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Abstract: Simultaneous localization and mapping (SLAM) technology based on light detection and
ranging (LiDAR) sensors has been widely used in various environmental sensing tasks indoors and
outdoors. However, it still lacks effective constraints in structured environments such as corridors and
parking lots, and its accuracy needs improvement. Based on this, a planar constraint-assisted LiDAR
SLAM algorithm based on the Manhattan World (MW) assumption is proposed in this paper. The
algorithm extracts planes from the environment point cloud submap, classifies the planes according
to the ground and vertical planes, and calculates the main direction angles of the ground and vertical
plane, respectively, to construct constraints. To enhance the stability and robustness of the system, a
two-step main direction angle calculation and update strategy are designed, and a hysteresis update
is used to avoid the introduction of errors by unoptimized planes. This paper uses a backpack laser
scanning system to collect experimental data in various scenes. These data are used to compare our
method with three open-source LiDAR SLAM algorithms, that are currently more widely used and
perform better. Qualitative and quantitative experiments are conducted to verify the effectiveness of
our method. The experimental results show that the absolute accuracy of the point clouds obtained
by our method is improved by 77.46% on average compared with the other three algorithms in the
environment, conforming to the MW assumption, which verifies the effectiveness of the algorithm.

Keywords: simultaneous localization and mapping (SLAM); planar constraint; Manhattan World
assumption; indoor scenes

1. Introduction

Three-dimensional spatial information is an essential part of geographic information.
With the development of light detection and ranging (LiDAR) sensors, it has been possible
to acquire high-precision 3D LiDAR point cloud data in outdoor environments with good
global navigation satellite system (GNSS) signals based on LiDAR combined with GNSS
and the inertial navigation system (INS) or inertial measurement unit (IMU) technologies.
However, acquiring high-precision 3D LiDAR point cloud data in indoor and other GNSS-
denied environments is still one of the research hotspots. In recent years, the development
of simultaneous localization and mapping (SLAM) technology has brought new ideas to
solve this hotspot problem. SLAM refers to simultaneous localization and mapping, a
technique for the carrier pose estimation and map construction in unknown environments.
According to the different sensors used, SLAM can be divided into visual SLAM based on
sensors such as cameras and LiDAR SLAM based on LiDAR sensors. Visual SLAM [1,2]
has high localization accuracy but is more sensitive to changes in illumination and the
viewing angle. LiDAR SLAM is not affected by changes in illumination and viewing angle,
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and LiDAR has a high-ranging accuracy. LiDAR can be divided into mechanical LiDAR
and non-mechanical LiDAR according to the internal structure, and mechanical LiDAR can
be divided into single-line LiDAR and multi-line LiDAR. Compared with 2D LiDAR SLAM
using single-line LiDAR, 3D LiDAR SLAM using multi-line LiDAR can provide richer 3D
environmental information.

In the field of 3D LiDAR SLAM, scholars have proposed many excellent algorithms.
One of the most influential algorithms is the LiDAR odometry and mapping (LOAM)
algorithm [3], which views 3D LiDAR SLAM as a framework combining a high-frequency,
low-accuracy front-end module with a low-frequency, high-precision back-end module. In
the front-end module, feature points (both edge point and surface point types) are extracted
for each frame of acquired point cloud data, and the extracted feature points are later used
to match between frames to construct the LiDAR odometry. In the back-end module, the
bit pose of the front-end odometer output is optimized, and the environmental map is
constructed using the results from multiple scan matching. The LOAM algorithm does not
have a loop closure module and cannot effectively constrain the cumulative error. The LIO-
SAM [4] algorithm further improves the LOAM algorithm by constructing a tightly coupled
LiDAR-IMU odometry framework with factor maps and supporting the introduction of
GNSS observations to correct cumulative errors and using IMU observations to motion
compensate the LiDAR observations to remove distortions. The algorithm achieves real-
time performance using a sliding window-based scan-matching method. The LIO-SAM
algorithm has obtained higher accuracy point cloud maps in some outdoor scenarios with
the help of GNSS to constrain the localization error. However, in indoor scenarios without
a priori constraints or scenarios with poor GNSS signals, only loop closure constraints can
be relied on to correct the accumulated positional estimation errors. A Euclidean distance
threshold triggers the loop closure constraint, which needs to be more robust. The authors
of [5] introduced descriptors to improve the loop closure part of LIO-SAM to enhance
the robustness and speed of the loop closure part of the original algorithm, but the loop
closure constraint will only be triggered when revisit occurs, and the constraint is limited
for large scenes or no revisit environments. Unlike the LOAM algorithm and its variants,
FAST-LIO2 [6] does not extract feature points for each acquired LiDAR point cloud frame
and directly align the original point cloud with the point cloud submap. It introduces more
point cloud features to improve the matching accuracy and uses an incremental k-d tree
structure to ensure computational efficiency to achieve real-time performance. However,
FAST-LIO2 does not have a loop closure module and does not support the introduction of
GNSS observations, so it lacks effective constraints in large open scenarios.

Although the above methods have high accuracy in environments with good GNSS
signals or rich features, high-accuracy point cloud maps cannot be obtained in structured
and GNSS-denied environments such as corridors and parking lots. Many studies have
attempted to address this issue. The LeGO-LOAM [7] algorithm uses a segmentation
clustering method to extract the ground in the front-end part for the ground unmanned
vehicle LiDAR parallel to the ground, increasing the constraint on the ground and reducing
the error in the z-direction. However, the algorithm requires that the LiDAR be parallel
to the ground and only apply to some ground unmanned vehicles. Research by [8–10]
added geometric feature constraints such as lines and planes to improve the robustness
and accuracy of the system in vision-based and LiDAR-based SLAM frameworks, respec-
tively. The research by [11] also focuses on geometric feature constraints. It used the
nearest point representation proposed in [10] to represent the plane, successively fitted
the plane corresponding to the ground point cloud and constructed the ground constraint
based on the plane relationship of the fitted ground between two different frames to im-
prove the elevation offset problem of the LiDAR SLAM estimated poses in the indoor
parking environment.

The above method constructs constraints by introducing geometric information. Al-
though it has some positive effects, the improvement in accuracy is still limited because the
geometric features used to construct the constraints come from the current local submap.
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Cumulative errors have been introduced during the construction of the local submap.
A structured environmental assumption can be introduced to better constrain the pose
estimation of SLAM using geometric information in the current environment, such as
the MW assumption [12]. The introduction of the MW assumption is a presupposition
of the environment, so it avoids the introduction of geometric constraints along with the
introduction of pre-existing cumulative errors. The MW assumption proposes the existence
of structured features in the artificial environment, i.e., the existence of a large number
of parallel and perpendicular relationships, which can be summarized as the existence of
three main directions in the environment where the artificial buildings are always identical
and orthogonal to each other. In the real world, many structured scenes (e.g., parking lots,
corridors, etc.) can be regarded as conforming to the MW assumption, so the three main
directions of the MW assumption can be used to assist and improve SLAM in these scenes.
In the field of visual-based SLAM, many researchers have already conducted in-depth
research on visual SLAM algorithms aided by the MW assumption. The research by [13–16]
improved the visual-based SLAM framework based on the structured features of the envi-
ronment expressed by the MW assumption to improve the drift and increase the accuracy
in low-texture environments. The authors of [17] used structured lines as new features in
the MW to complete map construction and localization, and the accuracy and robustness
of the system were improved due to the introduction of directionality constraints. The
research by [18] proposed a visual-inertial odometer based on multiple Manhattan Worlds
overlaying the environment, further improving the generality of the method. In the field
of LiDAR SLAM, there are still few related studies. The authors of [19] used the MW
assumption to extract orthogonal planes and generate plane-based maps, which are more
convenient for subsequent path planning while occupying less memory. However, the
algorithm is more focused on the real-time performance of the system rather than accuracy.

In the MW assumption-based SLAM approach, one core task is extracting the planes
in the current environment to construct screen constraints. The random sample consensus
(RANSAC) algorithm [20,21] is a commonly used method for plane extraction, which is
more robust to outliers and still gives good extraction results in the presence of a small
number of outliers. For the case where the environment contains multiple planes, the point
cloud can also be segmented using the Hough transform [22] or a point cloud segmentation
method such as the region growth method [23] before plane extraction.

Considering the above problems and existing studies, this paper introduces the MW
assumption to express the regular geometric features in the environment. We propose
a planar constraint method based on LiDAR in the environment conforming to the MW
assumption. This method adopts different processing strategies for the ground and vertical
planes, such as walls and columns. It divides the six-degree freedom pose estimation
problem of {roll, pitch, yaw, x, y, z} into two sub-problems {roll, pitch, z} three-degree
of freedom pose estimation and {yaw, x, y} three-degree of freedom pose estimation,
which improves the accuracy and robustness of the system. Furthermore, in the non-MW
assumption environment, the present method will stop functioning due to the non-detection
of a plane that matches the threshold. Still, it will not affect the regular operation of the rest
of the SLAM system. The main contributions of this paper are as follows:

1. A planar constraint method based on the MW assumption for ground and vertical planes
separately is designed to introduce planar constraints in the LiDAR SLAM framework.

2. A two-step strategy for calculating and updating the main direction angles for the
vertical plane is used to avoid the introduction of errors in the unoptimized plane by
lagging the update of the main direction angles.

3. Based on the backpack laser scanning system, we collected real data in the indoor
parking lot, corridor, and outdoor environments and used the mapping method
to obtain the absolute coordinates of the manually set target points in the above
environments. The quality and absolute accuracy of the point clouds obtained by
three LiDAR SLAM algorithms with good performance and wide application at
present, and our method in the above dataset are evaluated. The experimental results
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show that this method achieves better accuracy in all environments conforming to the
MW assumption.

The remainder of this paper is organized as follows: Section 2 proposes a method
for constructing planar constraints based on the MW assumption. Section 3 verifies the
proposed method using a backpack laser scanning system to collect data. Section 4 provides
a discussion of the proposed method in this paper. Finally, Section 5 concludes this study.

2. Methodology

The overall flow of the planar constraint algorithm based on the MW assumption is
shown in Figure 1. The method in this paper is implemented based on the LIO-SAM [4]
algorithm framework. For the raw data containing LiDAR data, IMU data, and GNSS data,
each frame of the point cloud is first processed by the front-end module of the LIO-SAM
algorithm. Whenever k frames of point clouds are accumulated, they are combined into a
point cloud submap. For this submap, three steps are performed: (1) calculate the main
direction angle; (2) construct the planar constraint; (3) solve the planar constraint, to add
the planar constraint to the system. The planar constraint optimizes the results of the pose
estimation together with other constraints in LIO-SAM such as closed-loop, and ultimately,
constructs a globally consistent optimized point cloud map. The specific procedure of the
method in this paper is explained in this section.
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2.1. Main Direction Angle Calculation

This part corresponds to the main direction angle calculation module shown in the
dashed box in Figure 1. In this part, the point cloud submap previously obtained by
merging the k-frame point clouds will be processed, and the main direction angle of the
current point cloud submap will be calculated. The main direction angle will be used to
construct subsequent planar constraints.

2.1.1. Pre-Processing

LiDAR acquires many raw points in data acquisition, which brings redundant infor-
mation and increases the computational effort in point cloud processing. This paper divides
the three mutually orthogonal Manhattan main directions into one main longitudinal direc-
tion and two main horizontal directions. To obtain the two types of main directions, plane
fitting and normal estimation are required for the vertical and ground planes, respectively.
Removing the point clouds at the floor and ceiling when processing the vertical plane can
improve the processing efficiency without affecting accuracy. Similarly, removing the rest
of the point clouds when processing the ground will also improve efficiency. Therefore,
the direct-pass filtering of the point cloud submap according to Equation (1), and the point
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clouds within a specific range near (xw, yw, zw) are reserved as the ground submap and the
vertical plane submap respectively:

∣∣xw − pi
x
∣∣ < Thr f ilter

x∣∣∣yw − pi
y

∣∣∣ < Thr f ilter
y∣∣zw − pi

z
∣∣ < Thr f ilter

z

(1)

where (xw, yw, zw) are the carrier position corresponding to the center frame of the input
point cloud submap, pi is the i−th point in the point cloud submap,
Thr f ilter =

{
Thr f ilter

x , Thr f ilter
y , Thr f ilter

z

}
is the threshold value, the threshold value can

be set according to the type of the point cloud submap.
Using the pass-through filter for the point cloud can reduce the computation while

ensuring the algorithm’s accuracy. Still, it cannot effectively remove the possible outliers in
the point cloud, so it is also necessary to perform statistical filtering of the cropped point
cloud based on the Pauta criterion to remove the outliers. That is, the average distance from
each point in the point cloud submap to other points is calculated, the average distance of
each point in the point cloud conforms to the Gaussian distribution, and the mean value of
the Gaussian distribution is calculated. If the mean distance of the point is more significant
than three times the mean value, the point is considered an outlier and is removed.

2.1.2. Plane Fitting

Based on the MW assumption, the ground in different regions within the point cloud
submap can be considered parallel. In the real world, the ground within a small area of a
non-stair region is usually not only parallel but also coplanar. That is, within a point cloud
submap, the ground equations can be considered unique. To make this assumption hold
better, the number of frames that constitute the point cloud submap can be reduced to limit
the range of the point cloud submap.

After pre-processing, the ground and vertical submaps are obtained for convenient
computation. These submaps are stored in point clouds, which only facilitate the direct
description of the planes while taking up many memory resources. Therefore, it is necessary
to use a mathematical model, Equation (2), to fit the point cloud submaps, and the fitting is
performed as described below:

Ax + By + Cz + D = 0 (2)

where A, B, C, and D are the plane coefficients.
Firstly, the ground plane submap will be processed. The RANSAC is used in this

paper to find the parameters of the fitting plane of the ground plane submap. The RANSAC
algorithm is commonly used to estimate the mathematical model from a set of data that best
fits the set of data [24], and the RANSAC algorithm can robustly estimate the mathematical
model even if the data contains a portion of outlier points. The RANSAC algorithm works
by continuously adjusting the parameters of the fitting plane to eliminate the outer points
whose distances to the fitting plane are greater than a threshold and to retain the inner
points whose distances are less than a threshold. At the end of the iteration, we use the
final number of interior points and the mean absolute error (MAE) value to evaluate the
accuracy of the fit [25], where MAE is defined as shown in Equation (3). Determine whether
to use the results of this ground fit according to the rules in Equation (4):

MAE =
∑n

i=1
|A∗xi+B∗yi+C∗zi+D|√

A2+B2+C2

n
(3)

{
MAE < ThrMAE

n > Thrn
(4)
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where (xi, yi, zi) is the coordinate of the i−th point in the point cloud formed by the current
interior points and n is the current number of interior points. ThrMAE and Thrn are the
threshold values.

Next, the vertical plane submap will be processed. There are usually multiple planes
within a vertical plane submap, and these planes are generally not co-planar but only have
spatial relationships, such as being perpendicular or parallel. Therefore, when fitting the
vertical plane submaps, it is necessary to partition the vertical plane submaps. This paper
uses the region-growing method to segment the vertical plane submap. First, estimate the
norm of each point in the vertical plane submap based on a principal component analysis
(PCA) and rank the curvature of each point. Then, the point with the minor curvature is
selected as the initial seed point of the region growth algorithm so that the segmentation
can start from the smoothest region and can improve the efficiency of the region growth
algorithm. After obtaining the segmentation results of the vertical plane, submaps use
the RANSAC algorithm for each segmented vertical plane to find the parameters of the
fitted plane and use the rules in Equation (4) to determine whether to use the results of this
vertical plane fitting.

2.1.3. Calculate the Main Direction Angle

In the MW, the man-made buildings in the environment have three main directions
that are orthogonal to each other, including one ground main direction and two vertical
plane main directions that are perpendicular to the ground main direction and orthogonal
to each other. In this paper, the two vertical plane main directions are converted into
one main direction by their orthogonal relationship, which facilitates the construction of
subsequent planar constraints.

As shown in Figure 2b, the plane normal vector can be obtained from the plane
equation after obtaining the fitted equations of the two planes, the ground, and vertical
plane. The normal vector of the plane (Equation (2)) is

→
n = (A, B, C). In this paper,

the spatial Cartesian coordinate system adopts the carrier coordinate system, i.e., the
coordinate system of horizontal LIDAR(X− Y− Z), as the global coordinate system, which
is schematically shown in Figure 3.
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Figure 3. Schematic diagram of the global coordinate system. This paper uses the horizontal LiDAR
coordinate system as the global coordinate system. The horizontal LiDAR coordinate system is a
right-handed Cartesian coordinate system with the power line orthogonal to the Y direction, the
vertical LiDAR plane upward to the Z direction, and the X direction orthogonal to the Y direction.

In calculating the main direction angle of the plane, we specify the main direction angle
of the vertical plane as the angle between the normal vector of the vertical plane and the OX
axis after projecting it to the XOY plane of the global coordinate system (angle β in Figure 2a).
The main direction angle of the ground is also defined as the angle between the normal vector
of the ground and the OY axis after projection to the YOZ plane of the global coordinate
system (angle α in Figure 2c). The angle α and angle β are defined in Equation (5):{

α = arctan C
B

β = arctan B
A

(5)

where A, B, and C are the coefficients of the plane (Equation (2)). The calculated angle α

and angle β take values in the range of
(
−π

2 , π
2
)
.

Since the direction of the normal vector obtained when using the RANSAC algorithm
to find the fitting parameters of the plane has a duality, the principal direction angle
calculated in the previous step needs to be further processed. Firstly, the ground main
direction angle will be processed. In this paper, only one ground submap is selected within
the scope of a point cloud submap, so there is only one ground main direction angle
corresponding to it. If the previously calculated ground main direction angle is negative,
add π to the angle to transform it into its opposite direction. Convert the ground main
direction angle to a positive value.

Next, the vertical plane main direction angles are processed. As shown in Figure 4,
there may be multiple vertical planes in a point cloud submap, and according to the MW,
the horizontal main direction angles of these planes should be the same. However, in the
actual calculation, there may be mis-segmentation in the plane segmentation due to an
error in fitting the plane. Some vertical planes in the scene do not conform to the MW
assumption, so it is necessary to merge the horizontal main direction angles of multiple
vertical planes in a submap and eliminate a small number of vertical planes that do not
conform to the MW assumption.
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Figure 4. Schematic diagram of the main direction angles of multiple vertical planes within one
submap: (a) shows a schematic diagram of the extracted vertical planes in the corridor scenario
(shown by stitching together the extracted planes from multiple vertical plane submaps); (b) shows a
schematic diagram of the extracted planes corresponding to a point cloud submap.

The two mutually orthogonal vertical plane main direction angles can be converted
to a unified vertical plane main direction angle α by the conversion rule in Equation (6),
α ∈

[
−π

4 , π
4
]
:

α =


α− π

2 , (α > π
4 )

α,
(
−π

4 ≤ α ≤ π
4
)

α+ π
2 ,
(
α < −π

4
) (6)

where α is the vertical plane main direction angle.
Then at this time, there will not be two mutually orthogonal vertical main direction

angles in the range of one point cloud submap. Due to errors or coarse deviations, there
may be different values of the main direction angles for each vertical plane within a point
cloud submap range at this time. The outlier detection method based on the median
absolute deviation is used to reject the outliers for the set {α1,α2,α3, . . . ,αk} of k (k ≥ 1)
and vertical main direction angles within the same point cloud submap range. This method
first calculates the median αm of the k vertical plane principal direction angles and then
calculates the absolute value of the difference between all the main direction angle values in
the set and αm, respectively: {|α1 − αm|, |α2 − αm|, |α3 − αm|, . . . , |αk − αm|}. The median
of these absolute values is the absolute median deviation, denoted as MAD (calculated as
Equation (7)). If αk > αm + nMAD or αk < αm − nMAD (n is the scale factor, n = 1 in this
paper), then αk is determined as an outlier and is removed. The set of m(1 ≤ m ≤ k) vertical
plane main direction angles remaining after eliminating the outliers: {α1,α2,α3, . . . ,αm} is
obtained as the uniform vertical plane main direction value αave of the current point cloud
submap according to Equation (8):

MAD = median(|αi − αm|) (7)

αave =
m

∑
i=1

αi (8)

where αm is the median of the k vertical plane principal direction angles. αi is the i−th
vertical main direction angle. The function median means calculates the median. αave is
the uniform vertical plane main direction value of the current point cloud submap. αi is
the i−th vertical plane main direction angle remaining after excluding the outliers.
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2.2. Constructing Planar Constraints

This part corresponds to the constraint construction module shown in the dashed box
in Figure 1. The main direction angle calculation method discussed in the previous section
is applied to construct the planar constraints. A two-step main direction angle calculation
and update strategy will be used for the vertical plane submaps to avoid possible errors
introduced by unoptimized planes and to calculate the number of corrections based on the
vertical submaps. The optimal correction amount based on the ground plane submap is
calculated by the Gaussian–Newton method. The final six-degree of freedom correction
values are used in the subsequent factor map optimization session.

2.2.1. Construction of Ground Constraints

The construction and solution process of ground constraint is shown in Figure 5. After
calculating the main direction angle for the current ground point cloud submap, we first
judge whether it is the first time to obtain the ground main direction angle. When the
ground main direction angle is obtained for the first time, this direction angle is taken as
the basis main direction angle. For the basis main direction angle, the plane parameters
of the plane point cloud and the average z coordinate value Zave of all points in the plane
point cloud are recorded, which is defined by Equation (9):

Zave =
∑n

i=1 zi

n
(9)

where n is the number of points in the point cloud submap and zi is the z coordinate value
of the i−th point.
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Figure 5. Flow chart of ground constraint construction. The final result is the constraint values of
rollopt, pitchopt, zopt three degrees of freedom.

If the ground main direction angle is not acquired for the first time, the current main
direction angle and the average z coordinate value Zave are thresholds checked. Only
when the absolute value of the angle difference between the current main direction angle
angground

cur and the basis main direction angle angground
basis is greater than Thrground

ang or the
absolute value of the difference between the current average z coordinate value Zave and
the average z coordinate value Zbasis of the point cloud corresponding to the basis main
direction angle is greater than Thrground

z , the current main direction angle data is used as
the new basis main direction angle.
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If the threshold check is not passed, it indicates that the current ground environment
has not changed significantly compared with the ground environment corresponding to the
main direction angle of the basis ground. At this point, the cumulative error is eliminated
by constructing and solving the cost function, using the ground coplanarity condition to
constrain only three degrees of freedom of roll, pitch, and z. The cost function in this paper
is shown as F(X) in Equation (10). Next, the minimization problem min{F(X)} is solved
iteratively using the Gaussian–Newton method:

F(X) = ∑n
i=1 dg(Pi(x))

dg = |Ax0+By0+Cz0+D|√
A2+B2+C2

Pi(x) = R[x, y, z]T +
[
0, 0, zopt

]T

(10)

where X =
[
roll, pitch, zopt

]T is the vector composed of the state volume to be estimated,
xi = [x, y, z]T is the i−th point (n points in total) in the current point cloud, which is
x = [x0, y0, z0]

T after the transformation using the state volume to be estimated, dg is the
distance from (x0, y0, z0) to the plane corresponding to the main direction angle of the
basis ground (Equation (2)), Pi(X) is the transformation relationship before and after each
solution, and R is the rotation matrix obtained by the transformation of rollopt, pitchopt.

Finally, if it converges successfully, the solution result
[
rollopt, pitchopt, zopt

]T will be
saved, and if it does not converge successfully, this constraint will be skipped, and the
solution result will not be saved.

2.2.2. Construction of Vertical Planar Constraints

A two-step vertical plane main direction constraint algorithm shown in Figure 6 is
used. In the first stage, the historical point cloud of k frames before n frames are first
taken to form a submap of the vertical plane point cloud for the calculation of the main
direction angle of the vertical plane. Since the selected historical point clouds are some
time away from the current frame, the constraint and optimization of these frames have
already been optimized. By adopting such a lag update strategy for the vertical plane
main direction angle, the possible errors caused by introducing unoptimized planes can
be avoided. Next, the vertical plane submaps are obtained, and the vertical plane main
directions are calculated using the method in the previous section. If this is the first time
obtaining the vertical plane main direction angle anghistory

i of the historical point cloud
submap, this main direction angle will be added to the basis vertical plane main direction
angle set AngSet, which is defined as shown in Equation (11):

AngSet =
{

anghistory
i

}
(11)

where anghistory
i is the vertical plane main direction angle of the historical frame point cloud

submap acquired for the i−th time.
Use the MAD method mentioned in Section 2.1.3 for AngSet to remove the outliers

and average them as the basis main direction angle angvertical
basis . Otherwise, this angle is

checked, and if the absolute value of the difference between the current main direction
angle angvertical

history and the basis main direction angle angvertical
basis is greater than Thrvertical

ang , then
this main direction angle is added to the set AngSet of the main direction angle of the basis
vertical plane.
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Figure 6. Flow chart of the vertical planar constraint construction. The final result is the constraint
values for the three degrees of freedom yaw, xopt, yopt.

In the second stage, the above method calculates the vertical plane’s main direction
angle composed of the current k-frames point cloud for the vertical plane submap. Next,
the current vertical plane main direction angle angvertical

current is compared with the basis vertical
plane main direction angle angvertical

basis . If the absolute value of the difference between the
two angles is greater than Thrvertical

correct , it is considered that the current threshold condition
is not satisfied and the difference of the main direction angle is not within a reasonable
range, so the current submap is subsequently not processed to avoid the introduction
of wrong constraints.

When the threshold condition is satisfied, it is considered that the difference in the
main direction angle of the current vertical plane submap is within a reasonable range
compared with the historical submap. The constraint is constructed and solved for the
vertical plane submap and based on the main direction angle of the vertical plane, the three
degrees of freedom of yaw, x, y can be constrained. The diagram of constraint construction
is shown in Figure 7, A(xA, yA) is the horizontal position corresponding to the center frame
of the vertical plane submap of the historical frame, B(xB, yB) is the horizontal position
corresponding to the center frame of the current vertical plane submap, and C(xC, yC) is
the new horizontal position of the center frame of the current vertical plane submap after
correcting the main direction angle of the current vertical plane with the main direction
angle of the basis vertical plane.

anglecorrect = arctan
yA − yB
xA − xB

+ angvertical
basis − angvertical

current (12)


xC = xA + sqrt

(
(xA − yA)

2 + (xB − yB)
2
)
∗ cos(anglecorrect)

yC = yA + sqrt
(
(xA − yA)

2 + (xB − yB)
2
)
∗ sin(anglecorrect)

(13)

where angvertical
basis is the basis main direction angle and angvertical

current is the current main direction.
The anglecorrect is the main direction angle of the current vertical plane after correction.
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Figure 7. Schematic diagram of constraint construction for vertical plane submap: (a) shows the
point cloud of the historical vertical plane extracted from a section of the corridor displayed with
the current vertical plane superimposed; (b) shows the schematic diagram of constraint construction
under the scene in (a).

The C(xC, yC) is calculated as shown in Equation (13), where the angle anglecorrect
of the main direction of the current vertical plane after making corrections is calculated
according to Equation (12). After getting the horizontal coordinates of C, the constraint
values for the three degrees of freedom: yawopt, xopt, yopt can be calculated as shown in

Equation (14). The result of the calculation will be saved as
[
yawopt, xopt, yopt

]T :
yawopt = angvertical

basis − angvertical
current

xopt = xC − xB

yopt = yC − yB

(14)

where yawopt, xopt, yopt is the constraint value of the three degrees of freedom.

2.3. Factor Graph Optimization

To solve the drift caused by the error accumulation in the system operation, this paper
uses the six-degree of freedom planar constraint value

{
rollopt, pitchopt, yawopt, xopt, yopt, zopt

}
calculated in the previous subsection to provide inter-frame constraints on the estimated
poses of the system. Based on the existing back-end factor graph optimization framework of
the LIO-SAM algorithm, the state of the system is treated as the quantity to be optimized [4]
and is added to the factor graph in the form of variable nodes. In this paper, planar
constraints are added between variable nodes in the form of factor nodes. Meanwhile,
other constraints in the LIO-SAM system, such as loop closure constraints and LiDAR
inter-frame constraints, are added to the factor graph framework for optimization together
with other constraints. The optimization is performed using incremental smoothing with
Bayesian tree (iSAM2) mapping [26] whenever a new node is added to the factor graph. The
optimization is performed in a sliding window to ensure efficiency. A globally consistent
pose can be obtained by solving the optimal estimation of individual variable nodes. The
final optimized global point cloud map can be obtained using this pose to accumulate the
point cloud in the global coordinate system.

3. Experiment

In this section, we have collected datasets in various environments, including indoor
and outdoor, and tested our method, with four algorithms, LeGO-LOAM, LIO-SAM,
and FAST-LIO2, using these datasets for comparison. To adapt to the backpack laser
scanning system used in this paper, the data input parts of each type of algorithm are
modified accordingly. These modifications do not cause differences in the results of the



Remote Sens. 2023, 15, 15 13 of 25

four algorithms. In the previous section, some parameters included in the method of this
paper are introduced, and the values of these parameters need to be selected according to
the data scenarios. The exact parameter values are shown in Table 1. In the experimental
scenarios of this paper, the parameters in Table 1 apply to each scenario. These parameters
were obtained by the trial-and-error method. Since the parameters for the same function
in different algorithms took the same values in this paper’s qualitative and quantitative
experiments, the choice of parameters does not affect the experimental results. The default
values are used for each parameter of other algorithms.

Table 1. Table of parameter values.

Variable Value

k 10
Thr f ilter(Ground plane) (1,1,1.5)
Thr f ilter(Vertical plane) (20,20,0.5)

ThrMAE 0.01
Thrn 10

Thrground
ang 1.5

Thrground
z 0.2
n 200

Thrvertical
ang 1

Thrvertical
correct 2

3.1. Data Description

To verify the effectiveness of the method proposed in this paper, the raw data were
collected in three real environments: an outdoor campus, an indoor corridor, and an
underground parking, lot using the backpack laser scanning system shown in Figure 8.
The device contains two sixteen-line LiDARs, an IMU with a frequency of 200 Hz, and a
GNSS receiver. The calibration has been done manually between the LiDAR, IMU, and
GNSS receiver.
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Figure 8. Backpack laser scanning system. Includes two Velodyne VLP-16 LiDARs (horizontally
and tilt mounted, respectively), built-in imu at 200 Hz, GNSS receiver, a communication module for
receiving GNSS differential data, and battery.

The experimental data set (shown in Figure 9) consists of three sets of data collected in
the three different environments mentioned above. Figure 9a shows the data collected in an
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above-ground indoor environment containing a straight corridor of approximately 70 m in
length and a manually leveled floor. Figure 9b shows the data collected in an underground
parking lot containing vehicles, columns, walls, and artificially leveled floors. This paper
considers the corridor and underground parking lot datasets as two typical environments
that conform to the MW assumption. We will test the performance of our method in these
two datasets. The data shown in Figure 9c are collected in the campus environment, which
is not considered a typical environment in conforming to the MW assumption because it
contains more structures that do not conform to the MW assumption, such as vehicles, trees,
streetlights, etc. We hope to test the impact of the non- MW assumption environment on the
method in this dataset. The acquisition time, trajectory length, and the maximum change of
ground elevation during the acquisition for the three datasets are shown in Table 2. Since
the GNSS signals in some sections of the campus dataset were obscured by trees and so on,
and the true value data with sufficient accuracy could not be obtained, three sub-datasets
with good GNSS signals were selected in the campus dataset, and the details of the three
sub-datasets are shown in Table 3.
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Figure 9. Experimental dataset real-world images: (a) is an actual image of the corridor dataset; (b) is
an actual image of the parking lot dataset; (c) is an actual image of the campus dataset.

Table 2. Data set details.

Dataset Duration (s) Trajectory Length (m) Elevation Change (m)

Corridor 657.7 412.89 0
Underground

Parking 774.5 621.109 0

Campus 950.0 935.088 2.26

Table 3. Sequence details of the campus dataset.

Dataset Timestamp (s) Duration (s)

Campus-01 105,981.6~106,180.1 198.5
Campus-02 106,480.1~106,650.1 170.0
Campus-03 106,850.1~106,929.1 79.0

In acquiring the three datasets, a segment was acquired in the area with an excellent
outdoor GNSS signal. The GNSS trajectory corresponding to this SLAM output trajectory
was obtained (the GNSS data were differentially processed to improve the accuracy) so
that the conversion relationship between the SLAM global coordinate system and the
WGS84 coordinate system provided by GNSS could be derived using these two segments.
Therefore, point cloud maps in the WGS84 coordinate system can be obtained for all three
experimental datasets. The ground part of the data used to derive the trajectory conversion
relationship has been manually cut out for the corridor and parking lot datasets. This part
of the data is not discussed in the experimental part. The experimental data were processed
on a computer with an Intel Core i5-11400H @ 2.7 GHz processor and 16 GB RAM.
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3.2. Evaluation Indicators

To compare the performance of the two algorithms in real environments, the reflective
markers shown in Figure 10 are placed in two GNSS-denied environments, the corridor,
and the underground parking lot. The significant laser reflectivity of the reflective markers
allows us to find them from the point cloud map using the intensity view of the point
cloud. The reflective markers have been placed as evenly and adequately as possible in
the GNSS-denied environment. We obtained the absolute coordinates of these reflective
markers in the WGS84 coordinate system in three axes by mapping methods using a total
station and other measuring instruments. In the quantitative experiments, this coordinate
value is used as the true value to evaluate the accuracy of these two indoor scenes.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 25 
 

 

campus dataset have good GNSS coverage to obtain the true values, the quantitative 

evaluation of the campus dataset is performed only for these three sub-datasets. 

Furthermore, trajectory plots, as well as error distribution plots, were performed using 

the EVO evaluation tool [27]. 

This paper uses the root mean square error (RMSE) for quantitative experiments as 

an accuracy evaluation metric and measures the algorithm performance by this metric. In 

this paper, RMSE represents the error between the coordinates obtained by manually 

selecting the center of the ground marker point cloud and measuring the true value in the 

point cloud map output by SLAM. For the 𝑖 − th reflective marker, if its coordinates in the 

point cloud map are (𝑥𝑖
𝑚, 𝑦𝑖

𝑚, 𝑧𝑖
𝑚),and the corresponding true value is (𝑥𝑖

𝑡 , 𝑦𝑖
𝑡 , 𝑧𝑖

𝑡), then the 

RMSE is calculated as shown in Equation (15): 

𝑅𝑀𝑆𝐸 = √
1

𝑛𝑢𝑚𝑡
∑ [(𝑥𝑖

𝑚 − 𝑥𝑖
𝑡)2 + (𝑦𝑖

𝑚 − 𝑦𝑖
𝑡)2 + (𝑧𝑖

𝑚 − 𝑧𝑖
𝑡)2]

𝑛𝑢𝑚𝑡

1
 (15) 

where 𝑛𝑢𝑚𝑡 is the total number of reflective marks placed in this scene. 

 

Figure 10. Reflective markers. The coating on the surface of this sign gives it a greater laser 

reflectivity, enabling it to be identified in the point cloud map by its intensity. 

3.3. Qualitative Experiments 

This paper analyzes three datasets using our method and three other algorithms. In 

this subsection, the proposed method will be evaluated qualitatively from two aspects: 

the evaluation of the vertical plane extraction effect and the evaluation of the ground 

constraint effect. The effectiveness of our method is evaluated by comparing the trajectory 

analysis with other methods. The point clouds obtained using our method for the three 

datasets are shown in Appendix A, and the point clouds are assigned according to the 𝑍 

coordinate values. 

3.3.1. Vertical Plane Extraction Evaluation 

The results of vertical plane extraction for the three datasets using the method 

proposed in this paper are shown in Figure 11, where the point clouds are color assigned 

according to the intensity values. Results (a–d) show the elevation extraction results for 

the corridor and the underground parking lot datasets. Combining the top view and front 

view, we can see that for the corridor and parking lot, which conforms with the 

assumption of the MW, the vertical plane extraction method in this paper can extract the 

vertical planes in the scene more completely and can reflect the general outline of the 

scene. The extracted planes have no floor or ceiling, so the extraction accuracy is good. 

The red boxes mark some structures within the two types of scenes that do not conform 

to the MW assumption. Thanks to this paper’s statistical-based principal orientation angle 

extraction strategy, even if a few structures within the scenes do not conform to the 

assumptions, they do not significantly impact the basis main direction angle values. Since 

the campus dataset is not a typical environment conforming to the MW assumption, only 

a small number of vertical planes are extracted in this dataset. Results (e) and (f) show the 

Figure 10. Reflective markers. The coating on the surface of this sign gives it a greater laser reflectivity,
enabling it to be identified in the point cloud map by its intensity.

This paper uses a backpack laser scanning system for outdoor scenes to obtain the
GNSS data. It gets more accurate trajectory coordinate data by surveying and mapping
post-processing with the data output from an additionally placed GNSS reference station.
These trajectory coordinate data are used as the true value to evaluate the accuracy of the
outdoor scenes in the quantitative experiments. Since only three sub-datasets of the campus
dataset have good GNSS coverage to obtain the true values, the quantitative evaluation of
the campus dataset is performed only for these three sub-datasets. Furthermore, trajectory
plots, as well as error distribution plots, were performed using the EVO evaluation tool [27].

This paper uses the root mean square error (RMSE) for quantitative experiments as an
accuracy evaluation metric and measures the algorithm performance by this metric. In this
paper, RMSE represents the error between the coordinates obtained by manually selecting
the center of the ground marker point cloud and measuring the true value in the point
cloud map output by SLAM. For the i−th reflective marker, if its coordinates in the point
cloud map are

(
xm

i , ym
i , zm

i
)
, and the corresponding true value is

(
xt

i , yt
i , zt

i
)
, then the RMSE

is calculated as shown in Equation (15):
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(15)

where numt is the total number of reflective marks placed in this scene.

3.3. Qualitative Experiments

This paper analyzes three datasets using our method and three other algorithms. In
this subsection, the proposed method will be evaluated qualitatively from two aspects:
the evaluation of the vertical plane extraction effect and the evaluation of the ground
constraint effect. The effectiveness of our method is evaluated by comparing the trajectory
analysis with other methods. The point clouds obtained using our method for the three
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datasets are shown in Appendix A, and the point clouds are assigned according to the
Z coordinate values.

3.3.1. Vertical Plane Extraction Evaluation

The results of vertical plane extraction for the three datasets using the method pro-
posed in this paper are shown in Figure 11, where the point clouds are color assigned
according to the intensity values. Results (a–d) show the elevation extraction results for
the corridor and the underground parking lot datasets. Combining the top view and
front view, we can see that for the corridor and parking lot, which conforms with the
assumption of the MW, the vertical plane extraction method in this paper can extract the
vertical planes in the scene more completely and can reflect the general outline of the scene.
The extracted planes have no floor or ceiling, so the extraction accuracy is good. The red
boxes mark some structures within the two types of scenes that do not conform to the MW
assumption. Thanks to this paper’s statistical-based principal orientation angle extraction
strategy, even if a few structures within the scenes do not conform to the assumptions, they
do not significantly impact the basis main direction angle values. Since the campus dataset
is not a typical environment conforming to the MW assumption, only a small number of
vertical planes are extracted in this dataset. Results (e) and (f) show the partial elevation
extraction results of this dataset. In the environment that does not conform to the MW
assumption, the facade constraint module of this paper only works in the few cases that
conform to the threshold set by the method of this paper and do not affect the system in
the rest of the cases.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 25 
 

 

partial elevation extraction results of this dataset. In the environment that does not 

conform to the MW assumption, the facade constraint module of this paper only works in 

the few cases that conform to the threshold set by the method of this paper and do not 

affect the system in the rest of the cases. 

  
(a) (b) 

 
(c) 

   
(d) (e) (f) 

Figure 11. The results of vertical plane extraction for the three datasets: (a,b) are the results of 

corridor dataset extraction, (c,d) are the results of parking lot dataset extraction, and (e,f) are the 

results of campus dataset extraction. (a,c,e) are the top view, (b,d,f) are the front view. 

3.3.2. Ground Constraint Evaluation 

After ground constraining the three datasets using the method in this paper, the 

ground point clouds obtained are compared to the ground point clouds obtained through 

the other algorithms in terms of elevation, as shown in Figure 12, and the point clouds are 

color assigned according to the elevation values (𝑍  coordinate values). Although the 

LeGO-LOAM algorithm constrains the ground, it is designed explicitly for ground-based 

unmanned vehicles. It requires the LiDAR to be installed at a position approximately 

parallel to the ground or to convert its data to be approximately parallel to the ground. 

Our backpack laser scanning system does not meet the requirements of this algorithm 

well, so the LeGO-LOAM algorithm performs poorly in all three dataset species. In the 

corridor dataset, due to the small environmental elevation change, the ground point 

clouds (b), (c), and (d) obtained by the other methods do not show significantly different 

elevation trends, except for the LeGO-LOAM result (a), which shows a significant ground 

elevation change. However, the blue color from left to right in (b) and (c) gradually 

deepens, representing the gradual decrease of ground elevation. The color distribution in 

(d) obtained by our method is more uniform and consistent with the actual situation of no 

change in the corridor elevation. In the underground parking lot dataset, there is no 

significant change in the ground elevation in the actual environment. The color 

distribution of the ground point cloud shown in (g) obtained by our method is uniform 

and consistent with the actual elevation change. The point clouds in (e) and (f) have a 

Figure 11. The results of vertical plane extraction for the three datasets: (a,b) are the results of corridor
dataset extraction, (c,d) are the results of parking lot dataset extraction, and (e,f) are the results of
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3.3.2. Ground Constraint Evaluation

After ground constraining the three datasets using the method in this paper, the
ground point clouds obtained are compared to the ground point clouds obtained through
the other algorithms in terms of elevation, as shown in Figure 12, and the point clouds
are color assigned according to the elevation values (Z coordinate values). Although the
LeGO-LOAM algorithm constrains the ground, it is designed explicitly for ground-based
unmanned vehicles. It requires the LiDAR to be installed at a position approximately
parallel to the ground or to convert its data to be approximately parallel to the ground. Our
backpack laser scanning system does not meet the requirements of this algorithm well, so
the LeGO-LOAM algorithm performs poorly in all three dataset species. In the corridor
dataset, due to the small environmental elevation change, the ground point clouds (b), (c),
and (d) obtained by the other methods do not show significantly different elevation trends,
except for the LeGO-LOAM result (a), which shows a significant ground elevation change.
However, the blue color from left to right in (b) and (c) gradually deepens, representing the
gradual decrease of ground elevation. The color distribution in (d) obtained by our method
is more uniform and consistent with the actual situation of no change in the corridor
elevation. In the underground parking lot dataset, there is no significant change in the
ground elevation in the actual environment. The color distribution of the ground point
cloud shown in (g) obtained by our method is uniform and consistent with the actual
elevation change. The point clouds in (e) and (f) have a significant elevation change from
left to right, and the point cloud on the left is significantly lower than the point cloud on the
right and in the middle. In this dataset, the LeGO-LOAM algorithm cannot obtain typical
point clouds. In the campus dataset, the actual environment has ground height undulations,
and the results (k), (i), and (j) obtained by our method reflect the real environmental
elevation changes to some extent, and (h) shows a noticeable point cloud distortion.
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Figure 12. Comparison of ground elevation of three datasets: (a–d) are the corridor dataset, (e–g) are
the underground parking lot dataset, and (h–k) are the campus dataset.

The trajectories and trajectory coordinates obtained using the method in this paper
and the other methods are shown in Figures 13 and 14. Because the trajectories obtained
by LeGO-LOAM and the other three methods are too different, we do not depict the
trajectory coordinates of the LeGO-LOAM algorithm in Figure 14 to better describe the
trajectory details of the other three algorithms. It can be seen more clearly from the trajectory
variations that the trajectories obtained by our method better reflect the elevation variations
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of the real environment in the corridor dataset and the underground parking lot dataset.
In the campus environment, the elevation change trend of our method is similar to that
of LIO-SAM and FAST-LIO2 at the significant elevation change. It only plays the role of
ground constraint at the slight elevation undulation. The elevations of the LIO-SAM and
FAST-LIO2 trajectories differ significantly from those of the present method near the time
stamp 106,400 s. We will further explore this issue in our quantitative analysis.
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Figure 13. Three datasets of various methods of trajectory comparison: (a) is the trajectory comparison
of the corridor dataset; (b) is the trajectory comparison of the underground parking dataset; (c) is the
trajectory comparison of the campus dataset.
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Figure 14. Comparison of trajectory coordinates of various methods for three datasets: (a) is the
comparison of trajectory coordinates of the corridor dataset; (b) is the comparison of trajectory
coordinates of the underground parking dataset; (c) is the comparison of trajectory coordinates of the
campus dataset.

Combined with the above analysis, in structured environments such as corridors and
parking lots, the ground constraint method in this paper can better reflect the elevation
changes of the real environment. In unstructured environments such as campuses, the
ground constraint method in this paper will only work in those parts that conform to the
MW assumption.

3.4. Quantitative Experiment

For the corridor dataset and the underground parking lot dataset, we use Equation (15)
to calculate the RMSE values of the reflective marks in the point clouds as a metric to
quantitatively evaluate the quality of the point cloud maps for these two datasets. To
more clearly reflect the method’s performance in this paper, we calculate the RMSE of the
reflected signs in the X, Y, and Z directions, respectively, and also calculate the RMSE of the
coordinates to describe the overall error.

Although the corridor and underground parking lot datasets included a small portion
of the above-ground environment at the time of acquisition, our quantitative evaluation
focused only on the indoor part of these two datasets. The RMSEs of the reflection signs
for the four methods are shown in Table 4, with “/” indicating that valid results could
not be obtained. There is no GNSS signal indoors or a lack of constraint, so the accuracy
of the three methods, LeGO-LOAM, LIO-SAM, and FAST-LIO2, is poor, especially the
error in the z-direction, which is significant. In this paper, except for the x-direction of
the corridor dataset, the method achieves optimal accuracy in other directions of both
datasets and the overall error. The accuracy is greatly improved compared with the other
three methods. Compared with the LeGO-LOAM, LIO-SAM, and FAST-LIO2 methods,
the overall errors of this paper’s method are reduced by 99.5%, 73.4%, and 93.4% in the
corridor data set, and 41.4% and 79.6% in the underground parking lot data set, respectively.
Therefore, the method in this paper has high accuracy in the environment that conforms
to the MW assumption.

For the campus dataset, we calculate the RMSE of the trajectories obtained by the other
three types of methods and the trajectories obtained by this paper relative to the ground
truth in each of the three sub-datasets with good GNSS coverage (as shown in Table 5),
and then plot the distribution of the errors in the trajectories as shown in Figure 15. The
accuracy of this paper’s method on the Campus-01 dataset and the Campus-03 dataset
differs less from the optimal results in an environment such as the campus dataset, which
does not conform to the MW assumption. The RMSE of this method increases by 1.1 cm in
the Campus-01 dataset and by 0.9 cm in the Campus-03 dataset compared to the optimal
method, while the RMSE of this method increases by 9.2 cm in the Campus-02 dataset.
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The decrease in accuracy may be due to the error optimization caused by the fact that our
parameter settings are the same throughout the entire dataset, in conjunction with our
discussion of the significant difference between the point cloud elevations obtained by this
method and other methods near the time stamp 106,400 s in our qualitative experiments.
We will discuss this issue further in Section 4.

Table 4. Corridor dataset and underground parking dataset point cloud reflection sign RMSE(m).

Dataset Indicator LeGO-LOAM LIO-SAM FAST-LIO2 Ours

Corridor

X-axis error 11.123 0.046 0.113 0.084
Y-axis error 8.522 0.268 0.238 0.115
Z-axis error 30.784 0.567 2.503 0.087

Overall error 33.823 0.629 2.516 0.167

Underground
Parking

X-axis error / 0.239 1.187 0.123
Y-axis error / 0.149 0.202 0.064
Z-axis error / 0.417 0.796 0.260

Overall error / 0.503 1.443 0.295
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Figure 15. The distribution of the errors in the trajectories obtained by the method in this paper
compared with the ground truth in the three sub-datasets of the campus dataset is plotted in the
trajectories. Where (a) corresponds to sub-dataset Campus-01, (b) corresponds to sub-dataset Campus-
02, (c) corresponds to sub-dataset Campus-03.
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Table 5. Trajectory RMSE errors (m) for the campus dataset.

Dataset LeGO-LOAM LIO-SAM FAST-LIO2 Ours

Campus-01 0.921 0.048 0.058 0.059
Campus-02 0.205 0.090 0.067 0.159
Campus-03 / 0.052 0.036 0.045

4. Discussion

This paper hopes to introduce additional constraints to the system to enhance the
stability and robustness of the LiDAR SLAM system. Based on this, we use the MW
assumption to find the parallel–perpendicular relationship between the planes of man-
made buildings and introduce it into the LiDAR SLAM system as an a priori constraint. We
believe that this work can be applied and can improve the accuracy in many scenarios such
as parking lots, indoor rooms, long corridors, etc. Although there have been some planar
constraint algorithms for vision-based SLAM, this effective idea of introducing additional
constraints in the field of LiDAR SLAM has not been widely studied.

The method in this paper may be mis-extracted when performing vertical plane
extraction. There may be a small number of structures in the scene that do not conform to
the MW assumption and thus, are susceptible to interference from these coarse differences
in the main direction angle calculation. To eliminate these coarse differences, we adopt a
statistical-based two-step principal direction angle calculation and an updating strategy for
the elevations to improve the stability and robustness of the system. The possible errors
introduced by the unoptimized planes are avoided by lagging the update of the main
direction angle. The setting of parameters affects the performance of our method. For
scenarios that conform to the assumptions, the structured features, such as the parallel
perpendicularity of the planes, are more obvious, and there is no need to change the
parameters in the process. However, for environments that do not conform to the MW
assumption, it may be necessary to use different parameters at different locations within
a dataset to cope with the environmental changes, as the environment is more diverse.
Therefore, in the experiments for the campus scenario in Section 3.3, there will be an
increase in trajectory for the errors in the Campus-02 dataset, which may be caused by
inappropriate parameter settings, such as an overly large update thresholds for the ground
main direction angle. Too large an update threshold will reduce the ability of the method in
this paper to describe the real environment terrain. Still, too small a ground main direction
angle update threshold will have frequent main direction angle updates. When the main
direction angle is updated, it is usually in some undulating terrain area. Since the old
ground main direction angle no longer applies to the current environment, only the ground
main direction angle can be updated, and no constraints can be added. Therefore, frequent
main direction angle updates will reduce the constraints.

In the previous paper, we did not discuss the algorithm’s time efficiency due to the sig-
nificant time consumption in planar extraction, so the method in this paper cannot achieve
real-time performance yet. Currently, the method in this paper still needs 1~1.5 times the
acquisition time to complete the calculation.

5. Conclusions

In this paper, a planar constraint-assisted LiDAR SLAM algorithm based on the MW
assumption is proposed. Planes are extracted based on the priori knowledge of parallel–
perpendicular relationships between planes in the environment. Main direction angles are
computed to provide additional constraints for a SLAM state estimation. A statistically
based planar main direction angle update strategy is designed to enhance robustness to
the small number of structures in the scene that do not conform to the MW assumption.
We have collected data and completed qualitative and quantitative experiments using a
backpack laser scanning system in various indoor and outdoor environments. We also
investigate the performance of our method in a non-MW assumption environment. The
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results show that our method can improve the accuracy in environments that conform to
the MW assumption and has good stability and robustness for environments with a small
number of unstructured objects.

In the subsequent work, on the one hand, we will aim to make fuller use of the planar
features in the scene to improve the front-end odometer’s performance and reduce the
system’s cumulative error. We will also simplify the plane extraction process and remove
the redundant planar constraints to improve the real-time performance of the system. On
the other hand, we will conduct a more in-depth study on the environments that do not
conform to the MW assumption to find more general and robust planar constraint methods.
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