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Abstract: In remote sensing, the fusion of infrared and visible images is one of the common means of
data processing. Its aim is to synthesize one fused image with abundant common and differential
information from the source images. At present, the fusion methods based on deep learning are
widely employed in this work. However, the existing fusion network with deep learning fails
to effectively integrate common and differential information for source images. To alleviate the
problem, we propose a dual-head fusion strategy and contextual information awareness fusion
network (DCFusion) to preserve more meaningful information from source images. Firstly, we extract
multi-scale features for the source images with multiple convolution and pooling layers. Then, we
propose a dual-headed fusion strategy (DHFS) to fuse different modal features from the encoder. The
DHFS can effectively preserve common and differential information for different modal features.
Finally, we propose a contextual information awareness module (CIAM) to reconstruct the fused
image. The CIAM can adequately exchange information from different scale features and improve
fusion performance. Furthermore, the whole network was tested on MSRS and TNO datasets. The
results of extensive experiments prove that our proposed network achieves good performance in
target maintenance and texture preservation for fusion images.

Keywords: image fusion; infrared image; visible image; target maintenance; texture preservation

1. Introduction

Due to certain limitations in the theory and technology of hardware devices [1], im-
ages obtained by a single sensor can not adequately display scene information. Therefore,
image fusion technologies come into being and its purpose is to integrate the meaningful
information for different modal images. Image fusion includes multi-modal image and
digital photographic image fusion because of the existence of modal differences. Images
from different sources of the same scene contain a wealth of complementary information.
Moreover, image fusion has been widely applied in a wide range computer vision tasks,
such as military operations, object detection [2], object tracking [3], pedestrian recogni-
tion [4] and semantic segmentation [5]. Due to the different imaging mechanisms of the
sensors, the scene information for infrared and visible images has certain differences in
contrast and texture. The infrared images can hold a certain level of sharpened thermal
targets, but other targets that do not generate heat are easily overlooked. Conversely, visible
images provide more texture detail and better visual performance. So, fusing the two type
of images can obtain more all-round information compared with a single image, which is
very meaningful for the previously mentioned tasks.

At present, many fusion methods already exist, both in traditional methods [6–11]
and deep-learning-based methods. Through principles of mathematics, the traditional
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fusion method mainly transforms the source image to the transform domain. Further,
it measures the activity level and designs fusion strategies in the domain to integrate
information. The fusion methods include five categories, i.e., multi-scale decomposition-
based methods [12,13], subspace clustering-based methods [14], sparse representation-
based methods [15], optimization-based methods [16] and hybrid methods [17]. However,
the development of traditional fusion algorithms has entered a bottleneck period. Firstly,
the transformation or representations methods used by traditional methods are becoming in-
creasingly complex, which does not meet the needs of real-time computer applications [18].
Secondly, the measurement of hand-crafted activity level and fusion methods cannot adapt
complex scenarios. Moreover, the heat radiation information of infrared images is char-
acterized with pixel intensity and the detail information of visible images is described by
edges and gradients. Since different source images have different image characteristics,
the traditional fusion method may lead to loss of feature diversity and the fused image
may produce certain artifacts. These drawbacks make the design of fusion rules in the
traditional way more difficult and complex.

To alleviate the shortcomings of traditional methods, fusion algorithms with deep
learning are rapidly emerging. The methods include the three key elements: feature extrac-
tion, fusion strategy and data-driven training. In deep learning, feature extraction is used to
obtain deep representations of the source image by multiple convolution layers. Different
fusion strategies also have significant influence on the fused image. In [15,19], the deci-
sion map of the source images are acquired by sparse representation and neural network.
The fused images are obtained by using the decision map and suitable post-processing.
Although these methods have achieved certain effects, the design of fusion strategies and
post-processing is relatively difficult. Therefore, some end-to-end convergence frameworks
are proposed, i.e., FusionGAN [20], FusionGANv2 [8] and DDcGAN [21]. Based on adver-
sarial learning, the framework overcomes shortcomings such as artificial features and fusion
strategies. However, these methods fail to adequately preserve image details. To better
protect the detail information of visible images, the RFN-Nest [22] was proposed. However,
the multi-scale fusion method is simple and fails to adequately integrate complementary
information for source images.

To alleviate the problems mentioned earlier, we propose the DCFusion that includes
three parts: encoder module, fusion strategy and decoder module. The encoder module is
employed to extract different scale features of source image. A dual-headed fusion strategy
(DHFS) as the fusion module is provided to preserve common and differential information
from intermediate features adequately. Furthermore, we propose a contextual information
awareness module (CIAM) as the decoder to stack different scale features.

In general, our contributions are the following:

(1) We propose the DCFusion can preserve more significant information by a suitable
dual-headed fusion strategy and reconstruction method.

(2) The dual-headed fusion strategy (DHFS) is designed to integrate different modal
features. In addition to preserving common information, the fusion strategy also
allows for the effective integration of complementary information for source images
by differential information compensation.

(3) We propose a contextual information awareness module (CIAM) to merge different
scale features and generate result. The module achieve more competitive reconstruc-
tion performance by exchanging information for different scale feature.

2. Related Works

In the following, we present some existing fusion methods that are the most relevant to
our work, including traditional image fusion algorithms, AE-based image fusion algorithms,
CNN-based image fusion algorithms and GAN-based image fusion algorithms.
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2.1. Traditional Image Fusion Algorithms

The fusion methods includes three main elements: feature extraction, feature fusion
and feature reconstruction. The feature extraction and feature fusion are more important
compared with feature reconstruction. To achieve more effective feature representation,
many feature extraction methods was proposed such as multi-scale transforms, sparse
representation and subspace clustering. In these feature extraction methods, the multi-
scale transforms divide image features into different scales and combine the features
in separated levels. So far, there are already classical multi-scale transforms such as
discrete wavelet [23], shearlet [24], latent low-rank representation [12] and nonsubsampled
contourlet transform [25]. Beyond multi-scale transforms, sparse representation [15] is
embedded in fusion framework to extract features, which represent images using sparse
encoding in a complete dictionary. Moreover, subspace clustering, such as independent
component analysis [26], principal component analysis [27] and non-negative component
matrix factorization [28], can extract mutually independent subcomponents by mapping
high-dimensional images to low-dimensional subspace.

Moreover, optimization-based fusion methods also achieved a certain of development.
Further, gradient transfer fusion drives the development of CNN-based fusion methods and
GAN-based fusion methods, which defines overall intensity fidelity and texture structure
preservation [16] as objective functions of image fusion. Moreover, some researchers
improve fusion performance combining the advantages of different frameworks. Further,
Liu et al. introduced a novel fusion algorithm and achieved better fusion performance by
employing multi-scale transform and sparse representation [29].

2.2. AE-Based Image Fusion Algorithms

Since its powerful nonlinear fitting capability, deep learning was adequately employed
in many computer vision tasks. In image fusion, data-driven methods have been explored
such as the approach based on an auto-encoder. Similar to traditional fusion methods, AE-
based methods also include three categories: feature extraction, feature fusion and feature
reconstruction. Prabhakar et al. first finished feature extraction with a small number of
convolutional layers in image fusion [30]. The reconstruction was also achieved with a
few convolutional layers. In addition, the fused features for different modal images was
generated by the element-wise addition.

However, a few convolution layers fail to extract deep features with semantic infor-
mation. By introducing dense connection and the multi-scale encoder–decoder network,
Li et al. had extracted deeper and more comprehensive features and achieved features
reuse [31]. However, the fusion performance was influenced to some extent because of the
handcrafted fusions rules.

2.3. CNN-Based Image Fusion Algorithms

To achieve better fusion performance, CNN-based image fusion networks have de-
veloped by some researchers. Zhang et al. designed a novel CNN-based fusion network
that the ratio of gradient and intensity are maintained by intensity and gradient path [32].
The model was trained through a general loss function. In addition, Ma et al. introduced a
salient target mask to enable its network extract and fuse more meaningful features [33].
Moreover, Xu et al. proposed a fusion network with elastic weight consolidation since the
cross-fertilization of different image fusion tasks [34]. However, the framework fails to
fully demonstrate its potential performance because of the missing of ground truth to the
fusion results.

2.4. GAN-Based Image Fusion Algorithms

The image fusion is an unsupervised task because a lack of ground truth. Because
the adversarial loss restricts the networks at the distribution level, GAN-based methods
are relatively sensible for fusion tasks. Ma et al. first introduced the generator and the
discriminator in fusion networks. Discriminators facilitate generators capable of generating
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images with more meaningful textures [20]. However, the use of a single discriminator is
somewhat flawed. It may lead to an imbalance in the data distribution between different
images. Further, Ma et al. also presented a new GAN-based image fusion network with
a dual-discriminator to achieve the balance [21]. Moreover, Li et al. built the GAN-based
fusion network through in on the attention regions with the dual-discriminator and the
guidance of attention loss [35]. Subsequently, Ma et al. converted image fusion to multi-
distribution simultaneous estimation. Moreover, they introduced a novel image fusion
algorithm with multi-classification [36]. The fusion image have more significant contrast
and plentiful texture with the multi-classifier.

3. Methodology

In the part, we illustrate implementation details of the overall proposed network.
The fusion network is presented in Section 3.1 and the introduction of loss function of
training is presented in Section 3.2.

3.1. Network Architecture

We propose an effective DCFusion network. The network includes three parts: encoder
module, fusion strategy and decoder module. This overall network is described in Figure 1.

Figure 1. The proposed DCFusion network (Svi, Sir represents source images and O indicate out-
put image).

3.1.1. Encoder Module

The purpose of the encoder module is to obtain multi-scale features of source images.
As shown in Figure 1, the encoder includes multiple convolutional layers and max-pooling
layers. Combining convolution and pooling operations, we can obtain deep features at
different scales. The description of the modules is presented in Table 1.

Table 1. The setting details of the encoder module.

Size Stride Channel (Input) Channel (Output) Activation

conv1 1 1 1 16 ReLU
conv2 3 1 16 8 ReLU
conv3 3 1 8 64 ReLU
conv4 3 1 64 32 ReLU
conv5 3 1 32 112 ReLU
conv6 3 1 112 56 ReLU
conv7 3 1 56 160 ReLU
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3.1.2. Fusion Strategy

To compensate differential information, we design a dual-headed fusion strategy
(DHFS) to merge two modal deep features from the encoder. Subsequently, the output of
the module is fed into the reconstruction module to further integrate features. The fusion
strategy is presented in Figure 2.

Figure 2. The proposed DHFS module.

In Figure 2, Fk
vi and Fk

ir, respectively, denote the deep features of infrared and visible
image. k indicates the level of different scale deep feature maps. The fusion module is to
adequately merge common and differential information and the process can be divided
into two heads. In Figure 2, the first head is to fully integrate common information from
different modal features. Fk

com are the output features of the first branch and contains rich
common information. For example, some background information common to infrared
images and visible images. Moreover, the Fk

com can be defined as:

Fk
com = conv(concat(conv(Fk

vi)), conv(Fk
ir)). (1)

where concat indicates concatenation operation in channel dimension for different modal
features and every conv indicates different convolutional layer. Furthermore, the second
head is to compensate differential information of different modal features. Fk

di f are the
output features for the second branch and contains abundant differential information. For
example, thermal target information for infrared images and texture detail information for
visible images. The Fk

di f can be defined as:

Fk
di f = conv(Fk

vi + conv(Fk
ir − Fk

vi)). (2)

where + indicates element-wise summation operation and − indicates element-wise sub-
traction operation. conv indicates convolutional layer. Furthermore, the final fused features
Fk can be calculated as follows:

Fk = conv(Fk
com + Fk

di f ). (3)

where + indicates element-wise summation operation and conv indicates different convolu-
tional layer. Moreover, the more setting details of the convolutional layers are shown in
Table 2.
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Table 2. The setting details of the DHFS module.

Size Stride Channel (Input) Channel (Output) Activation

conv1-conv2 3 1 Kinput Kinput ReLU
conv3 3 1 2× Kinput Kinput ReLU

conv4-conv7 3 1 Kinput Kinput ReLU
conv8 1 1 Kinput 64 ReLU

3.1.3. Decoder Module

The fusion module output the multi-scale feature consisting of three features (F1,
F2, F3) corresponding to three resolution scale (×4, ×2, ×1). To further stack the fused
multi-scale features, we proposed a contextual information awareness module (CIAM)
based on multiple cross-scale feature integration module (CSFI). The decoder is shown in
Figure 3. The CIAM can adequately exchange information for different scale feature maps.
The low-scale feature is up-sampled to higher-scale feature and the high-scale feature is
down-sample to lower feature while the cross-scale feature integration module (CSFI) is
employed each time. Inside the CSFI, each scale feature receives exchanged information
from other scale features by the up-sample, down-sample and concatenation operations.
The channel number of features remains unchanged by convolution operation. Eventually,
the channel number of the feature is recovered to one to achieve final fusion performance
by three convolutional layers. The CIAM can further improve our fusion performance by
combing cross-scale integration module (CSFI) and the setting description of the decoder
module is presented in Table 3.

Figure 3. The proposed CIAM.

Table 3. The setting details of the CIAM network.

Size Stride Channel (Input) Channel (Output) Activation

conv1-conv2 3 1 128 64 -
conv3-conv4 3 1 64 64 -
conv5-conv7 3 1 192 64 -

conv8-conv10 3 1 64 64 -
conv11 3 1 192 64 -
conv12 3 1 64 32 -
conv13 3 1 32 1 -
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3.2. Loss Function

The proposed network architecture aims to obtain satisfactory fusion performance by
training abundant visible and infrared images. To achieve the goal, we train the network
with MSRS dataset [37] as the input images. In the training processing, a feature-preserving
loss function is introduced to ensure that our fused result retains meaningfully common
and complementary information. It is worth noting that our loss function mainly refer to
proposed loss function of PIAFusion network [37]. The loss function includes three sub-loss
function: illumination-aware loss, auxiliary intensity loss and texture loss. The illumination-
aware loss is calculated as:

Lillum = wirlir
int + wvilvi

int. (4)

where lir
int and lvi

int, respectively, refer to intensity loss function for infrared and visible image
and be calculated as:

lir
int =

1
hw
‖Io − Iir‖1. (5)

lvi
int =

1
hw
‖Io − Ivi‖1. (6)

where h denotes the height and w denotes the width of the inputed images. ‖·‖ refers to the
-norm. Moreover, Io, Iir and Ivi represent the output, the infrared and the visible images,
respectively. wir and wvi denote illumination-aware weights for infrared and visible images,
respectively. The weights are defined as:

wir =
pn

pd + pn
. (7)

wvi =
pd

pd + pn
. (8)

where pd and pn, respectively, represent the probability that the scene of the images belong
to day or night. Moreover, pd and pn is calculated by a illumination-aware sub-network [37].
The illumination-aware loss can preserve intensity information but not keep the output in
a best intensity distribution. Therefore, we introduce auxiliary intensity loss. The loss is
illustrated as follows:

Laux =
1

hw
‖Io −max(Iir, Ivi)‖1. (9)

where max(·) stands of the element-wise maximum calculation. Furthermore, we introduce
texture loss to retain optimal texture of the output and it is defined as follows:

Ltex =
1

hw
‖|OIo| −max(|OIir|, |OIvi|)‖1 (10)

where O stands for the gradient operation and |·| indicates the absolute operation. There-
fore, the total loss function can be defined as follows:

Ltoal = γ1Lillum + γ2Laux + γ3Ltex. (11)

where γi(i = 1, 2, 3) represents the weight of different sub-loss function.

4. Experiments
4.1. Experimental Details

The network architecture is trained by the MSRS training dataset [37] and the dataset
consists of 26112 pairs images of training set. Before training the encoder-decoder network,
we transform visible image into YCbCr color space. At the end of the training, we used the
opposite operation again to recover the color image. Moreover, all images of training set
are normalized to interval in [0, 1]. In the test processing, we test the validity on testing
dataset MSRS, which selects 361 pairs of images as the testing images. Moreover, we test
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generalization performance for the method with 20 pairs of test images of the TNO [38]
dataset.

To comprehensively test performance of the algorithm, we apply the mutual informa-
tion (MI), the standard deviation (SD), the visual information fidelity (VIF), entropy (EN)
and Qab f . The MI can measure the degree of similarity between two images. The larger
the MI, the more source image information is retained in the fused image and the quality
of the fused image is better. The SD takes stock of the contrast and distribution of the
fused images from a statistical point of view. The VIF reflects the fused information fidelity
from the human visual perspective. The EN is mainly an objective evaluation metric to
measure the amount of information contained in an image. The Qab f evaluates the amount
of fused edge information from the source images. Moreover, a fusion model with a better
performance usually has more large MI, SD, VIF, EN and Qab f .

To further verify the role of the DCFusion, we compare the method with seven ad-
vanced algorithms on MFNet and TNO dataset, namely, MDLatLRR [12], FusionGAN [20],
GANMcC [36], IFCNN [39], RFN-Nest [22], SDnet [40] and PIAFusion [37]. The fusion
models for all comparisons are evaluated with public code where the relevant settings
of the experiment remain unchanged. In the proposed network, the hyper-parameter γ1,
γ2 and γ3 are, respectively, set as 3, 7 and 50. The batch size and epoch are 80 and 30,
respectively. The initial learning rate is 0.0001 and then decay after 15 epoch exponentially.
In addition to comparative and generalization experiment, we verify the importance of our
fusion strategy and decoder module by ablation experiments. Finally, we compared the
running efficiency of our method with other methods. Related experiments for our method
were conducted on the PyTorch platform. The MDLatLRR was run on a MATLAB R2017b
with Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz. Then our DCFusion, RFN-Nest, IFCNN,
SDNet and PIAFusion experiments were implemented by PyTorch with one GeForce GTX
1080 Ti GPU. The FusionGAN and GANMcC were implemented by TensorFlow with a
GeForce GTX 1080 Ti GPU.

4.2. Comparative Experiment
4.2.1. Qualitative Analysis

Since the MSRS dataset consists of daytime scene and nighttime scene, we evaluate
subjective performance with two daytime and two nighttime images. In daytime scenarios,
thermal radiation information from infrared images is integrated into visible images as
complementary information. A satisfactory fused result should include rich textural details
and prominent targets. The daytime fused images are shown in Figures 4 and 5. To show
the subjective effect of the fused image more visually, we enlarge the area in the green
box to show the texture details better and mark the highlighted targets with red box. It
can be seen that the FusionGAN fails to adequately preserve texture details from the
visible images, and there is a blurring of the edges of highlighted targets. Although the
MDLatLRR can sharpen the edge of the highlighted target, the texture of visible images
cannot also be protected fittingly. Moreover, the IFCNN, the GANMcC, the RFN-Nest
and the SDnet can integrate meaningful information, but the fusion process is inevitably
suffering some degree of interference of useless information. Only our DCFusion and
PIAFusion can adequately integrate meaningful information for source images and avoid
other distractions at the same time. In the nighttime scenes, the provided scene information
for source images is limiting, so it is not easy to obtain a fused result with a wealth of
information. The nighttime fused images are shown in Figures 6 and 7. We find that all the
algorithms can fuse the common and complementary information from source images to
some degree. However, some differences are existing to the fused images of these methods.
In addition to the PIAFusion and our DCFusion, other methods introduce contaminated
detailed textures and weakened salient targets in the fused images. Moreover, our method
achieve a better visual performance to some extent compared with PIAFusion. Therefore,
our fusion network can better integrate meaningful information according to the fusion
strategy and the proposed decoder.
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Figure 4. Comparative experiment for different fusion network of a typical daytime sample from the
MSRS dataset.

Figure 5. Comparative experiment for different fusion network of a typical daytime sample from the
MSRS dataset.

Figure 6. Comparative experiment for different fusion network of a typical nighttime sample from
the MSRS dataset.
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Figure 7. Comparative experiment for different fusion network of a typical nighttime sample from
the MSRS dataset.

4.2.2. Quantitative Analysis

To further verify the validity of the method more accurately, we select MI, SD, VIF and
Qabf as evaluation metrics. The values of five objective metrics for the eight methods are
given in Table 4. The values in the table indicate mean values of 361 pairs of images from
MSRS dataset. We observe that our method obtains the best values in 5 metrics. The best
MI Indicates that the fused image retains more source image information by the proposed
network. The best SD represents the highest contrast for our fused results. The best VIF
implies that the fused results own the highest information fidelity. The best EN means that
fused images include the most information by our method. The best Qab f indicates that
the edge information for fused results is effectively protected. Although our DCFusion is
similar to the PIAFusion in subjective performance, our objective metrics are superior to
the PIAFusion. Therefore, our fusion network can better integrate meaningful information
such as thermal target information for infrared images and texture detail information for
visible images.

Table 4. The results of different metrics for the eight algorithms on the 361 MSRS dataset. The red
value indicates the best result and the blue value indicates the second best result.

MI SD VIF Qab f EN

MDLatLRR 2.5017 7.4546 0.7529 0.5319 6.0099
FusionGAN 1.8569 5.9602 0.4999 0.1396 5.4404
GANMcC 2.5211 8.3479 0.6567 0.2975 6.1232

IFCNN 2.8397 7.9868 0.8530 0.6015 6.4379
RFN-Nest 2.4728 7.0526 0.6514 0.2660 5.6984

SDNet 1.6601 5.7893 0.4338 0.3707 5.2535
PIAFusion 4.5837 8.3451 0.9476 0.6597 6.5710

Ours 4.7319 8.3783 0.9749 0.6624 6.6164

4.3. Generalization Experiment

As we all know, the generalization performance of a data-driven model is an important
aspect to evaluate its goodness. Therefore, we select 20 pairs of images in the TNO dataset
to evaluate generalizability of our DCFusion. The qualitative results for different models
are provided in Figures 8 and 9. To show the subjective effect of the fused image more
visually, we enlarge the area in the green box to show the texture details better, and mark
the highlighted targets with red box. We observe that the RFN-Nest and the MDLatLRR can
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weaken the salient targets. The FusionGAN and the GANMcC can blur the edge of thermal
targets. All methods except our DCFusion and the PIAFusion suffer from some degree of
spectral contamination. Moreover, we provide quantitative results for different methods in
Table 5. We can notice that our DCFusion achieves the best results in SD and EN and obtains
the second-best results in the rest of the metrics on the TNO dataset. Moreover, the other
metrics are very close to the best values—unsurprising considering that our DCFusion
is trained with the MSRS dataset and tested directly on the TNO dataset. Therefore, this
proves that our DCFusion can preserve the texture details, sharpen the salient targets and
maintain a comparatively good generalization performance effectively.

Figure 8. Generalization experiment for different fusion network of a typical sample from the
TNO dataset.

Figure 9. Generalization experiment for different fusion network of a typical sample from the
TNO dataset.

Table 5. The results of different metrics for the eight algorithms on the 20 TNO dataset. The red value
indicates the best result and the blue value indicates the second best result.

MI SD VIF Qab f EN

MDLatLRR 2.2154 8.8255 0.7115 0.4791 6.5917
FusionGAN 2.3543 8.4866 0.6560 0.2202 6.5932
GANMcC 2.5211 8.3479 0.6567 0.2975 6.7322

IFCNN 2.5156 9.1559 0.8026 0.5381 6.9264
RFN-Nest 2.1575 9.1453 0.7661 0.3352 6.9585

SDNet 2.1048 8.7633 0.7027 0.4627 6.6938
PIAFusion 3.5409 9.3599 0.9015 0.5937 7.0528

Ours 2.8913 9.4613 0.8509 0.5794 7.1252
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4.4. Ablation Experiment

In our DCFusion network, the DHFS is applied to fully merge the multi-modal deep
features, the CSFI is utilized to adequately exchange information for different scale feature
maps and the CIAM is employed to reconstruct the fusion result as a decoder of the network.
In this section, we further analyze the role of the proposed DHFS, CSFI and CIAM for
fusion performance by ablation experiments.

4.4.1. Ablation Study for the DHFS

It is worth noting that we replace the DHFS with three classical fusion strategies
including of “add”, “max” and “RFN”. The “add” indicates that the fused features are
acquired by adding the multi-modal features and the “max” means an element-wise choose-
max method. In addition, the RFN module is utilized in RFN-Nest [22] fusion network as a
fusion strategy based on the residual block. Except for the DHFS, the other modules of the
proposed network remain unchanged. We select 361 pairs of images from the MSRS dataset
as testing images to evaluate fused performance for different fusion strategy. Moreover,
the objective metrics(MI, SD, VIF, EN, Qab f ) of different fusion strategies are shown in
Table 6. We observe that the DHFS achieves the best values in MI, SD, VIF and the second
best values in Qab f , EN. Moreover, the Qab f and EN of the DHFS is very close to the best
values. Therefore, it powerfully proves that the DHFS can more effectively fuse common
and differential information compared with other fusion strategies.

Table 6. The results of ablation study for the DHFS on the 361 MSRS dataset. The red value indicates
the best result and the blue value indicates the second-best result.

MI SD VIF Qab f EN

add 3.6191 8.3286 0.8640 0.6285 6.4944
max 3.9265 8.3660 0.9561 0.6720 6.6289
RFN 4.5917 8.3671 0.9421 0.6567 6.5379

DHFS 4.7319 8.3783 0.9749 0.6624 6.6164

4.4.2. Ablation Study for the CSFI

In the part, we analysis the role of the CSFI in the decoder module. The decoder
module without the CSFI is shown in Figure 10. The modified network is trained by the
same training strategy with the DCFusion. The quantitative results of the five metrics
are shown in Table 7. The “No-CSFI” means that the decoder does not have the CSFI
module. Compared with “No-CSFI”, the DCFusion obtains the best values for all metrics.
It indicates that the CSFI models plays an positive role to exchange information of different
scale features and boost the reconstruction capacity for the decoder model.

Figure 10. Ablation study for the decoder without CSFI.
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Table 7. The results of ablation study for the CSFI on the 361 MSRS dataset. The red value indicates
the best result and the blue value indicates the second-best result.

MI SD VIF Qab f EN

No-CSFI 4.6376 8.3574 0.9547 0.6444 6.6065
DCFusion 4.7319 8.3783 0.9749 0.6624 6.6164

4.4.3. Ablation Study for the CIAM

In the paper, we introduce a completely new decoder module to integrate different
scale features and obtain the final images. To verify the validity of the CIAM, we replace
the CIAM with the decoder network of RFN-Nest [22]. The difference is that the decoder
contains only three scales of feature fusion in our experiment. Apart from the decoder,
all other settings remain unchanged compared with original experiment. We tested the
performance of 361 pair images from the MSRS dataset to validate the role of the CIAM.
Further, the object metrics of the different decoder are shown in Table 8. Compared with
the decoder of RFN-Nest, the proposed CIAM achieves best values in MI, SD, VIF and EN
and the second-best Qab f . Moreover, the Qab f of the CIAM is very close to the best value.
Therefore, it validates that the CIAM can more effectively reconstruct the fused images.

Table 8. The results of ablation study for the CSFI on the 361 MSRS dataset. The red value indicates
the best result and the blue value indicates the second best result. The RFN-decoder indicates the
decoder of the RFN-Nest.

MI SD VIF Qab f EN

RFN-Decoder 4.6560 8.3488 0.9663 0.6851 6.5884
CIAM 4.7319 8.3783 0.9749 0.6624 6.6164

4.5. Efficiency Comparison Experiment

To verify the execution efficiency of our method, we tested the processing time for
each image pair on the 361 MSRS dataset and compared the time with other fusion methods.
The final result is shown in Table 9. It can be seen that the efficiency of our method is
higher compared to traditional methods. Because our method requires feature extraction at
multiple scales, it is relatively time-consuming. Fortunately, the running efficiency of our
method stays within an acceptable range.

Table 9. The average processing time for each image pair on the 361 MSRS dataset. The red value
indicates the best result and the blue value indicates the second best result (unit: s).

Method Time

MDLatLRR 123.4549
FusionGAN 0.0681
GANMcC 0.1333

IFCNN 0.0160
RFN-Nest 0.1924

SDNet 0.0154
PIAFusion 0.0895

Ours 0.1546

5. Conclusions

In the paper, we design a new image fusion network for infrared and visible images
with a dual-headed fusion strategy and a contextual information awareness. First of all,
the encoder is employed to extract different scale features of infrared and visible images.
Secondly, the dual-headed fusion strategy (DHFS) is devised to sufficiently integrate
common and differential information from different modal features. Thirdly, we introduce
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a contextual information awareness module (CIAM) to reconstruct fused images based on
the CSFI model. Combined with three loss function of Lillum, Laux and Ltex, the proposed
DCFusion obtains the best performance in qualitative and quantitative evaluation compared
with seven progressive fusion methods. Moreover, we prove a good generalization ability
of the DCFusion in TNO dataset with a generalization experiment. Finally, the expanded
ablation experiments validate that the proposed DHFS, CSFI and CIAM are beneficial to
boost the fused performance.
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