoil heap.

The study provides an example of using two series of ALS acquisitions to monitor
the shrubland or wooded post-industrial fields. For the whole analyzed area, a map of
changes in height of vegetation from 2011–2019 was prepared, as an illustration of the
detailed characteristic of the vegetation removing process (BioGalmany project [23]) and
on the other side the increasing forest succession areas.

3. Results

The study area covered 6.64 ha. The area of the spoil heap is irregular (Figure 3) with a flat
top and steep slopes above 20◦. Slopes≤ 2◦ cover 10. 1% of the analyzed area, 2◦–5◦—19.9%,
5◦–10◦—18.6%, 10◦–20◦—16.7%, and≥20◦—34.7%. The detailed information about the aspects

www.geoportal.gov.pl
www.geoportal.gov.pl
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is as follows: N—13.8% of the analyzed area, NE—13.0%; E—14.4%, SE—5.5%, S—13.8%,
SW—14.1%, W—16.1%, and NW—11.3% [18].
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The analysis of the terrain [18] is presented in Figures 3 and 4. The spoil heap height
is lowest in the southeastern part (10–15 m), increases in the western part (around 17 m),
and reaches its highest value in the northern part of the heap (around 22 m above the level
of the surrounding terrain).



Remote Sens. 2023, 15, 201 7 of 17Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 18 
 

 

 
(a) 

 
(b) 

Figure 4. The analyzed terrain: (a) hillshade with marked profiles, (b) profiles. Figure 4. The analyzed terrain: (a) hillshade with marked profiles, (b) profiles.



Remote Sens. 2023, 15, 201 8 of 17

The digital surface model (values in meters AMSL) and the normalized DSM (nDSM,
relative values in meters, generated based on ALS point clouds from the years 2011 and
2019 [18] are presented in Figures 5 and 6. According to the field works in the BioGalmany
project, shrub vegetation was largely removed in the middle of the repository, so we can
see clearly in the maps.

The structure of the vegetation was prepared automatically using ALS point cloud
statistics. The mean values of height (95th percentile), the standard deviation of height, and
canopy cover (cover density; in values 0–100%) calculated for the years 2011 and 2019 are
presented in Table 1. Only areas with vegetation left in 2019 were analyzed. Parameters
confirmed the growing secondary forest succession process.
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Table 1. LiDAR metrics for vegetation—mean values of height, std. dev. of height, canopy cover.

Year Height [m] Std. dev. of Height [m] Canopy Cover [%]

2011 6.84 0.68 30.0
2019 8.41 0.86 42.0

In Figure 7, precise raster maps of LiDAR metrics prepared for 2011 and 2019 are
presented [18]. The height (calculated as 95th percentile), the standard deviation of height,
and the canopy cover are shown. Parameters of height, and std. dev. of height or cover
density help to understand how ALS technology collects information about forested land-
scapes. The increasing spatial range of vegetation and changes in the structure (2D, 3D) in
the forested area for the analyzed period (2011–2019) can be observed, ignoring areas of
removed vegetation.

For the analyzed area, the map of vegetation changes (in height and range of vegeta-
tion [18]) from 2011–2019 was prepared (Figure 8). Maps illustrate the forest succession process
and on the other side the results of removing vegetation according to the BioGalmany project.

Using ALS point clouds, values of changes in vegetation volume (area 3D) in the years
2011 and 2019 were calculated (Table 2, [18]). Generally, despite the removal of vegetation
in the central part of the spoil heap, the volume of vegetation increased, which confirms an
intensive process of forest succession in the remaining parts of the repository.

Table 2. Changes in vegetation volume (area 3D).

Year Volume [m3/%]
Increase in Volume of

Vegetation [m3/%]
Loss of Vegetation

Volume [m3/%]

2011 310,558 m3—100.0%
99,880 m3—32.1 % 85,136 m3—27.4 %2019 325,266 m3—104.7%

Based on LiDAR, metrics were calculated for general information about classes of
vegetation in the analyzed area. There were three classes proposed: I class—low vegetation,
the height of vegetation < 7 m; II class—medium vegetation, 7−15 m; III class—high
vegetation, >15 m (Table 3, [18]).
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Table 3. ALS metrics for the class of vegetation—mean values of height and std. dev. of height.

Classes Year Mean Height [m] Std. dev. of Height [m]

Low vegetation (class I) 2011 0.82 0.14
2019 3.31 0.74

Medium vegetation (class II) 2011 4.75 0.97
2019 8.95 1.56

High vegetation (class III) 2011 15.96 2.46
2019 16.70 3.86

Figure 9 presents some examples of the forest succession process (part of the ortopho-
tomap) with detailed profiles and histograms (numbers of points) generated from the ALS
point clouds to present the spatial flora characteristics of vegetation classes [18].
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4. Discussion

The remotely sensed materials are permanent evidence of changes in the natural
environment. It is especially important to monitor such changes on anthropogenic sites
in heavily industrialized and urbanized regions. These sites are very often located in the
centers of large urban agglomerations, are frequently visited by the local community, and
are characterized by different properties of the substrates (waste) deposited on them. The
site we are studying is of particular interest, as it is a heap that was created more than
100 years ago as a result of zinc–lead ore processing [20]. The region has a very long
industrial tradition and many works analyzing changes in the environment of this area
have been published [29–32]. Such sites are characterized by very high concentrations
of heavy metals (Zn, Pb, and Cd) in the substrates stored on them, from which future
technogenic soils will be reconstituted [7].

In the first place, heavy metals contaminating the soil inhibit the growth of microorgan-
isms functioning there [33–35]. In turn, the reduced activity of rhizosphere microorganisms
is a major factor inhibiting plant growth and resistance to pathogens. Disruption of organic
matter decomposition by microorganisms caused by excessive heavy metal concentrations
can also lead to an increase in the pool of bioavailable forms of metals in the soil. The
bioavailable fraction of heavy metals is easily taken up by living organisms and moves
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through the trophic chain, making it very dangerous [36,37], and contributing to the inhibi-
tion of the succession process.

The natural development of vegetation on mining waste is very slow due to the
physical and chemical properties of this substrate being unfavorable to plants. Waste rock
remaining after mining Zn–Pb ores, with its characteristic orange color, is an unstable, dry
substrate, containing significant amounts of heavy metals (Fe, Zn, Pb, Cd). However, these
metal-bearing substrates (waste) left without any human intervention are spontaneously
colonized by organisms well-adapted to local conditions. Over time, specific zinc–lead
areas are formed into galman grasslands. They are built by species found in only a few sites
in Poland, as well as subspecies and ecotypes of common species. All of them can tolerate
high concentrations of heavy metals [38]. Over the decades since its formation, woody
vegetation communities have also encroached on the study site [7]. Monitoring these
processes due to the importance and protection of galman grasslands and the adaptation of
individual plant species to extremely adverse habitat conditions is a very important issue
that should be carried out all the time.

The main aim of this paper was to demonstrate the potential automation in moni-
toring post-industrial lands using geoinformation technology and LiDAR data. Research
shows that the ALS point clouds, define the metrics for the structure of vegetation [39–44].
Many of the indexes can be generated, including the number of trees per unit area, the
range occupied by different vegetation patches and their spatial distribution, the height of
trees, thickness and volume, the length of tree crowns, and other features describing the
vegetation parameters to a greater or lesser extent [45–47].

The main aspect was mapping cover changes and determining the spatial structure
of vegetation. The study focuses on the analysis of the spatial structure of vegetation,
according to the results of BioGalmany project field works in the research area. The vegeta-
tion overgrowing the spoil heap “Fryderyk” was determined in the previous study [10].
The exploration was carried out based on aerial images and orthophotomaps from 1947,
1998, 2003, 2009, and 2011. Forest succession changes (growing process) that occurred
between 1947 and 2011 were confirmed. In this study, using ALS data (2011, 2019) the
precise features of vegetation overgrowing the spoil heap “Fryderyk” was determined.

The results demonstrated a gradual secondary succession of greenery on the spoil heap,
and on the other side, the removal of the vegetation according to the BioGalmany project
works. Tree expansion was proceeding in the west and north direction. Parameters such as
the height of vegetation, and cover density calculated by ALS data indicated significant
diversity in horizontal and vertical structures of vegetation. The study, similar to other
papers, presents the capacity to use laser scanning technology for an impartial evaluation
of the structure of vegetation, especially monitoring the process of forest succession.

The LiDAR technology offers possibilities for a fusion of 2D and 3D information in
mapping land cover and vegetation classes. The procurement of many indices characterizing
vegetation provides LULC automated monitoring, together with the identification of the
spatial parameters of the vegetation [48–55]. According to these statements, the usage of the
LiDAR data, especially ALS or point clouds generated based on images from UAVs [56–59],
gives an objective assessment of biometric features. The indicators are determined for
mapping and inventory of plant associations formed in the post-industrial areas.

The ALS point clouds give precise data to perform spatial characteristics of vegetation.
LiDAR is a useful, objective, and large-area method for deriving information about vegeta-
tion growing in post-industrial areas. Further, regular laser scanning campaigns (airborne
or from the UAV level) can provide biomass characteristics [60] as a fundamental parameter
for long-term planning management and forest growth in post-industrial, reclaimed areas.
Additionally, the remote sensing technologies can allow for rating the formation of new
forest ecosystems, woody biomass, and global carbon storage [61–63].

Therefore, landscape information and mapping the cover of vegetation can be used to
evaluate changes over a long time for the sustainable management of post-industrial areas.
It is an essential aspect of balanced ecosystem planning and gives effective possibilities for
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monitoring afforestation in the post-mining areas. We should focus on the protection of
increasing habitats, and geoinformation methods can help us with this issue. Automated
remotely sensed methods, especially satellite or aerial images and LiDAR data, provide
reliable results and benefits that deliver ecosystem services to human society and help us
better understand the importance of LULC changes in sustainable land planning and the
development of vegetation [64,65].

5. Conclusions

Monitoring processes related to forest succession or afforestation for post-industrial
objects contaminated with heavy metals is a very interesting and important problem, which
should be constantly improved based on the latest knowledge and technology. This pro-
vides valuable information on how the succession process of these specific anthropogenic
features occurs over the decades. At the same time, it indicates a lot of valuable information
about the pace and specificity of succession, which can currently be used during works
related to the restitution of galman communities on this type of feature.

The study aimed to develop a methodology for mapping areas of potential forest
vegetation. The collected ALS data showed a significant differentiation of the spatial
structure of the forming and protected ecosystem. This variety is visible in the surface size
(2D) and the vertical profile (3D), which indicates the progressed forest succession process.
LiDAR point clouds allowed for precise and accurate assessment of the range and spatial
structure of vegetation.

Post-mining sites as an example of large human disturbance, with properly developed
reclamation and revegetation, can provide dynamic, novel ecosystems performing ecologi-
cal services. Forest-type vegetation is an essential element of the forming ecosystem in the
post-mining area, and estimating the area and structure of potential forests is very impor-
tant due to the ecosystem impact. Forested areas are an essential component of the Earth’s
ecosystem, sequestering carbon and providing a range of ecosystem services. Estimating
the area of potential forests is very important due to the context of climate change, and
biomass area reporting by individual countries (including Poland) to FAO/UN.
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13. Moudrý, V.; Gdulová, K.; Fogl, M.; Klápště, P.; Urban, R.; Komárek, J.; Moudrá, L.; Štroner, M.; Barták, V.; Solský, M. Comparison
of leaf-off and leaf-on combined UAV imagery and airborne LiDAR for assessment of a post-mining site terrain and vegetation
structure: Prospects for monitoring hazards and restoration success. Appl. Geogr. 2019, 104, 32–41. [CrossRef]
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