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Abstract: UAV technology is a basic technology aiming to help realize smart living and the con-
struction of smart cities. Its vigorous development in recent years has also increased the presence
of unmanned aerial vehicles (UAVs) in people’s lives, and it has been increasingly used in logistics,
transportation, photography and other fields. However, the rise in the number of drones has also put
pressure on city regulation. Using traditional methods to monitor small objects flying slowly at low
altitudes would be costly and ineffective. This study proposed a real-time UAV tracking scheme that
uses the 5G network to transmit UAV monitoring images to the cloud and adopted a machine learn-
ing algorithm to detect and track multiple targets. Aiming at the difficulties in UAV detection and
tracking, we optimized the network structure of the target detector yolo4 (You Only Look Once V4)
and improved the target tracker DeepSORT, adopting the detection-tracking mode. In order to verify
the reliability of the algorithm, we built a data set containing 3200 pictures of four UAVs in different
environments, conducted training and testing on the model, and achieved 94.35% tracking accuracy
and 69FPS detection speed under the GPU environment. The model was then deployed on ZCU104
to prove the feasibility of the scheme.

Keywords: UAV; 5G; multi-target detection and tracking; YOLOv4; DeepSORT

1. Introduction

The unmanned aerial vehicle (UAV) sector has advanced significantly as industry and
technology have progressed. Aerial photography, agriculture, surveying and mapping, traf-
fic supervision and other civilian areas are now using UAV technology that was previously
only employed for military and scientific study. Aerial video, or all-around shooting of a
target from a high altitude for film and television production and news reporting, achieves
high-quality footage at a low cost [1]. Drones can be used in agriculture to establish the
planting area, planting plan and risk assessment, as well as daily testing of agricultural
crop growth and estimating the degree of damage under periods of disease and pest in-
festation, allowing for efficient and modern agricultural supervision. Aerial surveying
and mapping using UAVs complements traditional aerial photogrammetry technology,
with high precision, cheap operational costs, a quick production cycle and excellent data
analysis capabilities. UAVs have potential in surveying and mapping work for national
projects, as well as emergency response and other areas. In today’s urban intelligent traffic
network management, UAVs may perform live monitoring and traffic flow regulation in
real time, reducing traffic congestion [2].

In recent years, the increasing number of drones has put pressure on the regulation of
the low-altitude airspace. Such low-altitude, low-speed and small aircraft are difficult to
detect in real time, bringing significant security threats to all countries. In the civil field [3],
UAV illegal flight disturbance near the airport has caused the delay and cancellation of
civil aviation flights and threatened flight safety in civil aviation. In April 2017, nine
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incidents of UAV disturbance occurred in Chengdu, causing more than 100 flights to
divert or turn back. UAV flight operations that are permitted without holder requirements,
which most of the time is due to user error or product design flaws, represent a significant
threat, and led to a series of drone attacks in May 2018 [4]. The son of one of the German
national staff in a Beijing no-fly zone operating UAVs had his face cut by a hit-and-run UAV.
In military airspaces, because most UAV flights are slow and the flight airspace is usually
below 600 m, air defense warning radar and other air defense weapons often confuse these
vehicles with insects and birds in flight, causing false positives. Additionally, UAV target
drones’ visual features are not very clear and so it is difficult to detect drones based on
images and sound from ground surveillance, threatening military security. In 2019, Russian
air defense systems in Syria detected small aerial targets suspected of terrorist attacks in
Syria [5]. Therefore, for the safety of civil and military fields, accurate detection, tracking
and interception of UAVs in designated areas is of practical significance.

The earlier proposed scheme for the detection of UAV targets is based on the recog-
nition of audio signals generated by UAV flights and real-time tracking and monitoring
of UAV remote control information and communication signals based on radio frequency
scanning technology [6]. The detection accuracy of these two methods is low and so only
targets within a short distance can be identified, which does not meet the requirements
for UAV detection.

In recent years, the methods widely used in UAV target detection have included
radar detection and image processing. For unmanned aerial vehicles such as “low slow
small” targets with weak electromagnetic reflection, the detection ability of traditional
radar detection systems is low in a complex, cluttered environment. Improving detection
performance would be costly [7]. Image processing technology has been applied in the field
of UAV detection for a long time. On the established UAV optical dataset, image processing
algorithms such as SIFT and HOF operators are used to extract UAV target information.
Finally, SVM, Adaboost and other classifiers are used to achieve target classification and
recognition. Although such traditional methods are easy to understand and operate, they
only make use of low-level information in images. Their detection accuracy and real-
time performance in identifying UAV targets are low and their robustness inadequate;
furthermore, they struggle to recognize multiple UAV targets in a complex background.

We propose a UAV detection scheme based on deep learning. The deep convolutional
network is used as the target detector to extract high-level information from UAV images
through supervised learning, so as to achieve high-precision and real-time detection of UAV
targets, and then realize UAV detection. However, most depth learning UAV detection
schemes remain in the detection stage and do not involve UAV target tracking. The
development of the 5G network has made low-cost detection and tracking drones possible
in the urban context and its characteristics of low latency and fast transmission speed are
promising for real-time monitoring [8]. In addition, in recent years, China has vigorously
advocated for the construction of smart cities and the urban supervision system has become
increasingly intelligent, making it easier to obtain UAV monitoring images. Therefore, this
study considers a combination of deep learning methods to put forward effective solutions
to UAV monitoring problems.

2. Model and Methods
2.1. System Model

With the development and application of deep learning, new avenues in UAV detection
are opening up. The deep convolutional network is used as the target detector to extract
high-level information of UAV images through supervised learning [9], so as to achieve
high-precision and real-time UAV target detection, and then realize UAV detection. Some
scholars use transfer learning to classify UAV targets, or combine UAV liDAR images and
use the convolutional network to extract features to detect UAVs. Currently, most deep
learning UAV monitoring schemes involve only a single target detection or target tracking.
This project believes that the “detection-tracking” mode formed by the combination of
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target detection means and target tracking means may be a more perfect method to solve
the UAV monitoring problem, which not only solves the problem of the limitations of target
detection application, but also makes the tracking algorithm more accurate. The flow chart
of UAV tracking is shown in Figure 1.
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Figure 1. The UAV tracking flow chart.

After the video of the drone is captured by the camera, the target detector is used
to determine whether it is the drone target. Then the target tracker is used to predict the
trajectory of the drone target, track and warn it, and complete the monitoring of the drone
in a specific area [10]. This scheme greatly improves the monitoring accuracy and avoids
the waste of unnecessary computing power in tracking other targets.

2.1.1. Target Detection Algorithms

Thanks to breakthroughs in computer computing, deep learning has ushered in new
developments [11], including convolutional neural networks, which have made great
progress in the field of image detection in recent years. Compared with traditional image-
processing algorithms, convolutional neural networks make use of advanced features, have
higher recognition accuracy and better robustness.

The object detector usually consists of two parts: the head, which is used to predict
object classes and bounding boxes, and the backbone, which is pre-trained on ImageNet.
Target detection tasks can be divided into target classification and target location. Target
detection methods can be divided into two-stage algorithm and one-stage algorithm.

The two-stage algorithm divides the target detection task into two steps. The single-
stage algorithm simultaneously classifies and regresses candidate anchor frame targets to
complete the detection task [12]. Table 1 shows the main convolutional network models
sorted by category.

Table 1. Object detection algorithm classification.

The Network Structure Classification of Network Light Weight Network

backbone network VGG, ResNet, ResNeXt, DenseNet SqueezeNet, MobileNet, ShuffleNet

neck network
additional layer Characteristics of the fusion

SPP, ASPP, RFB, SAM FPN, BiFPN, NAS-FPN, ASFF
one-stage algorithm RPN, SSD, YOLO, RetinaNet CornetNet, CenterNet, CentripetalNet
two-stage algorithm Mask R-CNN, Fast R-CNN, Faster R-CNN Reppoints
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The target detection task of the two-stage algorithm is divided into two parts: extract-
ing the region of interest (RoI), and then classifying and regressing the RoI. At present, exist-
ing networks include R-CNN, SPP-Net, Fast-RCNN [13], Faster-RCNN, Mask-RCNN [14],
Cascade R-CNN and so on. For example, Faster-RCNN, for the two-stage method, extracts
the target region from the RPN (region proposal network) regional candidate network and
then inputs the RCNN part of the convolutional neural network for target classification
and border regression. For Fast-RCNN, although the RPN [15] improves the accuracy of
the algorithm, it is also the biggest factor affecting real-time performance. In contrast, the
traditional region initialization algorithm Selective-search is simple in principle and fast
at generating candidate boxes, but it contains a significant number of redundant frames,
which increases the amount of network computation, and the accuracy is thus inferior to
that of the RPN [16].

The single-stage algorithm directly classifies and regresses the candidate anchor frames
without preselecting regions. As the name suggests, it uses another strategy: applying a
single neural network to the image. Typical models include the YOLO series, RefineNet,
SSD, etc. The YOLO algorithm combines the target classification task with the border
regression task and adopts the same loss function for training. Compared with the two-
stage method, YOLO has a huge advantage in computing speed. However, because
the candidate boxes of YOLO only have a fixed number and position, its target box re-
gression performance is weak. Therefore, the main goal of the subsequent versions of
YOLO (YOLOv2, YOLOv3, YOLOv4) became balancing the detection rate and accuracy
of the model [17].

The above-mentioned methods can be classified as algorithms based on anchors,
through which candidate boxes of different sizes and proportions are generated to solve
the multi-scale detection problem. The anchor mechanism separates the classification and
regression tasks of target detection. Firstly, the extraction network of the preselected frame
is trained through the preset anchor frame to realize the binary classification of the target
and background, and then the classification and regression tasks are carried out on the
basis of the preset anchor frame, which significantly improves the target detection accuracy.
However, due to the large number of anchors, the computation is aggravated, and many
anchor-related parameters need to be set, so the detection speed of this kind of network is
slow and the training process is difficult [18].

In general, a detector without an anchor is a one-stage algorithm. The Corner-Net
network is a typical example. Corner-net uses the idea of keypoint detection to solve the
problem of target detection. The network detects the keypoint information of the target in
the figure, namely the upper-left corner and lower-right corner of the target box. By turning
object detection into paired keypoint detection, the network eliminates the need to design a
region extraction network for generating anchor boxes. However, because Corner-Net has
a weak reference to the global information, the detection accuracy is not very high. The
subsequent upgraded network, Center-Net, learned from this, representing each object
with triplets [19].

In the object detection task, we can obtain the following four state quantities to evaluate
the model performance, and their state changes are shown in Figure 2:

• True positives (YP): correctly predicted by the model as positive samples;
• True negatives (TN): correctly predicted as negative samples by the model;
• False positives (FP): negative samples are wrongly predicted as positive samples

by the model;
• False negatives (FN): a positive sample is incorrectly predicted as negative by the model.
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In the field of target detection, it is usually necessary to box out the detected objects,
which requires the evaluation of the quality of the detection boxes, as measured by intersec-
tion over union. The following equation is expressed in terms of observed state quantities:

IoU = TP
TP+FP+FN (1)

For object detection tasks, the main indicators involved are precision, recall, average
precision (AP) and mean average precision (mAP):

precision = TP
TP+FP (2)

recall = TP
TP+FN (3)

In the process of observation, multiple groups of accuracy and recall can be obtained
for different confidence thresholds. A P-R (precision–recall) curve can be obtained by
taking recall as the abscissa and accuracy as the ordinate, and then integrating the curve
to obtain the area, which is the average accuracy AP of a single category. The mAP of the
target detector can be obtained by averaging the APs of multiple categories.

2.1.2. Target Tracking Algorithms:

Traditional tracking models use points of interest in time and space for tracking, but
they rely too much on low-level features such as intensity spikes and corners. Although
traditional algorithms can also achieve high-precision single-target tracking, they struggle
in real-time multi-target tracking. Due to the rapid development of flying-target detection
technology in recent years, the first test of tracking performance in multi-target detection
research was carried out, and owing to its success it became the leading detection technol-
ogy. The idea of using an existing target detector and matching optimization algorithm
to realize multiple-target tracking is formed on the basic principle of utilizing the target
detector to realize classification and orientation. Then, the target frame of the previous
frame is matched by the matching algorithm, and thus the tracking is realized [20].

The target tracking performance is mainly measured by the stability and accuracy of
target tracking and the main indicators are as follows:

1. ID Switch (IDSW): indicates the number of times that the tracking ID of the same
target changes in a tracking task;

2. Tracing fragmentation: the number of times the status of the same tracing target
changes from tracing to fragmentation to tracing in a tracing task;

Multiple-object tracking accuracy (MOTA):

MOTA = 1− ∑t(FN+FP+IDSW)
∑1 GT (4)
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Here, GT refers to the total number of truth boxes in a frame.

2.2. Method

The core purpose of our study was to achieve an effective and low-cost UAV tracking
method. Among multiple detection and tracking models, YOLOv4 and DeepSORT best
suited the accuracy and speed requirements of the multi-target detection and tracking
network. The network structure of YOLOv4 is relatively simple and can be conveniently
applied to industrial landing. DeepSORT can obtain better experimental results at a lower
cost. In order to solve the problems of large target scale change, mutual occlusion and
fast speed in UAV detection and tracking, we modified the network structure and loss
function of YOLOv4 to some extent, optimized the DeepSORT network matching strategy
and improved the data set training strategy. Firstly, multi-target real-time tracking was
realized on the GPU platform.

2.2.1. Target Detector

YOLOv4 is the latest official sequel of the YOLO series [21]. On the basis of YOLOv3,
the author has adopted various optimization strategies in the field of object detection in
recent years to improve the backbone network, activation function, network model training,
data augmentation and loss function to different degrees. Although it does not contain too
many theoretical innovations, the model ingeniously combines all kinds of target detection
tricks to achieve new heights of detection speed and accuracy. Compared with previous
generations of models, the improvement of YOLOv4 mainly includes the following parts:

The backbone network part in YOLOv3, the Leaky ReLU activation function, was
replaced by Mish, whose expression is:

y = x× tanh(ln(1 + ex)) (5)

Mish considers the regularization of nonmonotone neural activation function. First of
all, Mish is forward-unbounded and therefore can avoid vanishing gradients, and Mish
functions are smooth everywhere, which helps the network to obtain better information in
training, thus improving accuracy and generalization ability.

Cross-stage partial (CSP) was used to replace the residual module, which mainly aims
to reduce the computational burden when enhancing gradient training. These optimizations
resulted in a better backbone network, CSPDarknet53.

The neck part of the object detection algorithm is mainly used to integrate feature maps
of different scales, so that the network can not only learn the deep classification features, but
also attain accurate detection and positioning. This part of YOLOv4 selects the combination
of SPP + PAN [22]. The SPP network can accelerate the reasoning calculation of the model,
which is beneficial in solving the problem of large size differences of the target. PANet is a
target segmentation model based on Mask-RCNN that was developed by Tencent Youtu’s
team. YOLOv4 refers to the network’s neck structure. In YOLOv4, the output of the last
three layers of the backbone network is mainly fused with its characteristics. Compared
with FPN, PAN adds a step called bottom-up fusion, and in the PAN of YOLOv4 the
addition operation combined with a feature map is changed to a multiplication operation.
FPN’s structure pays more attention to the top-down strong classification features, while
the PAN structure in YOLO pays more attention to the bottom-up strong localization
features. Such strong combination further improves the network capability of YOLOv4 [23].
The network structure of FPN and PAN is shown in Figure 3.
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Data processing: Compared with previous data enhancement operations, such as
cutting, rotation and mirroring, the authors implemented efficient data enhancement
strategies in YOLOv4. For example, image mixing (Mixup), in which two images are
proportionally mixed, that is, image fusion, is conducive to the model’s learning of deep
features. CutMix cuts objects in an image and then combines them with other images.
CutMix operators artificially add blocks to increase the training scene and stimulate the
model to learn local features. Mosaic enhancement (Mosaic), which combines four training
shapes of a certain proportion into one image, enables the model to recognize objects smaller
than the normal size, and blur adds a blur effect to an image. The data enhancement
operation enables YOLOv4 to increase its detection capability by 1.6% with almost no
reduction in network detection speed.

The loss function, or CIOU loss, was introduced in YOLOv4 to replace MSE. The
formula of CIOU is as follows:

LCIOU = 1− IoU(A, B) + ρ2(Actr ,Bctr)
c2 + a·v (6)

v =
4

π2 (tan−1 wgt

hgt − tan−1 w
h
) (7)

a = v
(1−IoU)+v (8)

Included intersection over union (IoU) is calculated as follows:

IoU(A, B) = A∩B
A∪B (9)

where ρ2(Actr, Bctr) refers to the Euclidean distance between the center of two rectangular
boxes, c2 is the diagonal length of the smallest rectangle containing A and B, wgt and hgt

are the true frame’s width and high, w and h are the width and height of the predicted
box and ν is the loss function of the punishment. When the real box’s and predicted box’s
width are highly consistent, this does not work.

In the UAV target detection task targeted by this topic, we adjusted the model to a
certain extent according to the characteristics of the UAV image. The improved model is
shown in Figure 4 below.
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The YOLOv4 network modification, as shown in Figure 5, removes the third predicted
output of YOLOv4 to satisfy the requirement of the multi-scale target detection task. The
three groups were used to detect the branch and three-layer structure of PAN, but no
single human–machine objective was used. The output of the last layer of the target
detection output field is too large and so the image is not as difficult to process, does
little to promote model performance and also increases the operation pressure; therefore,
it can be deleted [24].
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The data preprocessing augmentation operation is shown in Figure 5. Sometimes the
whole fuselage cannot be displayed because of the occlusion during the flight of UAV. To
solve this problem, we carry out random erasure operation on the images in the training
set, randomly select a rectangular area in the image area and replace pixels with random
values. Such operation can improve the generalization ability of the model and strengthen
the learning of local feature information of network targets in the training. At the same
time, the robustness of the model to noise and shielding is enhanced.
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The loss function modification, the YOLOv4 loss function, consists of three parts:
positioning loss, classification loss and confidence loss. Since UAV targets are mainly small-
and medium-sized targets, in order to improve the training emphasis of the model on small
target objects, the weight coefficient (2− wi × hi) was added before the positioning loss.
The smaller the target, the greater the corresponding positioning loss [14]. The revised
positioning loss is as follows:

Losscoord = λcoord
s2

∑
i=0

B
∑

j=0
1obj

ij (2− wi × hi)[(xi − x̂i)
2 + (yi − ŷi)

2

+(wi − ŵi)
2 +

(
hi − ĥi

)2
]

(10)

2.2.2. Target Tracker

Simple Online and Real-Time Tracking, published in 2016, proposed adding traditional
algorithms, such as the Hungarian algorithm and Kalman filter, on the basis of the original
detector [25]. However, it achieved the best target-tracking performance at that time. The
SORT algorithm flow is shown in Figure 6 below.
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Compared with the SORT algorithm, the biggest difference of DeepSORT is that it
adds a convolutional network to learn the surface features of the target, which is conducive
to improving the stability of the tracking process and greatly reducing the ID switching
frequency of the tracking target. The basic structure of DeepSORT is similar to that of SORT,
which is divided into two parts: estimation model and data association. DeepSORT can
be divided into three steps. In the first step, a Kalman filter is used to predict the current
frame trajectory; the second step is to use the Hungarian algorithm to match trajectories
and detection boxes, including cascade matching and intersection ratio matching. In the
third step, Kalman filter updates the tracking information [26].

Kalman filtering is an algorithm that uses the state equation of a linear system to
optimally estimate the state of a linear system through the input and output observations of
the system. State estimation is an essential part of the Kalman filter. In general, quantitative
inference of a random quantity based on observed data is an estimation problem, especially
the state estimation of dynamic behavior, which can realize the estimation and prediction
of the real-time operation state. In order to express the relationship between two state
quantities, we introduced Mahalanobis distance and cosine distance.
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Mahalanobis distance represents the distance between a point and a distribution and
the covariance matrix is usually used to measure the similarity of two random variables
from the same distribution. The formula is as follows:

d(1)(i, j) =
(
dj − yj

)TS−1
i
(
dj − yj

)
(11)

When the moving target is regular, the matching effect of Mahalanobis distance is
excellent. For a target with high mobility, such as a UAV, it is difficult to make a match,
invalidating the Mahalanobis distance association and resulting in ID switching. In this
case, we need to introduce a new metric, cosine distance:

d(2)(i, j) = min
{

1− rT
j r(i)k

∣∣∣r(i)k ∈ Ri

}
(12)

When the Kalman filter prediction value is uncertain, DeepSORT will preferentially
select IoU matching.

DeepSORT is designed to realize the re-identification function of pedestrians. In UAV
monitoring, we summarize the possible problems:

1. The trajectory matches the detection box. For slow-moving objects between the front
and back frames, the detector can successfully detect them and then the tracking
can be realized;

2. The detection box does not exist, or the detector is missed. There is a trace, but the
detection box cannot be matched; the detector performance thus needs to be improved
to reduce the rate of missed detection;

3. The trajectory does not match the detection box and the UAV target moves too fast, so
it flies out of the field of view, causing matching failure;

4. The two detection boxes overlap and there is occlusion between the targets, but the
minimum cosine distance of the special diagnosis map can be calculated by cascading
matching in DeepSORT to achieve re-recognition.

We also adapted the DeepSORT model to address the above issues. In order to avoid
the failure of cascade matching and IoU matching in DeepSORT, the Hungarian algorithm
was supplemented with traditional Euclidean distance to enhance the persistence of UAV
target tracking. The formula is as follows:

d(i, j) = ρ
(
xj − xi, yj − yi

)
(13)

Set the threshold as dmax = 100, and match when d(i, j) ≤ dmax; otherwise, delete the
predicted value, treat the observation box as a new target and create a new trajectory. The
structure of the improved DeepSORT algorithm is shown in Figure 7.

2.3. Dataset Creation

Since there is no publicly available UAV dataset at present, we wrote a crawler program
to download 3200 UAV images with rich backgrounds and in different categories on the
Internet and annotated them, exporting the annotated data in the VOC2007 format [27] and
obtained JPG image data and XML annotated data. The final UAV monitoring dataset is
shown in Table 2.

Table 2. UAV detection dataset.

Black Four Rotor White Four Rotor Yellow Single Rotor Red Single Rotor Total

873 828 650 849 3200
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The obtained UAV dataset cannot be directly used for the training of the YOLOv4
model, because the reading interface of the YOLOv4 model for annotation information
is a TXT file, in which each behavior contains annotation box information, including
category ID, the normalized value of center point coordinates of an annotation box, the
normalized value of the annotation box width and the normalized value of the annotation
box height [28]. Therefore, XML information needs to be transformed and the conversion
formula is as follows:

x′ = (xmin+xmax)
2W (14)

y′ = (ymin+ymax)
2H (15)

w′ = w
W (16)

h′ = h
H (17)

where W and H are the width and height of the picture, respectively, and w and h are the
width and height of the target box, respectively.

Finally, the number of converted TXT texts and pictures reached 3200, and the train-
ing set and test set were divided according to the ratio of 9:1 to obtain the training
set and test set.

DeepSORT’s convolutional network is originally designed for pedestrian re-recognition,
so it contains the surface feature information of pedestrians. It is thus necessary to make a
relevant UAV re-recognition dataset for re-training. Based on the converted target detection
dataset, a program was written to individually cut and save the target box in the image,
imitating the Market-1501 dataset, as shown in Figure 8.
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Figure 8. Construction method of UAV tracking dataset.

The cropped image is named according to the category plus ID and the target of the
same category is placed in the same folder to obtain the UAV tracking dataset.

3. Experiments
3.1. Training and Analysis of Model

The environment required by target detector training was set up on the Ubuntu18.04
server platform. The server was equipped with a 3090 graphics card and the Pytorch1.8
framework was used for model training. The training parameters were set as follows: there
were 3200 images in the UAV target detection dataset, 2980 of which were classified as the
training set and 320 as the verification test set. The size of the input image for network
training was 720× 720 and the size of the test image was also 720 × 720 for control variable
verification. The batch size of each training round for the UAV detection model was 16 [29],
and a total of 300 iterations of training were carried out. The training/validation loss
function curves are shown in Figure 9 below. (The horizontal axis represents the number of
training sessions and the vertical axis represents the losses).

The 300 iterations of training for the UAV detection model took 10.5 h in total. Com-
paring the training loss function curve with the verification loss function curve, the border
loss, classification loss and confidence loss of the two curves decreased with the increase
in the number of iterations, indicating that the training strategy of the model was correct
and no fitting phenomenon occurred. When the number of iterations reached 270, both
curves tended to be stable and finally reached the minimum value at 300 iterations. The
UAV target detection model was successfully trained.
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According to the same strategy as that described above, the UAV detection model was
trained and the results are shown in Table 3:

Table 3. Model checking performance comparison.

Model YOLOv4 YOLOv4
Double Branch Detection

YOLOv4
Data Augmented UAV Target Detector

Training time 10.5 h 10.4 h 10.6 h 10.5 h

mPA (IoU = 0.5) 0.968 0.959 0.990 0.988

Speed 64FPS 69FPS 64FPS 70FPS

From the above table, it can be seen that, for UAV targets, reducing the target de-
tection branch helps to improve the speed of model inference, which increases the speed
by 5FPS, and the performance loss caused by it is very small, less than one percent-
age point. The new data augmentation strategy can effectively improve the mAP of
UAV target detection without affecting the reasoning speed. Our modification strategy
allows the detection accuracy and detection speed of the model reach new heights, indi-
cating that the modification direction is correct. The detection effect in GPU environment
is shown in Figure 10.

We then input the UAV tracking dataset obtained through previous processing into the
UAV target tracking model for training. The original network training input was 64 × 128,
because most pedestrian images are 1:2 in size, while the image size in the previously
generated UAV dataset was closer to 1:1, so the network training parameter was set as
128 × 128. The training batch size was set to 12 and 80 iterations to obtain the training
curve shown in Figure 11. (The horizontal axis represents the number of training sessions
and the vertical axis represents the losses.)
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Figure 11. DeepSORT training loss function and TOP1 error rate.

As can be seen from the above figure, in the training process, the training loss was
generally consistent with the verification loss, indicating that the data distribution was
reasonable, the network did not overfit, the loss function had a correct downward trend
and the curve region was smooth at 20 iterations. The TOP1 error rate decreased gradually
in the training iteration, and was almost zero at approximately 20 iterations. In conclusion,
the target tracking model was successfully trained.

3.2. DPU Deployment of Target Detector

In order to verify the effectiveness of the improved algorithm, we deployed the trained
target detection model on the DPU for verification. The DPU selected in this subject is
the ZCU104 developed by Xilinx Company for AI algorithm deployment. The model is
quantified, pruned, compiled and deployed with the help of Vitis-AI development tool, and
the real-time detection system of UAV target is finally built. Figure 12 shows the algorithm
deployment process.
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Figure 12. Flowchart of algorithm DPU deployment.

We connected the ZCU104, which deployed the target detection model, to the camera,
and carried out the UAV detection in the outdoor complex environment, evaluated the
target detection accuracy and speed of the development board and obtained that the
detection accuracy of the algorithm reached 87.0% in the development board environment,
and could run at 38FPS. Considering the calculation power of ZCU development board,
the real-time detection speed can still be barely achieved under the premise of maintaining
high detection accuracy, which proves the feasibility of the algorithm in this subject. The
DPU detection effect of the algorithm is shown in Figure 13.
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3.3. Experimental Results

The trained target detection model and target re-recognition model were combined for
UAV target tracking. The setup of this experiment, which did not use a network training
video to test the tracking performance of the algorithm, is shown in Figure 14. For the
video studied, using the three target drones, complex phenomena occurred: the unmanned
aerial vehicle (UAV) flight pattern disappeared, the goals overlapped, and the target flew
out of sight, several significant problems already seen in UAV tracking.
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In the previous chapters, Euclidean distance was added into the target tracking model
to assist tracking according to the characteristics of UAV targets. In order to test the
improvement effect of the target tracker, we combined the improved target detection model
with the target tracking model before and after the improvement to track the UAV in the
same video. In addition, two models, YOLOv3 + DeepSORT and CenterNet + DeepSORT,
were added as comparison experiments in order to verify the performance superiority of
our proposed model. The performance pairs of each model are shown in Table 4. (FM is the
number of target tracking interrupts; GT is the total number of theoretical frames; IDSW is
the number of target ID switching; MOTA is the precision of multi-target tracking.)

Table 4. Comparison of model performance before and after improvement.

Model FPS FP FN FM GT IDSW MOTA

Target Detector + DeepSORT 69 0 90 13 1591 11 0.9365
Target Detector + Target Tracker 69 0 85 10 1591 6 0.9435

YOLOv3 + Target Tracker 54 0 87 28 1591 8 0.9215
CenterNet + Target Tracker 25 0 503 13 1591 31 0.66436

4. Discussion

It can be seen from the test results of the target detector shown in Table 2 that, for
UAV targets, reducing the target detection branch helps to improve the speed of model
inference, which increases the speed by 5FPS, and thus, the performance loss is very
small, less than one percentage point. The new data augmentation strategy can effectively
improve the mAP of UAV target detection without affecting the reasoning speed. Our
modification strategy allows the detection speed and accuracy of the model to reach new
heights, indicating that the modification is effective.

As can be seen from the test results of the overall model shown in Table 3, adding
Euclidean distance to the target tracking model as a supplement to cascading matching
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effectively improves the tracking performance of the target tracker by 0.9% and improves
the ID switching problem. By comparing with the performance of YOLOv3+DeepSORT
and CenterNet + DeepSORT, we can also see that the tracking speed and accuracy of our
model have been greatly improved, which is enough to prove that the direction of our
model selection and modification is correct. Overall, the improved detection-tracking
model achieves the target tracking performance of 94.35% accuracy while achieving the
real-time speed of 69FPS.

5. Conclusions

Aiming at solving the monitoring problem for small UAVs, a feasible and effective
solution is proposed in this study. With the high-speed data transmission of 5G cameras,
an improved “detection-tracking” model composed of a target detector and a target tracker
was developed, which could monitor the target accurately and at a high speed. Additionally,
the modification of the corresponding module of the model makes the model more suitable
for monitoring small aircraft with a slow flight speed, a small size and a complex flight
environment compared with the traditional tracking model. It can also be seen from the
experimental results that the speed of this model was significantly improved without
reducing the detection accuracy and it can effectively deal with the common problems
of multi-target tracking, such as target loss and mutual occlusion. In order to verify the
implementability of the model, we deployed the algorithm on a DPU connected with
a camera for testing and achieved high accuracy and identification speed. In addition,
the DPU with the detection model deployed can be applied in more diverse scenarios.
For example, it can be used as a module of UAV to realize monitoring in more complex
environments. To sum up, the model proposed in this study can effectively realize the
real-time recognition and tracking of multiple small UAV targets simultaneously.
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