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Abstract: Rockfall processes are now commonly studied through monitoring campaigns using repeat
lidar scanning. Accordingly, several recent studies have evaluated how the temporal resolution of
data collection and various data-processing decisions can influence the apparent rockfall volumes
estimated using typical rockfall database creation workflows. However, there is a lack of studies
that consider how data quality and associated data-processing decisions influence rockfall volume
estimation. In this work, we perform a series of tests based on an existing reference rockfall database
from the Front Range of Colorado, USA, to isolate the influences of data resolution (point spacing),
individual point precision, and the filter threshold applied to change results, on the volume estimates
obtained for rockfalls. While the effects of individual point precision were found to be limited for
typical levels of gaussian noise (standard deviation per coordinate direction ≤ 0.02 m), data resolution
and change filter threshold were found to have systematic impacts on volume estimates, with the
volume estimates for the smallest rockfalls decreasing substantially with increases in point spacing
and change filter threshold. Because these factors disproportionately impact volume estimates for
smaller rockfalls, when these factors change, the slope of the apparent power law that describes the
relative frequency-volume distribution of rockfalls changes. Evidence is presented that suggests that
this phenomenon can explain discrepancies between power law slopes presented in the literature
based on studies focused on different scales of rockfall activity. Overall, this study demonstrates the
impacts of raw data attributes on rockfall volume estimation and presents an additional effect that
tends to bias rockfall frequency–magnitude power law relationships towards underestimation of the
relative prevalence of small rockfalls.

Keywords: rockfall; lidar; volume estimation; data quality; power law

1. Introduction

Rockfall is a hazard that is prominent in mountainous regions around the world. In
addition to major catastrophic events that can represent significant safety hazards [1,2],
smaller, more frequent rockfalls along transportation corridors can have negative economic
impacts, including direct maintenance and repair costs, and indirect economic losses
associated with delays caused by lane closures [3,4]. Accordingly, rockfall has been widely
studied, both from a physical process perspective [5] and a risk management perspective [6].
In both cases, quantitative information with respect to rockfall size (volume) and their
relative frequency can be useful [7].

Over the past decade, there has been a substantial increase in the application of lidar
to rockfall characterization and monitoring through repeated scanning at various time
intervals [8–12]. Photogrammetric methods have also been employed where lidar monitor-
ing may be impractical or cost-prohibitive, with similar end goals [13–15]. The increasing
volumes of collected data are motivating research in applying advanced computer vision
techniques and machine learning for automatic measurement and interpretation [16–20].
While a lidar-based approach for rockfall activity characterization has several advantages
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over conventional approaches (e.g., visual inspection, manual mapping of ditch debris, etc.),
arguably one of the most significant is the ability to keep three-dimensional (3D) records of
rockfall shapes and develop associated quantitative volume estimates [21,22]. One risk of
developing such quantitative volume estimates, however, is the potential to develop a sense
of overconfidence in the accuracy of the results obtained. Most recently, there has been
increased scrutiny of factors unrelated to the physical rockfall processes being monitored
and their influences on the accuracy of lidar-derived volume estimates. Perhaps the most
notable and well-established finding in this regard is that the monitoring frequency used
can impact the apparent relative proportions of small and large rockfalls [23]; specifically,
spatial grouping of small rockfalls that occur between successive scan dates can result in
underestimation of the number of small rockfalls and overestimation of the number of
large rockfalls. The degree to which this issue manifests depends both on the spatiotem-
poral clustering patterns of rockfall at a given site and the specific monitoring interval (s)
considered [11,23,24].

Other studies have focused specifically on how data-processing decisions influence
rockfall volume estimates derived from lidar change detection results. DiFrancesco et al. [25]
considered the influence of multi-scale cloud-to-cloud comparison (M3C2) projection diam-
eter on lidar-derived volume estimates and found that although the volumes of the smallest
recorded rockfalls were notably influenced, the effects on rockfalls in the linear portion of
the magnitude–cumulative–frequency (MCF) curve were negligible. Winiwarter et al. [26]
proposed a modified change detection algorithm based on M3C2 and demonstrated that it
produced significantly different total movement volume estimates from M3C2, although
they did not present results regarding the influence on individual rockfall volume esti-
mates. When using alpha shape surface reconstruction, Carrea et al. [27] demonstrated the
influence of selected alpha radius value on the obtained rockfall distribution. To develop a
rational, reproducible approach to select the alpha radius, Bonneau et al. [28] proposed the
alphaSolid method which has since become increasingly accepted [22,24,29]; specifically,
for each set of points defining a rockfall, this method automatically produces a volume
estimation using the minimum alpha radius that results in a watertight manifold surface
with correct topology. More recently, DiFrancesco et al. [22] compared volume estimates
produced by alphaSolid with those obtained using a the more sophisticated Power Crust
surface reconstruction algorithm [30] and found that while alphaSolid systematically over-
estimated by over 50% in some cases, the degree of overestimation relative to Power Crust
was relatively consistent for rockfalls of varying sizes, meaning the slope of the derived
MCF curve was consistent between the methods.

While the work of DiFrancesco et al. [22] provides valuable insights into the influences
of surface reconstruction methods on volume estimation given a certain set of lidar-derived
rockfall data points, we are not aware of any studies that evaluate the influence of lidar data
quality attributes, such as density and precision, on rockfall volume estimates. This is of
great interest for rockfall studies, because point cloud data are collected under a wide range
of quality conditions dictated by budget, accessibility, study goals, and other site-specific
considerations. We hypothesize that data resolution (controlled by point spacing), individ-
ual point positional precision, and overall change detection uncertainty may influence the
volume estimates obtained using common surface reconstruction techniques, perhaps as
much as or even more so than the specific reconstruction techniques themselves.

In this study, we use an existing rockfall database [31] as a starting point and apply
various perturbations to the point clouds that define individual rockfalls in the database to
assess the effects of different data quality attributes. Specifically, we evaluate the influences
of data resolution (i.e., point spacing/number of points), individual point precision, and
parameters utilized in the process of extracting rockfall point clusters from raw change
detection results; in this last case, we note that the parameters utilized are determined
based on change detection uncertainty, which in turn depends largely on the quality of the
raw data sets used for change detection. While the specific quantitative results obtained are
only applicable for the specific site and rockfall surface reconstruction method evaluated,
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we argue that the overall trends observed should be more broadly applicable. Additionally,
this study demonstrates an analysis framework that could be applied to data from other
slopes in future studies.

2. Materials and Methods
2.1. Reference Rockfall Database

The reference rockfall database used for this study was developed for a slope approx-
imately 6 km East of Idaho Springs, Colorado, USA, bordering the westbound lane of
Interstate Highway 70 (I-70). The slope is a sub-vertical (approximately 72◦) cut in biotite
gneiss, with prominent foliation and three major fracture sets (see Figure 1). The unit is
situated in the uplifted basement rock of the Colorado Front Range, with a high density
of regional faults and felsic dike intrusions. The slope presents a risk to motorists due to
the relatively narrow corridor and ditch, combined with a high traffic volume. The largest,
most disruptive rockfall events in recent records have been triggered by torrential summer
storms, conditioned by freeze–thaw cycles in the preceding winter months. While vehicle
impacts are rare, rockfalls regularly cause closures of the highway for scaling, clearing, and
mitigation. In 2022, a large 30–40 m3 marginally stable block was pre-emptively mitigated
using rock bolts and wire mesh [32,33], but otherwise there are no permanent control
measures in place to reduce rockfall risk.
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The total monitored area is approximately 14,000 m2, and the database was con-
structed using repeat terrestrial lidar scanning data collected between 11 February 2016
and 31 August 2021 at a typical data collection frequency of every 2 to 3 weeks, although
in some cases longer periods of time elapsed between scans (most notably a major data gap
from 10 November 2016 to 26 October 2017). The point spacing of the slope point clouds is
approximately 2 cm.

To produce a rockfall database from the raw lidar data collected, standard processing
steps were followed [11,25,34,35] using a workflow and code originally developed by
Schovanec et al. [36] and adapted for application to the Floyd Hill site as documented in
detail by Malsam et al. [24,31]:

• Alignment: Individual scans from four separate scanning positions were placed in a
common coordinate system (no absolute georeferencing) using a two-step coarse-fine
alignment procedure.

• Classification: A manually developed static mask was used to identify and remove
non-bedrock points from the point cloud. The mask is a point cloud with one of two
class labels applied to each point on the slope: “rock” and “other”. Rock represents
bare rock slope points used to compute change detection, and “other” indicates regions
of vegetation, roads, guard rails, and other objects not relevant to change detection.
For each point in the aligned point cloud, the nearest neighbor point was found from
the mask point cloud and its label was copied over to the aligned cloud. Then, all
points labeled as “other” were removed.

• Change Detection: M3C2 was used to compare each pair of point clouds from succes-
sive scan dates.

• Clustering: A change filter threshold was used to remove points with calculated
change values below a specified value; the remaining points were then clustered using
the DBSCAN algorithm [37].

• Cluster Filtering: Many of the clusters produced by the clustering process represent
regions of spurious (i.e., non-rock) change, typically associated with locally high error
or small vegetation not removed in the “Classification” step. To determine which
clusters are representative of rockfall, a random forest classifier tuned to produce
almost no false negatives (i.e., no missed rockfalls) was applied to remove a portion of
the spurious clusters, and the remaining clusters were manually classified as “rockfall”
or “clutter” based on visual inspection.

• Volume Calculation: Volumes for all clusters manually classified as “rockfall” were
estimated using the alphaSolid approach of Bonneau et al. [28].

The final rockfall database produced by Malsam [31] and used as the basis of this
study is visually represented as an MCF curve in Figure 2. Most of the recorded rockfalls
were small, with only four being larger than 1 m3 (per the alphaSolid volume estimates).
The power law trend (Equation (1)) observed above a specific volume threshold is typical
for rockfall and has been documented for a large number of slopes worldwide [38,39]:

F(V) = aV−b (1)

where V represents rockfall volume, a is a constant dependent on the total level of rockfall
activity at a given slope, b is a constant that depends on the relative proportions of large and
small rockfalls, and F(V) is the number of rockfalls with volume greater than or equal to V.
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Figure 2. Rockfall magnitude–cumulative–frequency curve for the Floyd Hill slope reference database
with power law fit to volumes above 0.001 m3 shown [23].

Most of the rockfalls at the site, and in particular the relatively large ones, tend to
exhibit some elongation along the foliation (see Figure 3). While the rockfalls at the site
tend not to be highly spatially clustered [24], there are cases where release of one block has
been observed to destabilize an adjacent part of the rockmass.
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Figure 3. Two views of different parts of the Floyd Hill rock slope showing point clusters colored by
date representing rockfalls exhibiting an elongated shape and sequential failure of adjacent blocks.
(a) shows multiple smaller rockfall examples, and (b) shows 2017 rockfalls preceding a larger 2019
rockfall.

2.2. Analysis Methods

Three separate analyses are presented in this study:

• Resolution Analysis—quantification of the influence of lidar point spacing on rockfall
volume estimates by downsampling relative to high resolution reference clouds;
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• Precision Analysis—quantification of the influence of individual point precision on
rockfall volume estimates by addition of gaussian noise to reference clouds;

• Filter Threshold Analysis—quantification of the influence of the filtering and clustering
process on rockfall volume estimates.

A flowchart that summarizes the methods applied for each of these analyses is pre-
sented in Figure 4. The following sub-sections describe the specific analysis procedures in
detail.
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Figure 4. Flowchart summarizing study methods.

2.2.1. Assessment of Point Spacing Influence

Downsampling was conducted using the pcdownsample function in MATLAB with
two different approaches: random and voxel downsampling. Because of the stochastic
nature of the random downsampling approach, each degree of downsampling (5%, 10%,
20%, 30%, 50%, 70%) was repeated 200 times and mean values were recorded for the
resulting volumes. In the case of voxel downsampling, the averaging that occurs within
each voxel has the effect of smoothing the point cloud, so although this method has the
advantage of providing a single deterministic result for a given level of downsampling,
the precision of the points in the downsampled cloud is effectively improved relative to
the actual raw lidar data. Voxel edge lengths (2 cm, 3 cm, 4 cm, 5 cm, 7 cm, 10 cm, 15 cm,
20 cm) were selected to roughly cover the same range of average point spacing produced
by the random downsampling procedure.

The downsampling procedure was only applied to rockfalls in the reference database
with volumes (Vreference) greater than or equal to 0.1 m3 to ensure each rockfall considered
would be defined by a sufficiently large number of points to allow for downsampling as
specified above; a total of 27 such rockfalls were used for this analysis. After downsampling,
the alphaSolid method [28] was applied to estimate volumes for each of the downsampled
point clouds, and these volumes were then compared to the corresponding volume values
for the original rockfall point clouds from the reference database, typically by calculation of
a ratio of volumes (i.e., Vdownsampled/Vreference). Figure 5 illustrates a representative rockfall
before and after downsampling, as well as the resulting surface mesh reconstructions
produced by the alphaSolid process.
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Figure 5. Example rockfall showing (a) the original point cloud, (b) the same point cloud randomly
downsampled to 5% of the points, and (c,d) their respective alphaSolid reconstructed volumes
(V = 0.46 m3 and V = 0.33 m3, respectively).

Following volume calculation, magnitude–cumulative–frequency (MCF) plots were
produced for each of the downsampling cases. In the voxel cases, the MCF curves were
developed based on the deterministic downsampled results for each rockfall. In the
random downsampling cases, the MCF curves were developed using the mean volume
values from the 200 realizations for each rockfall. Power laws were fit to all volumes in
both cases using a least-squares regression, as the initial volume cutoff applied for the
analysis (Vreference ≥ 0.1 m3) ensured that all volumes were past the power-law rollover
cutoff volume (identified as 0.001 m3 for the reference database by [31]). Note that the
MCF curve represents an approximation of the complementary cumulative distribution
function (CCDF) of the rockfall inventory [40], and the power law slope values produced
are therefore close to those associated with the true CCDF [38].

2.2.2. Assessment of Point Precision Influence

The influence of point precision on rockfall volume estimation was evaluated for the
same subset of reference rockfalls as considered in the resolution analysis (Vreference ≥ 0.1 m3).
In this case, each reference point cloud had gaussian noise added to each of the three
co-ordinates (x,y,z) of each point. The standard deviation of the noise was varied (0.0025 m,
0.005 m, 0.010 m, 0.015 m, 0.020 m, 0.050 m), and the mean was held constant at zero. For
each initial rockfall point cloud and noise standard deviation, 200 point clouds with added
noise were generated and mean values were recorded for the resulting volumes.
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After the addition of random noise, the volume of each new point cloud was esti-
mated using the alphaSolid method [28], and these volumes were then compared to the
corresponding volume values for the original rockfall point clouds from the reference
database, typically by calculation of a ratio of volumes (i.e., Vadded-noise/Vreference). Figure 6
illustrates a representative rockfall before and after the addition of random noise, as well
as the resulting surface mesh reconstructions produced by the alphaSolid process.
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2.2.3. Assessment of Change Filter Threshold Influence

The change filter threshold (t) is the value of change below which points are removed
prior to grouping of points into change clusters. This filter is applied to ensure that
individual regions of change potentially associated with rockfall are spatially distinct from
one another before the application of a clustering algorithm. Additionally, by using a
sufficiently large value of t, typically on the order of the limit of detection, the number of
spurious (i.e., non-rockfall) clusters identified can be minimized.

Evaluating the influence of change filter threshold required re-running the clustering
and cluster filtering steps of the rockfall database development workflow for each filter
threshold value. Because this represents a non-trivial computational and manual task, a
subset of 10 change detection results derived from 11 scans taken between 25 May 2019 and
7 September 2019 were used as the basis for re-constructing rockfall clusters with different
change filter thresholds (t = 0.015 m, t = 0.020 m, t = 0.030 m, t = 0.050 m, and t = 0.100 m).
This range of dates was selected as it corresponded to a period of relatively high rockfall
activity, including multiple large (Vreference > 1 m3) rockfall events. All rockfalls detected
during this range of dates were considered regardless of volume.
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For each change detection result and a given filter threshold case, points with change
values below the filter threshold were removed. Then, the remaining points were clustered
using the DBSCAN algorithm [37]. Although we found that the DBSCAN parameters used
in the construction of the reference database (Eps = 0.1 m, MinPts = 16) produced clusters
representative of actual visually assessed rockfall shapes for the t = 0.020 m and t = 0.030 m
cases, the smallest (t = 0.015 m) and two largest (t = 0.050 m and t = 0.100 m) filter threshold
cases encountered different issues. In the t = 0.015 m case, the Eps = 0.1 m value was found
to be too large, as it resulted in the algorithm extending rockfall clusters to include nearby
noisy points above the (relatively permissive) t = 0.015 m filter threshold. In the case of
the two largest filter thresholds, the Eps = 0.1 m value was found to be too small, as the
remaining unfiltered points on the front and back faces of several rockfalls were over 0.1 m
apart, leading to the creation of several clusters containing only one face of a given rockfall.
In both cases, using a fixed Eps value for a large range of t had a confounding influence on
computed rockfall volumes.

With this in mind, it was determined that variable Eps values should be used for the
different values of t. This reflects the reality that in different practical application cases
with different levels of change detection uncertainty and different filter thresholds, Eps
values would be tuned to account for site-specific and data-specific conditions [11,35,37].
Accordingly, although results are presented in terms of the influence of t, this analysis
effectively considers the combined effects of t and Eps on rockfall volume estimation as
a proxy for the influence of change uncertainty on rockfall estimation. In other words, in
practice, the change uncertainty at a given site constrains the t value used, and the Eps
value used for clustering is selected to produce the best clustering performance for a given
filtered point cloud. The Eps values used for each filter threshold (t) case considered are
summarized in Table 1.

Table 1. Filter threshold (t) and search radius (Eps) parameter combinations.

t (m) Eps (m)

0.015 0.07
0.020 0.10
0.030 0.12
0.050 0.15
0.100 0.20

Figure 7 presents an example of how filter threshold can influence the estimated
volume for a given rockfall cluster. Specifically, the t = 0.015 m change filter removes fewer
points from the point cloud prior to clustering than for t = 0.1 m, resulting in a larger
number of points being included in the cluster, and ultimately a larger volume estimate.

For a given data set, the clusters output by DBSCAN need to be filtered to separate
clusters representing true rockfalls from “clutter” clusters [36]. An example illustrates
the necessity of this filtering: in the t = 0.015 m case for the 18 August 2019 to 31 August
2019 scan interval alone, 1514 clusters were produced despite only three manually verified
rockfalls having been identified. Even with the assistance of a potentially error-prone
Random Forest classifier, filtering many iterations of clustering with different parameters
across 10 time intervals would be impractical.
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Figure 7. Example rockfall cluster showing (a) a front view of clustered points for the t = 0.015 m (red)
and t = 0.100 m cases (black), (b) views of the reconstructed alphaSolid mesh for the t = 0.015 m cluster (V
= 3.15 m3), and (c) views of the reconstructed alphaSolid mesh for the t = 0.100 m (V = 2.41 m3) cluster.

As an alternative to manually filtering clusters, we used the reference database of
already-identified rockfalls to locate true rockfalls in each experimental condition. Specifi-
cally, for each of the rockfalls in the reference database, the single nearest neighbor cluster
from the corresponding scan interval for a given value of t was identified; if this nearest
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neighbor cluster was found to have a centroid within 0.5 m of the centroid of the reference
rockfall cluster, it was flagged as a candidate cluster and assigned the same identification
number as the corresponding rockfall cluster. The 0.5 m distance threshold was selected to
be relatively permissive as a first round of filtering. As a result, not all candidate clusters
ultimately were found to be representative of actual rockfall clusters representing the same
rockfall identified in the reference database. Spot checking showed that in some cases,
the candidate cluster was found to correspond to a nearby clutter cluster (i.e., when the
actual rockfall was not detected for the given combination of t & Eps considered). In
addition to the issue of identification of incorrect clusters, in some cases, the resulting
clusters represented a partial match with a rockfall but did not accurately reflect the rockfall
geometry. For example, some candidate clusters were found to include both rockfall points
and nearby noise points, or in rare cases, the initial match cluster was missing one face of
the rockfall cluster (despite the increase Eps values for the largest t cases).

With this in mind, an additional filtering step to remove spurious matches and clus-
ters including non-rockfall points or missing one side of a rockfall was performed. This
filtering step considered the centroid distance between a given candidate cluster and the
corresponding reference rockfall cluster (dcentroid) relative to both the principal axis length
of the reference rockfall cluster (lreference) and the calculated candidate cluster volume
(determined using alphaSolid; Vcandidate) as well as the ratio between the number of points
in the candidate cluster and the corresponding reference cluster (ncandidate/nreference). The
ncandidate/nreference criterion was not applied to the t = 0.100 m clusters, as these clusters
regularly contained much smaller numbers of points than their corresponding reference
clusters. Ultimately, clusters were retained if they met three criteria:

• dcentroid/lreference < 0.2;
• dcentroid/Vcandidate < 100 m−2;
• 0.25 < ncandidate/nreference < 2 OR t = 0.100 m.

In cases where a cluster contained extra non-rockfall points or one face of the rockfall
was missing, the resulting movement of the candidate cluster centroid relative to reference
cluster centroid was observed to be sufficiently large to be detected by the above criteria.

The total numbers of initial matches and final filtered rockfall clusters for each filter
threshold case are summarized in Table 2; as a point of comparison, the total number of
rockfalls in the reference database over the time period considered is 194. The decreased
number of candidate clusters and final rockfall matches with increasing t is reflective of the
decreased ability to detect relatively small rockfalls when using a restrictive change filter
threshold. For example, for t = 0.100 m, 24 out of 27 of rockfalls with Vreference ≥ 0.01 m3

were detected, whereas only 4 out of 167 rockfalls with Vreference < 0.01 m3 were detected.

Table 2. Number of candidate clusters and final post-filtering rockfall matches for each change filter
threshold case.

t (m) # of Candidate Clusters # of Rockfall Matches

0.015 193 155
0.020 193 173
0.030 184 168
0.050 118 75
0.100 37 28

When evaluating the influence of t on estimated rockfall volume for a given reference
rockfall, it was found that in most cases the logarithm of the estimated volume decreased
approximately linearly as a function of t. Accordingly, for each reference rockfall, a linear
regression was performed considering successfully matched rockfall clusters for each
of the filter threshold (t) cases with t as the independent variable and the logarithm of
the estimated volume as the dependent variable (see Figure 8). MCF curves were also
created for each of the filter threshold cases to visualize the influences of the filtering and
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clustering procedure on the relative distribution of rockfall volumes. Additional MCF
curves were developed for each case considering only the rockfalls for which a valid
match to the reference database was identified for all filter threshold cases; this effectively
isolates the effect of the change filtering and clustering on the volume reconstruction
process due to inclusion of different points, removing the influence of rockfalls being
entirely missed for some values of t (per Table 2). In both cases, power laws were fit to
volumes with V ≥ 0.01 m3, which was visually assessed to ensure a linear trend in all cases
considered.
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Figure 8. Example log-linear trend in estimated rockfall volumes as a function of t. A “Log-Slope”
of −0.024 per cm ∆t indicates that for each cm of increase in t, for this particular rockfall, the base
10 logarithm of the estimated volume decreases by 0.024.

We acknowledge that the specific quantitative results obtained from this analysis will
depend to a certain extent on the filters applied to remove spurious clusters after the initial
candidate cluster identification step. However, we note that cluster filtering procedures
applied in the literature vary significantly from study to study [25,36,41], and there is no
specific best practice to be applied, except perhaps manual verification, which was deemed
impractical in this case and is not without error. Accordingly, the results obtained should
be viewed with a focus on the overall trends identified, which are robust to minor changes
in cluster filtering.

3. Results
3.1. Point Spacing Influence

The results of the point spacing analysis are summarized in Figure 9, which shows
trends in estimated rockfall volume (relative to the volume from the reference database) as
a function of reference volume and degree of downsampling. Note that Figure 9a,b include
all downsampling cases, and Figure 9c,d include all rockfall volumes. The interaction
between the degree of downsampling and reference volume is represented in Figure 9e,f,
where the average volume values calculated using an irregular set of bins of reference
volume values for each level of downsampling are presented in the form of contour plots.
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Figure 9. Downsampling test results for (a,c,e) random downsampling and (b,d,f) voxel downsam-
pling. The “x”s in (e,f) represent the center points of each reference volume “bin” used to determine
the average downsampled volume estimates that have been contoured.

The results show that the main (and most consistent) effect of downsampling is
to decrease the volume estimate produced by alphaSolid, and that this effect is most
pronounced both for smaller volumes and for higher degrees of downsampling. The results
are consistent for both the random downsampling and voxel downsampling cases.

To allow the trends in volume estimates as a function of downsampling for each
individual rockfall to be more clearly visualized, the results Figure 9c,d are replotted in
Figure 10 with lines connecting the points representing each individual rockfall and the
average across all rockfalls at each downsampling level shown in red.
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Figure 10. Downsampling test results for (a) random and (b) voxel downsampling, with results for
individual rockfalls connected by lines, and the mean result at each downsampling level shown in red.

While Figures 9 and 10 present results based on the average volume results across
200 simulations in the random downsampling case, Figure 11 presents the corresponding
minimum and maximum volumes for each reference rockfall in the database. These results
illustrate that, depending on the geometry of the specific rockfall point cloud considered,
increased point spacing can, in extreme cases, lead to decreases in estimated volume by
up to nearly 50%. However, the clustering of maximum volumes around the Vreference
suggests that the specific changes in volume estimates can be highly dependent on exactly
how removed points are spatially distributed, particularly for smaller volumes.
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Figure 11. (a) Minimum and (b) maximum volume estimates across 200 random downsampling
cases for each reference rockfall.

The fact that the influence of downsampling shows a non-uniform trend as a function
of volume suggests that changes in the relative density of points defining a given rockfall
has the potential to affect the relative volume trends of the MCF curve. This is confirmed
by the results in Figure 12 for both the random and voxel downsampling cases. Figure 13
shows how the power law “b” parameter values (see Equation (1)) corresponding to the
fits in Figure 12 vary depending on the degree of downsampling considered.

3.2. Point Precision Influence

Figure 14 shows trends in average estimated rockfall volume as a function of the
degree of random noise added to each point for each rockfall cluster. Although the specific
influence of added noise varies depending on the rockfall considered, over the range of
noise levels considered, the influence of added noise on rockfall volume estimates is limited.
The general increasing trend beyond 0.01 m of added noise reflects the fact that for higher
levels of noise, small numbers of outlier points can increase the alpha radius necessary
for the alphaSolid algorithm to produce a watertight manifold mesh, leading to volume
estimate increases.
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3.3. Change Filter Threshold Influence

The linear regression results for the trends in estimated volume as a function of change
filter threshold (t) for each individual rockfall cluster are presented in Figure 15. Figure 15a
shows that the influence of t on volume estimates is proportionally larger for small rockfalls,
even if it is larger in an absolute sense for large rockfalls. Additionally, Figure 15b illustrates
that the (log-)linear trend in estimated volume as a function of t tends to be more consistent
for smaller volumes (Figure 15b). Figure 15c presents representative examples of how the
trend displayed in Figure 15a corresponds to changes in rockfall volume estimates as a
function of t for rockfalls of different sizes.
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Figure 15. Results from linear regressions of estimated volume versus change filter threshold showing
(a) log-slope values as a function of reference volume and (b) degree of log-linear data-model fit, as
quantified by R2; (c) representative examples of how the slope trend displayed in (a) manifests in
terms of the influence of t on volume estimates for rockfalls of different sizes.

As in the case of the downsampling analysis, the disproportionate impact of change
filter threshold on estimated volume for smaller rockfalls implies an impact on the slope of
the resultant MCF curve. This impact is illustrated in Figure 16 for both all rockfalls detected
for each t (Figure 16a) and only the subset of rockfalls that were identified in all cases tested
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(Figure 16b). The former MCF curves include both the influences of rockfall detectability
(i.e., smaller rockfalls potentially not being identified for larger values of t), while the latter
removes this effect and considers only the influence of processing parameters (t and Eps)
on the volume (i.e., the effect illustrated in Figure 7a). For each of these cases, Figure 17
shows how the power law “b” parameter values (see Equation (1)) corresponding to the
fits in Figure 16 vary depending on the value of t used.

Remote Sens. 2023, 13, x FOR PEER REVIEW 18 of 24 
 

 

 

Figure 16. Magnitude–cumulative–frequency (MCF) curves obtained using various filter thresholds 

considering (a) all detected rockfall clusters for each given threshold and (b) only rockfall clusters 

that were identified for all threshold cases. 

 

Figure 17. Power law “b” values for different change filter threshold (t) cases. 

4. Discussion 

A limitation of this study is that the reference database used for all analyses only 

considered small rockfalls (< 10 m3), so the applicability to larger rockfalls is uncertain. 

However, we believe it can be inferred that for any given set of data quality conditions 

(point density and filter threshold), the degree of volume underestimation will decrease 

and become negligible as volume continues to increase. This represents an extrapolation 

of the empirical trends shown in Figures 9a,b and 15a to larger volumes. This concept is 

illustrated in Figure 18 using a two-dimensional representation of two rockfalls of differ-

ent sizes, for ease of visualization. The degree of volume underestimation can be consid-

ered as an “annulus” around the rockfall perimeter, and the thickness of the annulus is a 

function of data quality. For the smallest volumes at a given data quality, the annulus 

thickness is large relative to the rockfall diameter, but for larger volumes, variations con-

strained to an annulus of similar thickness have a negligible impact on volume estimation. 

Figure 16. Magnitude–cumulative–frequency (MCF) curves obtained using various filter thresholds
considering (a) all detected rockfall clusters for each given threshold and (b) only rockfall clusters
that were identified for all threshold cases.
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4. Discussion

A limitation of this study is that the reference database used for all analyses only
considered small rockfalls (< 10 m3), so the applicability to larger rockfalls is uncertain.
However, we believe it can be inferred that for any given set of data quality conditions
(point density and filter threshold), the degree of volume underestimation will decrease
and become negligible as volume continues to increase. This represents an extrapolation of
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the empirical trends shown in Figure 9a,b and Figure 15a to larger volumes. This concept is
illustrated in Figure 18 using a two-dimensional representation of two rockfalls of different
sizes, for ease of visualization. The degree of volume underestimation can be considered as
an “annulus” around the rockfall perimeter, and the thickness of the annulus is a function
of data quality. For the smallest volumes at a given data quality, the annulus thickness is
large relative to the rockfall diameter, but for larger volumes, variations constrained to an
annulus of similar thickness have a negligible impact on volume estimation. Therefore, it is
reasonable to expect that for even larger volumes than those considered in this study, the
average impacts of data quality on rockfall volume estimates obtained using alphaSolid
would be even less significant than for the largest volumes considered in this study (holding
point density and other data factors constant).
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Figure 18. Two-dimensional representations of points corresponding to a (a) smaller (0.46 m3) and
(b) larger (1.21 m2) rockfalls, with and without subsampling, and their corresponding alphaSolid rep-
resentations. In both cases, the changes in the alphaSolid representation associated with subsampling
are constrained to an “annulus” with a thickness on the order of approximately 0.1 m.



Remote Sens. 2023, 15, 165 19 of 23

Conversely, rockfalls that are small relative to any given data quality conditions are
the most likely to have underestimated volumes. With respect to point spacing specifically,
Figure 9e,f illustrate that as point spacing increases (lower point density), increasingly large
rockfalls have their volumes underestimated by a notable amount (on average); we interpret
this result to suggest that this effect of volume underestimation for smaller rockfalls will
be present in larger-scale (e.g., regional) studies, in that regardless of the specific sizes
of rockfalls identified, the smallest rockfalls that are identifiable using standard data-
processing approaches will tend to be defined by relatively small numbers of points. This
can be related to Figure 18 by the fact that the specific scale of the axes does not influence
the overall trend. For a hypothetical regional monitoring campaign, a “small” rockfall,
defined by a relatively small number of points, may be 10 m3 in volume, while a “large”
rockfall may be 104 m3. In any case, we would expect smaller rockfalls to have a greater
degree of underestimation.

Because of the disproportionate impacts on volume estimates for smaller rockfalls, the
resolution and uncertainty effects tend to bias MCF curve results towards shallower slopes.
This suggests that practical point spacing limitations and rockfall identification workflows
tend to result in a relative underestimation of the proportion of small rockfalls as compared
to large rockfalls. From a practical perspective, if one attempts to extrapolate such a trend
for hazard assessment purposes, the relative frequency of especially large rockfalls will
tend to be overestimated. The underestimation of the power law slope, b, due to resolution
and uncertainty effects joins a series of other factors known to result in underestimation
of b. It is notable, however, that the magnitude of the effect on b demonstrated in this
study (approximately 0.05–0.08) is larger than that demonstrated for volume reconstruction
method [22] and projection diameter used in the M3C2 change calculation [25], and is
comparable to or greater than demonstrated temporal resolution effects [11,24], with the
exception of the findings of Williams et al. [23].

Another relevant study is that of Benjamin et al. [34], who developed a rockfall
database based on approximately four years of airborne lidar data for 24 km of coastline
in the United Kingdom. They found that b was significantly underestimated (by as much
as approximately 0.4) when evaluated using shorter segments of coastline, as compared
to the value of b estimated using the full rockfall database. Accordingly, they suggested
that power law parameters determined from monitoring of slopes with length less than
2.5 km could not be considered as representative of broader regional trends. Although
they acknowledged the specific extent of monitoring necessary for a rockfall database to
be considered representative (e.g., 2.5 km in the case of their study) would vary based on
site-specific conditions (e.g., environmental conditions, lithological characteristics, etc.), the
potential influence of data quality (and associated data-processing decisions) on this value
was not explicitly addressed. Based on the findings of this study, we suggest that a portion
of the decrease in b observed by Benjamin et al. [34] for smaller monitoring windows can
likely be attributed to data quality effects. Specifically, for smaller monitoring windows, the
decreased prevalence of events that are large relative to the average point spacing and value
of t means that the values of b obtained are highly sensitive to the volume underestimation
that occurs for the smallest (and more common) rockfall. We note that the data used by
Benjamin et al. [34] had point spacings greater than 0.1 m, and a value of t = 0.1 m was used
during data-processing, meaning it is likely that substantial underestimation of rockfall
volumes occurred above the 0.001 m3 cutoff that they used for power law fitting. In other
words, we hypothesize that if a higher resolution data set had been used along with a
smaller value of t (and appropriate subsequent cluster filtering), the monitoring extent
threshold above which the power law parameters become scale-invariant would have been
lower than 2.5 km.

Although this study only demonstrates the effects of data quality on b for limited
number of rockfalls with relatively small volumes at a single site, indirect evidence of the
broader applicability of these effects exists within the literature. Specifically, Graber [38]
performed a meta-analysis of published rockfall data to evaluate controls on the power
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law slope, b, including consideration of 27 studies that presented MCF curves developed
based on terrestrial laser scanning data. Using these data, a linear regression showed
a statistically significant (p < 0.05) relationship between the b value and the maximum
volume present within a rockfall database. We interpret the maximum volume present
within a rockfall database to be indirectly tied to the scale of the monitoring effort used to
develop the database [34], and correspondingly, the resolution of the raw laser scanning
data; although these relationships are not universal, it is common for larger monitoring
areas to be sampled at a lower resolution due to increased scanner-to-target distance, likely
also corresponding to higher change uncertainty and/or greater potential for alignment
error [42,43]. Therefore, the resolution and uncertainty effects demonstrated in this paper
provide a potential explanation for the relationship between maximum rockfall volume in
a given database and the associated b value.

We note that this study is based on a data set collected using a specific laser scanner
with specific settings, and it is assumed in our analysis that the reference database was
produced using data with sufficiently high point density and precision to serve as a reliable
point of comparison for the synthetic tests we conducted. The assumption of sufficient
point density can be justified on the basis that the volume estimates obtained for removal
of up to 50% of points returned similar volume estimates to the reference volume estimates
on average (per Figure 9c), and by the restriction of the resolution analysis to volumes
≥ 0.1 m3. Regarding precision, it is true that the results for cases with noise added to
individual points (Section 3.3) reflect results for point clouds with initial point error already
present (i.e., due to imperfect reference database point cloud precision) in addition to the
synthetically added noise. However, we estimate the two-standard-deviation precision for
the reference database point clouds to be on the order of 2 cm or less (variable spatially and
between different epochs); considering this in the context of the results for added noise
presented in Figure 14, which shows notable average impacts of added noise on rockfall
volume estimates only occur for two-stand-deviation added noise of ≥ 4 cm, suggests that
the reference database point clouds have sufficient point precision to serve as a reliable
basis for the analysis in the study.

We also note that the findings of this study should not be expected to necessarily apply
to rockfall volume estimates derived using photogrammetric models. Specifically, when
using lidar data, the raw input to the volume reconstruction algorithm is a set of points
that are a relatively direct data representation of the rockfall geometry, where each point
is independent from its neighbors; in contrast, the effective resolution and precision of
photogrammetry models is influenced by several other parameters not mentioned here,
including camera parameters, ground control quality, and lighting [44,45], all of which
could influence volume estimation. Further research would be required to specifically
evaluate these types of interactions.

5. Conclusions

This study evaluated the impacts of point cloud data quality attributes and associated
filtering decisions on rockfall volume estimation. Specifically, using a reference database
from a previous study, modifications to individual rockfall point cloud clusters were
induced through downsampling, addition of gaussian noise to individual points, and
reprocessing using a different change filter threshold value. Based on the tests conducted,
it was determined that decreasing point spacing and increasing the change filter threshold
both had the effect of, on average, decreasing the estimated rockfall volumes obtained for
the smallest rockfalls considered. The disproportionate effect on volume estimation for
small rockfalls were found to manifest as a decrease in the apparent power law slope, b,
with a magnitude similar to or greater than what has previously been documented for most
other data resolution or processing factors. Accordingly, this study has demonstrated an
additional factor that tends to bias rockfall databases generated through repeated terrestrial
laser scanning towards underestimation of the relative proportion of relatively small
rockfalls. In future, this workflow could be applied using reference databases from different
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slopes to evaluate the extent to which slope-specific factors influence the magnitudes of the
effects identified in this study.
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