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Abstract: Eucalyptus plantations play an important role in the timber supply and global warming
mitigation around the world. Forest age is a critical factor for evaluating and modeling forest
structure (e.g., diameter at breast height (DBH), height (H), aboveground carbon stocks (ACS)) and
their dynamics. Recently, the spatial distribution of forest age at different scales based on time series
remote sensing data has been widely investigated. However, it is unclear whether such data can
effectively support the simulation and assessment of forest structure, especially in fast-growing
plantation forests. In this study, the physiological principles in predicting growth (3-PG) model
was firstly optimized and calibrated using survey and UAV lidar data at the sample plot (SP) scale,
and was then applied at the forest sub-compartment (FSC) scale by designing different simulation
scenarios driven by different forest age data sources and adjustments. The sensitivity of the simulated
forest structure parameters to forest age was assessed at the SP and FSC levels. The results show
that both the survey forest age data and the remote-sensing-derived forest age data could accurately
estimate the DBH, H, and ACS of eucalyptus plantations with the coefficients of determination (R2)
ranging from 0.87 to 0.94, and the relative root mean square error (RRMSE) below 20% at SP level. At
the FSC level, the simulation results based on remotely sensed forest age data are significantly better
than FSC forest age data from surveys by forestry bureaus, with R2 of ACS 0.7, RMSE 9.12 Mg/ha,
and RRMSE 28.24%. The results of the sensitivity analysis show that the DBH, H, and ACS show
different degrees of variation under different adjusted forest ages at SP and FSC level. The maximum
difference in ACS is 82.91% at the SP scale if the forest age decreases 12 months and 41.23% at the
FSC scale if the forest age increases 12 months. This study provides an important reference for future
studies using forest age data obtained by remote sensing to drive the forest carbon model in a large
spatial scale.

Keywords: 3-PG model; eucalyptus; forest age; forest structure; remote sensing; sensitivity

1. Introduction

Forests as an important component of the terrestrial carbon pool play a vital role in reg-
ulating regional and global carbon balances and slowing down the increase in atmospheric
CO2 concentration [1]. A lot of research work was performed to quantify the carbon stocks,
carbon density, and potential carbon sink of forest ecosystems [2]. Accurate estimation of
these carbon variables of forest ecosystems is an important goal pursued by ecologists and
geographers, and also an important basis for achieving carbon neutralization.

Forest age is an important stand parameter of the forest ecosystem, which not only
represents the planting time and succession stage of trees or stands, but also has important
impacts on the physiological and ecological parameters in the carbon and water cycle
models [3]. It is a critical factor that determines the temporal and spatial distribution of
carbon pool and flux of the forest ecosystem, and corresponding management measures in
forest plantations [4]. Previous studies show that net primary productivity (NPP) increases
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with the increase in stand age in the early stage of the forest ecosystems, reaches the
maximum in the middle stage after canopy closure, and gradually declines in the later
stage [5]. This relationship makes most carbon cycle variables, such as biomass, carbon
stocks, gross primary productivity (GPP), and net ecosystem productivity (NEP), closely
related to forest age [6,7]. Therefore, forest age is the key data to accurately estimate and
simulate the carbon uptake dynamics of the forest ecosystem [8], and many carbon cycle
models take forest age as known information [9,10]. However, there is often a lack of
accurate, timely, and high-spatial-resolution information on the spatial distribution of
forest age in regional forest carbon cycle research, which makes it difficult for the models
to conduct forest carbon stock simulation and estimation [11].

Traditionally, the way to obtain forest age was mainly through forest inventory at
sample plot (SP) by inquiring, professional experience, or tree cones [12], which were very
costly, long cycle, and easily subject to geographical restrictions. It is difficult to obtain
large-scale and long-term spatial forest age data. Taking China as an example, a three-
level forest resources inventory system has been established: national forest continuous
inventory (NFCI), forest management planning inventory (FMPI), and forest operation
design inventory (FODI) [13]. FODI is a very detailed survey conducted at the smallest
forest management compartment (FSC), and is the only spatial data of forest age from a
manual survey. However, the survey is conducted every five years, meaning the forest
age information is relatively lagged and full of uncertainties. Satellite remote sensing has
the advantage of continuous monitoring of land surface change information over long
distances and large areas. It has become an important and effective means to obtain the
spatial distribution of forest age [14]. There are two main strategies to retrieve forest age
from remote sensing data. One is to establish a forest age estimation model based on single
or multi-period remote sensing data (e.g., spectral, vegetation index, tree height product),
combining with ground survey, and meteorological and other data. This method has
been used to extract the spatial distribution of forest age at global, national, and regional
scales [8,11,14–16]. The second is to extract forest disturbance year based on time-series
remote sensing data change detection [17,18]. Recently, Li et al. [19] proposed a random
localization segmentation-based method to map the spatial distribution of successive
plantation generation and forest age for these short-rotation eucalyptus plantations based
on time series Landsat data. These remote-sensing-based forest age products provided the
valuable input data for forest ecosystem carbon models. However, due to the limitations
of remote sensing data and algorithms, such as cloud snow, noise, spatial and temporal
resolution, and saturation of remote sensing signals [20], there are often some errors and
uncertainties in the obtained forest age data, with R2 ranging from 0.7 to 0.92 and RMSE
ranging from 1.2 to 2.91 years, especially in tropical and subtropical regions [3,19,21].

The carbon cycle model based on tree growth and ecological process is an effective
method to simulate forest growth, biomass, and carbon stocks [22,23]. It can be grouped
into two categories: patch-scale carbon cycle model and regional-scale carbon cycle model,
according to the simulation spatial scale [24]. The patch-scale carbon cycle model can be
further divided into individual tree-based and stand-based carbon cycle models. The prior
can simulate the growth and mortality of each tree, and predict the diameter distribution
of the stand. These models usually require lots of input data, computationally intensive,
and most are conducted locally [23]. The stand-based patch carbon model can simulate
the forest carbon cycle at different time scales (day, month, or year) by assuming that the
trees are spatially uniformly distributed in a stand [23]. The stand-based carbon models,
such as spatial production allocation model (SPAM), the individual-based forest landscape
and disturbance (iLand) model, and 3-PG model [25–27] are widely used to simulate forest
growth and carbon cycle, and make management measures plans [28–30]. These models
can be easily extended to the regional scale [24].

The roles of forest age in the forest carbon cycle research mainly focus on the use of
forest age to analyze the impact of forest management on carbon sinks and to improve
carbon estimates in the terrestrial carbon models [1]. The utilization of forest age data
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can effectively improve the accuracy of the simulations, but the uncertainty in the forest
age might also bring much ambiguity to the carbon cycle model, and few studies have
assessed the impact of such uncertainties on the carbon simulation results, especially for the
remote-sensing-based forest age data. For example, many researchers conducted sensitivity
analyses on different parameters in 3-PG models for variety research purposes, including
soil fertility (FR), age at canopy closure (fullCanAge), maximum canopy quantum efficiency,
maximum canopy conductance, aWS (constant in stem mass v diam. relationship), and
nWS (power in stem mass v diam. relationship) [22,31]. Few studies selected stand age
parameters for sensitivity analysis, because most of the studies performed their research at
plot level with accurate and known forest age.

Eucalyptus is a globally important plantation tree species with fast growth rate, short
harvest rotation, and strong carbon sequestration capacity [32]. Eucalyptus was introduced
into China in 1890 and has been planted for more than 130 years, making China the second
largest plantation country in the world [33]. Eucalyptus plantations have greatly alleviated
the shortage of timber supply from plantation forests in China, but the very short rotation
cycle (about 6 years) and intensive management have led to many ecological problems [34].
Some studies show that the large-scale plantation of eucalyptus plantations has resulted
in soil fertility degradation and soil erosion, limited growth of understory vegetation,
and decline in biodiversity, while some studies show that eucalyptus plantations have
an important role in promoting the ecological environment [33,35,36]. In the context of
achieving the goal of carbon neutrality, people pay more attention to the carbon stock
and carbon sequestration potential of eucalyptus, and accurate estimation of the carbon
dynamics of eucalyptus has become an important issue.

This study selected the eucalyptus plantations in Yuanling Forestry Farm, Zhangzhou
City, Fujian Province, China as the research object. We comprehensively used SP survey
data, forest inventory data, meteorological data, UAV lidar data, forest age obtained based
on time-series remote sensing data, and a 3-PG model to simulate the forest structure of the
study area, and assess the simulation accuracy. Specifically, the following two questions
remain to be answered: (1) Can the forest age data obtained from remote sensing data
support the 3-PG model to accurately simulate forest structural parameters at the SP scale
and FSC scale? (2) How sensitive are the simulation results of the 3-PG model to the forest
age data at the two scales?

2. Materials and Methods
2.1. Study Area

The study area is located in Yuanling State Forestry Farm in Yunxiao County, Zhangzhou
City, Fujian Province, China (Figure 1). It has a typical southern subtropical maritime mon-
soon climate with an average annual temperature of 21.2 ◦C and annual precipitation of
1730.6 mm. The planting history of the study area in recent decades can be summarized as:
rubber trees was planted in the beginning of the 1980s, and were gradually replaced by
fruit trees (such as longan) from 1993 due to the declined economic value of rubber trees,
and eucalyptus was introduced around 2005, and then widely planted in the study area.
Some Chinese fir and Pinus elliottii forests were also gradually replaced by eucalyptus
during the period 2007–2010. The main species of eucalyptus were eucalyptus grandis x
urophylla and eucalyptus urophylla S.T. Blake.
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9–12 years (Table 1). 

We investigated 17 eucalyptus plots with an area of 20 m × 20 m in the study area. 
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second and third survey, and some plots were only measured for DBH. Finally, we 

Figure 1. Location of the study area, spatial distribution of sample plots, and forest sub-compartment
of eucalyptus. The base map is a true color composite of Sentinel-2 image.

2.2. Data collection and Processing
2.2.1. Field Survey Data

The survey data include the FSC data carried out by government departments in 2017,
and SP data surveyed in 2021. The main information of the FSC data includes average
diameter at breast height (DBH), average tree height (H), stand age, survey date, stand
volume per hectare, number of trees per hectare, elevation, depth of soil, etc. The FSC
data were surveyed in 2017 and are the latest available forestry survey data. We chose
140 eucalyptus FSC, a total area of 379.2 ha, to carry out our simulation with the 3-PG
model (Figure 1). The forest age of these FSC in 2017 was mostly concentrated in 0–4 and
9–12 years (Table 1).

We investigated 17 eucalyptus plots with an area of 20 m × 20 m in the study area. The
forest age of the survey plots ranges from 1 to 13 years, the average DBH is 3.62–16.26 cm,
and the average H is 4.02–19.69 m. We measured and recorded DBH and H for each
tree with DBH greater than 5 cm in the plots. The planting time, management history,
and environment information were also recorded through asking the owner. The model
developed by [37] was used to calculate the biomass of each organ of each tree (Table 2).
The biomass of each tree was summed to obtain the aboveground biomass of SP, and then
converted to ACS by multiply carbon coefficient (0.4764) [37]. Considering eucalyptus
has a very rapid growth rate and 3-PG model can simulate the forest structure monthly,
the SP were surveyed about every six months (January 2021, July 2021, and December
2021). The data from the three surveys were used to verify the simulation accuracy of
the model at the SP level. Some plots were harvested when conducting the second and
third survey, and some plots were only measured for DBH. Finally, we collected a total of
44 DBH observations and 41 H observations for these plots after the three surveys.
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Table 1. Basic information of the 140 eucalyptus FSC.

Age (Year) Number (n) Mean DBH (cm) Mean H (m) Total Area (ha)

≤4 55 <9.5 2.5–10.8 105.38
5–8 26 10.9–17.6 12.3–22 115.75

9–12 53 11.5–24.4 14.3–29.2 143.25
13–17 6 20.8–24.6 21.7–28.3 14.82
Total 140 0–27.6 2.5–29.2 379.2

Table 2. Model for estimating aboveground biomass (stem, branch, bark, and foliage) of eucalyptus.

Organ Fitting Equation R2

Stem W = 0.0259 × DBH2.8762 0.978
Branch W = 0.0263 × DBH2.2471 0.887

Bark W = 0.0539 × DBH1.7802 0.949
Foliage W = 0.1785 × DBH1.1753 0.871

2.2.2. Meteorology Data

We calculated monthly minimum temperature (◦C), maximum temperature (◦C),
average temperatures (◦C), and precipitation (mm) based on the hourly recorded data
from 2008–2021 that were acquired from the meteorological station nearby the study area.
Considering some FSC have an older forest age, the temperature and precipitation data
were extended to 1997–2007 using the data provided by National Aeronautics and Space
Administration (NASA). Solar radiation data from 1997 to 2021 were also acquired from the
website (https://power.larc.nasa.gov/data-access-viewer/, accessed on 10 January 2022)
due to a lack of local observations. These data have been proven to be accurate enough to
provide reliable meteorological and solar radiation data in areas where site observations are
sparse [38,39]. Compared with the data of the same year from the meteorological station,
the two source data products have high consistency and can be used together for the model
simulation.

2.2.3. UAV Lidar Data

The UAV lidar data were acquired in July 2021 with an average point cloud density of
60 points/m2. The process of lidar data mainly includes filtering, denoising, normalization,
and generating CHM data [40]. The Lidar360 software was used to remove noise in the
point cloud data, such as bird points, low points, and utility poles. The discrete point
cloud echo points were divided into ground and non-ground points. The ground points
were used to generate a digital elevation model (DEM) by inverse distance weighted
interpolation method. All non-ground points were interpolated to a digital surface model
(DSM) with a spatial resolution of 1 m. Then, the canopy height model (CHM) was
obtained by subtracting DEM from DSM. The lidar data obtained in July 2021 and sample
plot data surveyed at the same time were used to establish ACS prediction model, that is,
17 observations were used in the model. Stepwise regression method was used to establish
a carbon stock estimation model with the variables from the CHM acquired from lidar with
a resolution of 20m × 20m (the same as plot size) [41]. Two variables (mean CHM and
skewness) for ACS prediction were identified using stepwise regression method. Then,
leave-one-out cross-validation was used in the evaluation processes, with 16 samples used
to train the model, and the established model was used to predict the ACS value of the
one observation left out of the model. The validation shows that the model works quite
well, with R2 (coefficient of determination), RMSE (root mean square error), and RRMSE
(relative root mean square error) values of 0.87, 8.73 Mg/ha, and 18.72%, respectively. The
average H and average ACS of each FSC were calculated based on the modelled data, and
used to assess the 3-PG model simulation results (Figure 2a,b).

https://power.larc.nasa.gov/data-access-viewer/
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2.2.4. Forest Age Data from Landsat Time Series Data

The forest age data of each FSC based on Landsat-based forest age data were provided
by [19] (Figure 2c). The forest age of short rotation eucalyptus plantations was developed
using a random localization segmentation algorithm and all available Landsat time series
data. The Chow test and random forest continuous classification were used to obtain the
spatial distribution of eucalyptus forest age at 30 m × 30 m spatial resolution with RMSE of
13 months in 2021. In our study area, the forest age error was about 12 months compared
with the survey data. The simulation unit of this study was at FSC scale, and the average
age of each FSC was obtained through zonal statistics.
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2.3. 3-PG Model and Parameter Setting

The 3-PG model is a physiological–ecological process model based on allometric
equations and a monthly time scale [27]. The model has a relatively simple structure and
few input parameters [42]. It can simulate many tree species including eucalyptus, and is
widely used in Australia, Brazil, Canada, and China [30,43–45]. The model was initially
developed to simulate even-aged evergreen forest species, and now is able to simulate
deciduous, uneven-aged, and mixed forest, and assess the forest growth under different
management measures [46]. Many studies utilized the model to simulate forest growth
of eucalyptus, Masson pine, and larch at the plot level [31,47,48]. The model has four
submodules: the light sub-model, the biomass production and allocation sub-model, the
water balance sub-model, and the mortality sub-model. More details about 3-PG model
are provided in [27,45]. The tree growth was simulated at monthly intervals by inputting
monthly meteorological data (maximum and minimum temperatures, average temperature,
precipitation, and solar radiation), site conditions (latitude, soil class, and soil fertility),
planting time, and initial organ biomass, management measures, and parameters for the
tree species. The model can output many variables such as GPP, NPP, DBH, H, organ
biomass (monthly), etc. The DBH, H, and ACS (calculated from biomass) were selected
for output and evaluation in this study. All the simulations were performed with the r3PG
package in the R platform [49].

2.3.1. Model Parameters

The 3-PG model provided a complete set of parameter values for eucalyptus, which
was a very useful reference for the parameter setting of this study. For the stem biomass
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parameters, the key parameters aWS (0.0259) and nWS (2.8762) for eucalyptus in our
study area were obtained by fitting the allometric equation WS = aWS × DBHnWS (WS
is the stem biomass) (R2 = 0.9998) based on the DBH and stem biomass obtained from
the survey data. The model simulation for each FSC started from its planting time, and
the initialized biomass values of stem, root, and leaf were set to 1 Mg/ha, 2 Mg/ha, and
0.5 Mg/ha, respectively [50]. Soil class and soil moisture data were acquired by the Second
National Soil Survey data, and other parameters were set following the reference [51]. See
Appendix A Table A1 for details.

2.3.2. Simulation Scheme Design

Figure 3 shows the overall flowchart of the study. We used SP data, FSC data, Landsat
age data, meteorological data, and site conditions to calibrate and drive the 3-PG model.
Then, the surveyed forest age and forest age from Landsat were used to drive the 3-PG
model and simulate the DBH, H, and ACS of eucalyptus plantations at the plot scale, and
17 sample plots with three sets of investigation data were used for validation. The impacts
of historical management information on the accuracy of simulation results were also
evaluated. Similarly, the FSC age and forest age from Landsat were used to simulate the
DBH, tree height, and carbon storage of the eucalyptus plantations at the FSC scale, and
validated by UAV lidar data. Finally, we explored the sensitivity of the simulated forest
structure to the forest age on two scales.
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Simulation Scheme Based on the SP Level

The carbon stocks for the 17 sample plots were simulated using the parameterized
3-PG model based on the surveyed forest data and forest age data from Landsat (Figure 4).
The sample plot was chosen to represent a certain area that had similar planation history
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and management. The forest age information of the plot was obtained by extracting the
age of the pixel where the plot was located in the Landsat pixels. The impacts of historical
management information on the simulation results were also evaluated by considering the
selective cutting or not (acquired during the survey). It was difficult for Landsat time-series
data to accurately detect the thinning activities, so the management was not considered in
the forest age from Landsat-based simulation. All the biomass variables from the model
were conversed to carbon stock by multiplying the carbon coefficient and obtaining the
ACS. The simulation accuracy of three forest structure variables (DBH, H, ACS) were
assessed by the survey data.
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Simulation Scheme Based on the FSC Level

The simulations were then carried out for the 140 FSC of eucalyptus plantation. The
following three scenarios were designed to evaluate the impact of forest age data on the
carbon stocks simulation.

(a) Simulation based on FSC age information. The forest age from 2017 FSC survey
data was used as the input data to drive the 3-PG model. Considering that FSC age was
obtained from 2017, and the validation data from lidar were obtained in July 2021, some
FSC may have been harvested during the period, but the FSC data may have lagged.
Therefore, the FSC were divided into two groups for evaluation: FSC planted before 2015
and FSC planted after 2015 (eucalyptus plantation harvested age mainly ≥ 6 years in the
study area);

(b) Simulation based on forest age data from Landsat. The forest age data (introduced
in Section 2.2.3) extracted from Landsat time-series data in January 2021 were used as
the input to drive the 3-PG model. It should be noted that the simulation was performed
for the 140 FSC, but not for each pixel due to lack of high spatial resolution data of soil,
meteorological, tree density, etc.;

(c) Simulation based on the adjusted forest age data. As the forest age based on remote
sensing data has many uncertainties, we adjusted the forest age by ±3 months, ±6 months,
and ±12 months to test the sensitivity of the model simulation results for both the SP and
FSC.2.3.3. accuracy evaluation.

The simulated ACS, DBH, and H of SP were evaluated by the surveyed data. The
simulated ACS and H of FSC were evaluated by the data calculated from UAV lidar
(introduced in Section 2.2.4). The coefficient of determination (R2), root mean square error
(RMSE), and relative root mean square error (RRMSE) were used to evaluate the simulation
accuracy of the model. They were calculated as follows:

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (1)

RMSE =

√√√√ n

∑
i=1

(yi − ŷi)
2

n
(2)
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RRMSE =

√
∑n

i=1
(yi−ŷi)

2

n

∑n
n=1

yi
n

(3)

where n is the number of observations, yi is the observed value of plot i, ŷi is the simulated
value of plot i, and yi is the mean value of all sample plots.

3. Results
3.1. Simulation Results at SP

The results based on the surveyed forest age show that the 3-PG model can accurately
simulate DBH, H, and ACS of eucalyptus plantations (Figure 5), with R2 values ranging
from 0.80 to 0.93. Taking thinning information into account can further improve the simula-
tion accuracy. The R2 of ACS, DBH, and H increase by 0.09, 0.06, and 0.07, respectively, and
the RRMSE decreases by 8.54%, 6.75%, and 4.2%, respectively. The simulation results based
on forest age data from Landsat also achieve high accuracy, with R2 of DBH, H, and carbon
stock all higher than 0.85, and RRMSE less than 20% (Figure 6). They are generally better
than the simulated results not considering thinning, and are closer to the simulated results
with thinning information considered.
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Figure 5. Validation of simulated forest structure at the SP. Plots (a1–c1) are simulated diameter at
breast height, height, aboveground carbon stock of not considering thinning in the model; (a2–c2) are
simulated diameter at breast height, height, aboveground carbon stock of considering thinning. No
thinning and thinning denote whether the SP thinned or not during the growth.
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3.2. Simulation Results at FSC

The simulation results based on FSC age data for the 140 FSC show very low R2 and
high RMSE compared with the ACS and H data estimated from UAV lidar. However, for
the FSC planted after 2015, the simulation results are quite well-matched (Figure 7), with
RMSE of H and ACS of 2.91 m and 14.22 Mg/ha, respectively. Obviously, for the FSC
planted before 2015, there is no significant relationship between the simulated results and
validation data, due to the unknown harvest information and inaccurate forest age data,
and the RMSE of H and ACS are 14.06 m and 80.78 Mg/ha, respectively. This suggests
that accurate and timely updating of forest age is critical for the model simulation of
eucalyptus plantations. The accuracies of simulated H and ACS using forest age data from
Landsat significantly increase for the 140 FSC compared to the results based on FSC age
data (Figure 8). The forest age data from Landsat are very effective for driving the 3-PG
model. Both the simulated H and ACS show high R2 and low RRMSE, but the accuracy is
not so good as the SP level.
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3.3. Sensitivity of the Simulation Results to Forest Age
3.3.1. Sensitivity Analysis of the 3-PG Model at the SP Level

The simulation results from different adjusted forest ages at sample plot level show
that DBH, H, and ACS exhibit different degrees of variation (Table 3). The largest variation
occurs in DBH with the RMSE increasing by 33.45% when the forest age increases by
12 months. The H and ACS have consistent change trends. The changes in RMSE are
small when the forest age increases, but become larger when the forest age decreases from
3 months to 12 months. The RMSE of H and ACS increase by 42.92% and 82.91% as the
forest age decreases 12 months. It should be noted that the sensitivity analysis shows the
highest R2 and the lowest RMSE are not consistent for DBH, H, and ACS in these adjusted
forest age designs. For example, the lowest RMSE of simulated DBH occurs when the forest
age decreases 6 months, while for H and ACS this occurs in increased by 6 months design.
In addition, the highest R2 and lowest RMSE occur in forest age adjusted designs that are
inconsistent.

Table 3. Comparison of model predictions of the diameter at breast height (DBH), height (H), and
aboveground carbon stocks (ACS) with observations of DBH, H, and ACS under different adjusted
forest ages based at SP level.

Variables DBH H ACS

R2 RMSE
(cm)

Change
Degree of

RMSE
R2 RMSE

(m)

Change
Degree of

RMSE
R2 RMSE

(Mg/ha)

Change
Degree of

RMSE

−3 months 0.94 1.74 5.95% 0.86 2.50 7.30% 0.94 8.07 13.03%
−6 months 0.93 1.68 9.19% 0.85 2.77 18.88% 0.93 9.56 33.89%
−12 months 0.90 1.72 7.03% 0.79 3.33 42.92% 0.90 13.06 82.91%
No change 0.93 1.85 0 0.87 2.33 0 0.93 7.14 0
+3 months 0.94 2.09 12.97% 0.87 2.26 3% 0.94 6.15 13.86%
+6 months 0.94 2.29 23.78% 0.87 2.25 3.43% 0.95 5.92 17.09%

+12 months 0.94 2.78 33.45% 0.88 2.42 3.86% 0.95 7.41 3.78%
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3.3.2. Sensitivity Analysis of the 3-PG Model at the FSC Level

The impacts of adjusted forest age on the simulated H and ACS for the 140 FSC show
that the largest deviation for both occurs in the scenario of increased age of 12 months
(Table 4), with RMSE increasing by 12.2% and 41.23%, respectively. The lowest RMSE of
H and ACS are observed in the scenario of decreased age of 3 months and no adjustment
scenario, respectively. The decreased forest age does not lead to much variation in ACS
simulation at the SP level.

Table 4. Comparison of model predicted height (H) and aboveground carbon stocks (ACS) with lidar
inverse H and ACS under different stand age conditions based on FSC scale.

Variables H ACS

R2 RMSE (m)
Change

Degree of
RMSE

R2 RMSE
(Mg/ha)

Change
Degree of

RMSE

−3 months 0.74 3.04 −10.53% 0.75 9.22 1.1%
−6 months 0.73 3.04 −10.53% 0.74 9.27 1.64%
−12 months 0.72 3.19 5.06% 0.71 10.33 13.27%
No change 0.68 3.36 0 0.70 9.12 0
+3 months 0.74 3.25 −3.27% 0.77 10.25 12.39%
+6 months 0.74 3.4 1.19% 0.77 11 20.61%

+12 months 0.74 3.77 12.2% 0.77 12.88 41.23%

4. Discussion
4.1. High Accuracy Can Be Realized Based on the Forest Age Data from Landsat

The 3-PG model has been widely used to estimate forest growth parameters such
as DBH, H, biomass, and NPP. In addition, the model can also output other parameters,
such as forest volume, stand basal area, and stand density, which are required by forest
managers. In this study, we estimated and evaluated the simulated DBH, H, and ACS of
eucalyptus at the SP level and FSC level, and analyzed their sensitivity to the forest age
data. During the simulation, we adopted most of the default parameters that have been
established for eucalyptus (except the allometric growth equations) [51]. Both the measured
data and estimated data from UAV lidar show that the 3-PG model has high simulation
accuracy as long as high-quality forest age is provided. The management information can
further improve the simulation accuracy. Our study shows that the forest age data from
Landsat data have similar simulation accuracy with the scenario of using surveyed forest
age and thinning data together. The reasons might be the uncertainties of surveyed forest
age data and the minor impact of thinning measures on final ACS. In fact, it is difficult to
acquire the exact planting time of eucalyptus (e.g., month), especially under the condition
of the coexistence of coppice and planting. Eucalyptus has a very rapid growth in the early
stage and reaches canopy closure within 2–3 years [19]. It is very difficult to obtain such
high precision planting time. The forest planting time in the model was needed to be set at
month, which might be difficult to simulate the early growth process of eucalyptus. The
assimilation of more dense time series remote sensing data or products (e.g., LAI from
Landsat or Sentinel) might improve these processes.

As an important parameter of forest carbon cycle model, forest age represents the
planting time of trees/stands and reflects the current growth stage. For physiological–
ecological process models, changes in stand age inevitably affect factors such as stomatal
conductivity and hydraulic conductivity, which, in turn, affect physiological processes in
trees, such as photosynthesis and root turnover rates [27,52]. In addition, trees at different
ages have different sensitivities to parameters [53], e.g., trees have a high sensitivity to
parameters such as soil fertility in the young stage and a low sensitivity to stand density in
the mature stage. Therefore, it is necessary to obtain accurate and reliable information on
the age of the forest during the carbon cycle, and will be the fundamental to optimize and
parameterize the regional carbon models.
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The constant (aWS) and power (nWS) in the allometric equation of stem biomass
play an important role in the biomass allocation sub-model. Previous studies show that
the main reason for the poor simulation of the 3-PG model is not using the local biomass
allocation and allometric growth parameters [54]. This parameter was also observed to
have the greatest influence on the simulated volume and DBH of Chinese fir in Nanping,
Fujian [55]. The remaining parameters of the model can also affect the simulation accuracy
of the model. For example, Hua et al. [56] found that the simulation accuracy can be further
improved by fitting the maximum canopy conductance and canopy quantum efficiency
based on the corrected aWS and nWS. Deciduous species have distinct growing seasons and
non-growing seasons, which can be set through several parameters such as temperature,
gammaF1 (maximum litterfall rate), gammaF0 (litterfall rate at t = 0), leafgrow, and leaffall.
For example, for deciduous species, gammaF0 and gammaF1 can be set to 0, because all of
the foliage will disappear at the end of the growing season. Eucalyptus is an evergreen tree
species and previous research with 3-PG models seldom considered the difference between
growing season and non-growing season [48,51,57,58]. However, further studies should
pay more attention to the growth characteristics and responses to extreme climate events in
different seasons.

4.2. Impact of Spatial Heterogeneity on Modelling Results

The simulated carbon stock for FSC using remote-sensing-based forest age data is
significantly improved compared to the results based on FSC forest age data. However,
some FSC still deviate greatly from the observed data, which is probably caused by the
spatial heterogeneity of the FSC. At the beginning, the boundary of FSC was determined
by the homogeneity within the forest stand, and similar management was performed. As
time goes on, the same FSC might experience different management measures (thinning,
fertilization, tree species, etc.) and disturbances (fires, diseases, typhoons), which causes
the FSC to be more heterogeneous (for example in Figure 9). Both the CHM and aerial
maps (Figure 9a1,a2) show that H in the northeast of the FSC is high, up to 30 m, but is low
in the northwest of the FSC, and the maximum difference reaches 20 m. Obviously, the
ACS also shows high spatial heterogeneity in this FSC. In Figure 9b, the H of the FSC is
generally high, but the heterogeneity within the FSC is more obvious, and the difference
between high and low trees is close to 25 m. This spatial heterogeneity could easily lead
to overestimation or underestimation of the simulation results in the simulation process.
Therefore, it is necessary to redraw the FSC and determine new boundaries to reduce the
heterogeneity in future study, which will, potentially, significantly improve the accuracy of
simulation results.
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4.3. Limitations and Potential Improvement

The 3-PG model was used to estimate DBH, H, and ACS of eucalyptus based on forest
age data, meteorological data, and site conditions in the study area, and obtained a high
simulation accuracy. The model can not only simulate the normal growing forest, but
also estimate the growth state of the forest under different management measures such
as thinning. Through thinning management, forests can achieve the goal of adjusting
stand density, changing stand structure, and reducing competition among individual tree
species, thus, changing the normal growth of trees. The simulation results at the SP scale
show that the model captured well the thinning effects on forest growth. Considering
thinning information can improve the simulation accuracy, which is consistent with the
research results of Xie et al. [10]. However, the response of NPP to thinning measures has
not been well-explored, and positive, negative, and neutral impacts coexist in different
studies [59–61]. This should be better considered in future simulations. Landsat time-series
data-based forest age data fails to monitor management such as thinning in eucalyptus
plantations due to its coarse resolution in spatial and temporal data. This may reduce the
accuracy of model simulation. Therefore, these subtle changes in forest dynamics should be
better characterized through spectral mixture analysis or the use of higher spatial–temporal
resolution data (such as Sentinel, Gaofen).

5. Conclusions

In this study, a process-based physiological–ecological 3-PG model was used to predict
the forest structure of eucalyptus plantations at the local scale by combining remotely
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sensed stand age data. The results show that the 3-PG model can achieve satisfactory
simulation results at the SP and FSC scales. The results of sensitivity analysis show that
forest age has a significant effect on forest carbon stocks, with a maximum difference of
82.91% and 41.23% in ACS between different stand age conditions at the SP scale and FSC
scale, respectively. The fact that thinning information can improve the simulation accuracy,
but that the information is difficult to obtain, especially for the remote sensing data, must
be considered. More subtle changes can be further acquired by integrating more efficient
change detection algorithms and high spatial–temporal resolution data. This study was
carried out in a local forestry farm, but our method can be easily extended to large regions
with the time-series remote-sensing-acquired forest age data. The impact of uncertainty in
the remotely sensed forest age data provides a useful reference for regional forest carbon
cycle simulations based on forest age products.
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Appendix A

Table A1. Description of parameters, unit, source, and their values.

Parameter Name Description Unit Source Value

pFS2 Foliage:stem partitioning
ratio at DBH = 2 cm - D 1

pFS20 Foliage:stem partitioning
ratio at DBH = 20 cm - D 0.15

aWS Constant in stem mass vs.
DBH relationship - F 0.0259

nWS Power in stem mass vs.
DBH relationship - F 2.8762

pRx Maximum fraction of NPP
to roots - D 0.8

pRn Minimum fraction of NPP
to roots - D 0.25

gammaF0 Litterfall rate at t = 0 month month−1 D 0.001
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Table A1. Cont.

Parameter Name Description Unit Source Value

gammaF1 Litterfall rate for mature
stands month−1 D 0.027

tgammaF Age at which litterfall rate
has median value month−1 D 12

Rttover Average monthly root
turnover rate month−1 D 0.015

Tmin Minimum temperature for
growth °C F 10

Topt Optimum temperature for
growth °C F 20

Tmax Maximum temperature for
growth °C F 36

MaxAge Maximum stand age used
in age modifier yr D 50

nAge Power of relative age in fage - D 4

rAge Relative age to give
fage = 0.5 - D 0.95

MinCond Minimum canopy
conductance m s−1 D 0

MaxCond Maximum canopy
conductance m s−1 D 0.02

LAIgcx LAI for maximum canopy
conductance m2 m−2 D 3.33

thinPower Power in self-thinning rule - D 1.5
SLA0 Specific leaf area at age 0 m2 kg−1 D 11

SLA1 Specific leaf area for mature
stands m2 kg−1 D 4

tSLA Age at which specific leaf
area = (SLA0+SLA1)/2 yr D 2.5

K
Extinction coefficient for

absorption of PAR by
canopy

- D 0.5

fullCanAge Age at full canopy cover yr D 3

alphaCx Maximum canopy quantum
efficiency - D 0.06

Y Ratio NPP/GPP - D 0.47

fracBB0 Branch and bark fraction at
age 0 - D 0.75

fracBB1 Branch and bark fraction for
mature stands - D 0.15

tBB Age at which pBB =
1/2(PBB0 + PBB1) yr D 2

aH Constant in the stem H
relationship - F 1.4022

nHB Power of DBH in stem H
relationship - F 0.7079

nHN Power of competition in
stem H relationship - F 0.2492
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