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Abstract: Currently, most deep learning (DL)-based models for precipitation forecasting face two
conspicuous issues: the smoothing effect in the precipitation field and the degenerate effect of
forecasting precipitation intensity. Therefore, this study proposes “time series residual convolution
(TSRC)”, a DL-based convolutional neural network for precipitation nowcasting over China with
a lead time of 3 h. The core idea of TSRC is it compensates the current local cues with previous
local cues during convolution processes, so more contextual information and less uncertain features
would remain in deep networks. We use four years’ radar echo reflectivity data from 2017 to 2020 for
model training and one year’s data from 2021 for model testing and compare it with two commonly
used nowcasting models: optical flow model (OF) and UNet. Results show that TSRC obtains better
forecasting performances than OF and UNet with a relatively high probability of detection (POD),
low false alarm rate (FAR), small mean absolute error (MAE) and high structural similarity index
(SSIM), especially at longer lead times. Meanwhile, the results of two case studies suggest that TSRC
still introduces smoothing effects and slightly outperforms UNet at longer lead times. The most
considerable result is that our model can forecast high-intensity radar echoes even for typhoon rainfall
systems, suggesting that the degenerate effect of forecasting precipitation intensity can be improved
by our model. Future works will focus on the combination of multi-source data and the design of the
model’s architecture to gain further improvements in precipitation short-term forecasting.

Keywords: deep learning; radar echo; precipitation nowcasting; optical flow; UNet

1. Introduction

While precipitation brings convenience to agricultural production and lives, it also
increases the risk of natural disasters. Accurate precipitation forecast, as an important
branch in weather forecast, is a prerequisite for policy-making, risk management and
the reduction of loss of life and property. Therefore, it has received intensive research
in the hydrometeorological community. However, real-time, large-scale and fine-grid
precipitation forecast, especially nowcast (0–2 h) or short-term forecast (0–6 h), remains
greatly challenging due to the inherent complexities of the dynamics of the atmosphere [1].

Existing models for precipitation forecast mainly fall into two types: numerical weather
prediction-based (NWP) models [2–4] and extrapolation models based on radar echoes
and satellite observations [5–7]. NWP models release predictions by describing hydro-
dynamical and thermodynamical equations with the atmosphere’s initial and boundary
conditions. However, NWP models struggle to capture convective scale patterns that occur
in mesoscale systems because computational restrictions limit the fine-resolution configu-
rations and spin-up times [2,8,9]. Therefore, NWP models are still inefficient in modeling
cloud dynamics and microphysics, so precipitation nowcasts and short-term forecasts
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are arguably invalid [10–12]. Extrapolation models are mainly based on the advection of
present cloud motional features and trajectories and then reckon future shapes, locations
and intensities of precipitation field at a lead time of a few hours. Although extrapolation
models cannot imitate the dynamics and thermodynamics of the precipitation field, they
share a fine spatiotemporal resolution with radar observations which is higher than that
used by NWP models [8]. Therefore, extrapolation models typically outperform NWP
models for precipitation forecasting, especially nowcasting at short lead times [2]. However,
with the increased availability of fine spatiotemporal resolution radar echoes and satellite
observations, extrapolation models are unable to capture nonlinear features and underlying
patterns of precipitation field in parallel behind such large amounts of data [13–15].

Deep learning [16] refers to artificial neural networks with deep or recursive architec-
tures and has the ability of self-learning to tackle high dimensional, complex spatiotemporal
data in computer vision, object detection and tracking, natural language processing and
speech recognition tasks, among many others. Because precipitation forecasting is essen-
tially a spatiotemporal map regressive problem handling huge amounts of radar echoes
and satellite observation data, it is strongly recommended to use DL models to unravel
such problems. By reviewing the recent progress of DL for precipitation forecasting, with
particular attention to the convolutional neural network (CNN)-based architectures, recur-
rent neural network (RNN)-based architectures and their combined architectures which are
three commonly used DL techniques. The advantage of CNN is that it can exactly excavate
spatial distribution features of precipitation systems on global and local scales, which has
been shown in these studies [9,17–19]. RNN, more specifically long short-term memory
(LSTM), has shown natural advantages in extracting temporal distribution features of
precipitation systems [20,21]. In general, CNN-based architectures provide better results
than those RNN-based architectures [1,22–24].

In addition, some studies inclined to cast designative architectures for precipitation
forecasting which has shown promising results. For example, the Google Research group
initially introduced MetNet for precipitation forecasting over the continental United States
for up to 8 h of lead time [25]. The Huawei Cloud Computing group [26] presented
Pangu-Weather, a 3D high-resolution global weather forecast system which outperformed
state-of-the-art numerical weather prediction in several evaluation metrics. The authors
of [27] presented a deep generative model for the probabilistic nowcasting of precipitation
from radar which improved forecast quality, forecast consistency and forecast value in the
United Kingdom area. The authors of [24] proposed RainNet for radar-based precipitation
nowcasting which significantly outperformed two benchmark models at a lead time up
to 60 min. The authors of [28] developed multisource data model (MSDM) combining
optical flow, random forest and CNN algorithms for precipitation forecasting over eastern
China; the model outperformed those of the traditional radar reflectivity factor and rainfall
rate (Z-R) relationships. Recently, as a novel CNN architecture, UNET contains feature
extraction and up-sampling of two symmetrical modules [29]. Many researchers delved
into precipitation forecast using UNET or its derivative models, which showed promising
results, while UNET was considered to be a backbone model for nowcasting [23,24,30–35].
Beyond the above models, a widely used model in nowcasting, named ConvLSTM, was
suitable for tacking sequence forecasting problems by extending LSTM to have convolu-
tional structures in both the input-to-state and state-to-state transitions, this model has been
shown to outperform traditional optical flow-based methods [36]. The ConvLSTM model
was also considered to be a baseline and comparable model for precipitation forecasting in
many studies [1,14,28,37–40].

However, there are still several limitations to precipitation forecasting in the above DL-
based models. First, the blurry effect is widely reported in most DL-based models. This is
presumably because the convolution operation inherently generates smoothing/flattening
precipitation values at different sizes of receptive fields in each feature map; therefore,
underestimations (overestimations) usually happen at high (low) values and thus result in
blurry and over-smoothing predictions. One way to ease this problem is to ameliorate an
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appropriate loss function in the training process [28]. Second, it is greatly challenging to
predict generations and extinctions of short-term local convection and strong precipitation.
From the perspective of spatiotemporal scale, the rapid changes in intensity, falling area,
deformation, direction and movement of precipitation system are difficult to probe under
small sizes of original sampling areas with relatively sparse spatiotemporal scales. Such a
phenomenon is particularly obvious in some advection vectors from isolating precipitation
fields. Third, there is obvious deterioration in forecast accuracy with increasing lead
times [12]. More specifically, precipitation intensities may be forecasted precisely at an early
stage but show a gradual attenuation at a later stage. This issue accrues in both DL-based
models and physics-based approaches [1]. The forecast accuracy is caused by many aspects,
for example, the convolution architecture inevitably introduces irrelevant and redundant
features, the forecast cumulated error arising from the discrepancy between training and
test objectives during iterative prediction [8], the increased uncertainty over exact time
and location of precipitation systems [25], etc. Note that the mentioned limitations coexist
in DL-based models and they interact with each other. Years of progress in DL-based
modeling have gradually improved these limitations, but have not eliminated them.

Precipitation over China has variabilities on both temporal and spatial scales and is
influenced by many factors such as ENSO events, large-scale atmospheric circulations,
mesoscale weather systems, land–sea distributions, topography effects, etc. [41–43]. There-
fore, accurate precipitation forecasts, especially long-range forecasts over a large-scale area,
remain a difficult task in DL-based models. In this study, we use radar reflectivity data over
China and introduce a novel DL architecture specially used in precipitation forecasting on
a large-scale area for a lead time of up to 3 h. The main objective of the present study is to
design ‘Time Series Residual Convolution’ to extract time dependences of the precipitation
field, so that the smoothing effect, the smoothing forecast and the degenerate forecast could
be alleviated to a certain extent. The rest of this article is organized as follows: Section 2
presents the data sources, the framework and the development of the model. We describe
the evaluations of the model in Section 3. The discussions of the model are presented in
Section 4. Section 5 draws conclusions and explores some possible future works.

2. Materials, Methods and Models
2.1. Radar Echo Reflectivity Data

The China Meteorological Administration (CMA) has deployed the China Next Gener-
ation Weather Radar (CINRAD) network. Currently, the CINRAD network is composed
of 217 Doppler weather radars (94 C-band radars and 123 S-band radars) over mainland
China (see Figure 1). These radars are distributed densely across China, except in complex
terrain [44] and related radar echo data are used to locate precipitation events, calculate
their motions and estimate their types (rain, snow, hail, etc.). Animations of radar products
show the evolution of reflectivity and velocity patterns. We downloaded and collected
five precipitation seasons (May to August) radar echo maps from 2017 to 2021 with a
time interval of 6 min (the total length is 75,908 after data cleaning) and the coverage area
is (73◦E–135◦E, 10◦N–55◦N). The basic steps for data cleaning include: extract the pixel
values from the ‘RGB’ channel of the color echo map; match the pixel values with related
radar echo reflectivities based on a given ‘reflectivity colorbar’; remove the annotations
(e.g., city name, river name and border line) from each echo map and then use ‘Cressman’
interpolation method to fill in the related missing pixel values. We resample the reflectivity
values on 1024 × 880 grids for each radar reflectivity map, while its actual spatial resolution
is about 5 km. Finally, total samples with a size of 75,908 × 1024 × 880 are obtained.
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Figure 1. The Topography (m) map of China with distributions of the CINRAD. White dots represent
C-band radars and red dots denote S-band radars [44].

2.2. Methods

In most DL architectures, convolution is the key operation for feature extraction of
vision tasks, while ‘vanilla convolution’ is one of the most commonly used convolutions.
Supposing x is the input feature of a vanilla convolution and K is the corresponding
convolutional kernel, the output feature Y can be given by the following equation:

Y(p0) = Σpn∈CW(pn) · x(p0 + pn) (1)

where p0 is the current position in both input and output feature maps, pn is the position
in receptive field C and W denotes the parameter of K. The vanilla convolution extracts
features mainly by sparse connectivity and shared weights. However, it treats local cues as
a weighted sum which may ease the detailed difference information locally [45]. Moreover,
it lacks contextual information and accommodates uncertainty in the hierarchical inference
process, so blurry/averaged prediction and cumulated error are obtained [46]. As for a
precipitation forecasting task, the vanilla convolution may have difficulty in excavating the
features of the precipitation field, such as moving speed, shape and intensity. To reduce
the redundant and uncertain features in vanilla convolution, [47] proposed the split-based
convolution (SPConv) which split the feature maps into the representative part and the
redundant part, where the former applies k× k convolution to supply intrinsic features
and the latter uses point-wise convolution to complement tiny hidden details. Inspired by
this idea, we devise ‘time series residual convolution (TSRC)’ formulated as:

Y(p0) = Σpn∈CW(pn) · (x[τ+1](p0 + pn) + α · x̄[τ](p0 + pn)) (2)

Y(p0) = Σpn∈CW(pn) · x[τ+1](p0 + pn) + α · (x̄[τ](p0 + pn)) · Σpn∈CW(pn) (3)

x̄[τ](p0 + pn) =
1
k

Σk
pn∈Cx(pn) (4)
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where x[τ+1] denotes the input feature at time τ and τ + 1, x̄[τ] represents the input feature
x[τ+1] after ‘mean-expansion’ operation (see Figure 2b) at time τ, respectively. α is the
coefficient of x[τ+1]. Equation (3) is the expansion of Equation (2); it consists of the first term
‘vanilla convolution’ and the second term ‘residual module’. Equation (4) presents the solution
procedure. Here, the corresponding local receptive field cube for 3D convolution is:

C = {(−1,−1,−1), (−1,−1, 0), . . . , (0, 1, 1), (1, 1, 1)} (5)

Our TSRC method is fortified with residual modules so that more information can be
reserved. Because TSRC compensates the current local cues with previous local cues, so
more contextual information and fewer uncertain feature would remain. Through such a
convolution, the problem of information loss and cumulated errors can be alleviated to a
certain extent. Therefore, we will use TSRC to tackle the decay of precipitation intensity
and smoothing/blurry effect in real forecasting.

2.3. The Framework of the Model

Figure 2a shows the model’s framework in this study. Overall, the input size is
(10, H, W), while the output size is (1, 30, H, W), suggesting that the model uses 1 h previ-
ous radar reflectivity maps to conduct 3 h lead time precipitation forecasting. The main
modules include the TSRC module (also see Figure 2b), 3D convolution layer, Leaky-ReLU
layer, 2D up-convolution layer (2D up-sampling operator), 3D up-convolution layer (3D
upsampling operator), ReLU layer, element-wise operator (Hadamard product), sigmoid
activation layer, feature masking operator (the purple cube in Figure 2a). Basically, the
framework consists of an encoder–decoder architecture which can be regarded as a proce-
dure for information compression and feature extraction and several plug-and-play TSRC
modules are also implanted into this architecture to help it retains more key features. From
the prospective of spatial variation and time dependency of a precipitation system, these
3D TSRC modules struggle to capture movement characteristics of precipitation system
such as the moving speed, falling area, intensity, propagation, generation and extinction.
Suppose the output of the architecture is f1, while one of the intermediate features is m, then
an element-wise operation is performed (see m

⊙
f1 in Figure 2a) to achieve the effect of

feature masking (this can be explained as some kind of ‘attention mechanism’). The above
operations are mainly used for feature extractions for radar echo maps at a 3D space-time
scale. Apart from the above architecture, a 2D up-sampling operation is conducted, while
this step is mainly used for feature extractions at a 2D space-time scale and it is supposed
that its output is f2. We combine the above features (see m

⊙
f1 + (1−m)

⊙
f2 in Figure 2a)

so that multi-scale information can be excavated as much as possible. In addition, the
framework also implants some plug-and-play layers (e.g., ReLU, Leaky-ReLU, etc.) to ease
vanishing gradients or exploding gradients.

It is noteworthy that the TSRC module uses a residual connection (see the ‘
⊕

’ opera-
tion in Figure 2b), so it can retain some information from previous time steps to a certain
extent. Moreover, the TSRC module increases the depth of a hierarchical architecture with
more parameters, so it can extract more potential features from the inputs. Therefore, more
contextual information is retained in the TSRC module. In addition, our TSRC module
implants ‘time series convolution’ (see ‘Conv3d’ operation in Figure 2b) so that it excavates
the dependencies on both time-scale and space-scale; therefore, the less uncertain feature
remains in this architecture. Theoretically, the ‘addiction’ operation in the TSRC module
can postpone the declining rate of precipitation intensity to a certain extent, so the model is
able to produce intensive echoes.
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Figure 2. (a) The framework of the model; (b) the overview of the ’time series residual convolution
(TSRC)’ module.

2.4. Reference Models

To have a better comparison with TSCR, we present the optical flow model (OF) and
UNet model, which are two commonly used models in radar echo extrapolative forecasting.

The concept of “optical flow” was proposed by [48] and represents an instantaneous
velocity of pixel motion of a moving object in an imaging plane. The core idea of OF
is to calculate the optical flow field by introducing expedient restraint conditions. The
calculation of OF usually holds two basic hypotheses: gray-scale invariance between
neighbor pixels and micro-motion of radar echo. Let (x, y) be the position of a pixel in a
given echo map, and It(x, y) be the corresponding gray value at time t. From t to t + ∆t,
the pixel moves to (x + ∆x, y + ∆y), so its gray value is It+∆t(x + ∆x, y + ∆y). Based on the
gray-scale invariance hypothesis, the gray value before and after moving remains constant,
so the following equation holds:

It(x, y) = It+∆t(x + ∆x, y + ∆y) (6)

Additionally, based on the micro-motion hypothesis and Taylor expansion (ignoring
the second-order infinitesimal), Equation (6) can be expanded as:
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∂I
∂x

∆x +
∂I
∂y

∆y +
∂I
∂t

∆t = 0 (7)

Let u = ∆x
∆t and v = ∆y

∆t be two optical flow speeds at the x and y axes, respectively.
Therefore, we have:

Ixu + Iyv + It = 0 (8)

where Ix = ∂I
∂x , Iy = ∂I

∂x and It =
∂I
∂t are the derivatives of the gray value I concerning x, y

and t, while u and v are two unknown variables. Therefore, to specify the value of OF, some
constraint conditions are needed. Currently, there are mainly two methods to solve OF
fields: global optical flow [49] and local optical flow [50]; details of algorithm derivations
will not be given here.

The other reference model is UNet, which is a classic DL architecture and is widely
used in image segmentation of the computer vision field [29]. The architecture mainly
includes an encoder module and decoder module and related operations such as 2D
convolution, down-sampling, up-sampling and skip connection. Because two feature
extraction paths (encoder and decoder) are symmetrical to each other with a U-shape
architecture, it is known as UNet. In this study, we develop UNet architecture (Figure 3)
according to the specific inputs of the radar echo map. It can be seen from Figure 3 that
both global information and local information of radar echo are well dispersed; also, this
valid information will be retained by this U-shape architecture.

Figure 3. The framework of UNet.

2.5. Evaluation Metrics

To evaluate the forecast performance of TSCR, OF and UNet, four evaluation metrics are
used in this study, i.e., mean absolute error (MAE), probability of detection (POD), false alarm
rate (FAR), radially averaged power spectral density and structural similarity index (SSIM).
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MAE =
1
n

Σn
i=1|Y

g
i −Y f

i | (9)

where Yg
i and Y f

i are ground truth and the forecast in the i-th pixel of the corresponding
radar map and n is the number of pixels. This metric describes the forecast ability of each
model under different precipitation intensities.

POD =
ns

ns + nm
(10)

FAR =
n f

ns + n f
(11)

where ns, nm and n f represent successful forecast, missing forecast and null forecast, respec-
tively. The above three values are determined by comparing the ground true value (GTV),
the forecast value (FV) and the pre-defined threshold (PDT). In meteorology, the threshold
of 20 dBz means those reflectivity values greater than or equal to 20 dBz; hereafter, it will
be abbreviated as ‘∼20 dBz’. Similarly, the term ‘∼30 dBz’ and ‘∼40 dBz’ can be used. In
this study, the thresholds are set to ∼20, ∼30 and ∼40 dBz. For example, if GTV ≥ PDT and
FV ≥ PDT, then mark one successful forecast; if GTV ≥ PDT and FV < PDT then mark one
missing forecast; if GTV < PDT and FV ≥ PDT, then mark one null forecast. Both POD and
FAR intuitively present the forecast performance at different precipitation intervals.

The mathematical derivation of power spectral density is referred to in Sinclair’s work [51];
the details are left out here. We calculate radially averaged power spectral density [52] to
examine the problem of over-smoothing or flattening forecasts in different models.

In addition, in order to investigate the deterioration problem with increasing lead
times and the decay of precipitation intensity, we calculate the mean of echo intensity
formulated as:

SSIM =
(2µgµ f + c1)(2σg f + c2)

(µ2
g + µ2

f + c1)(σ2
g + σ2

f + c2)
(12)

where µg and µ f are the mean value of the ground truth radar map and the forecast map,
σg and σ f are the corresponding standard deviation, σg f is the covariance. c1 and c2 are
two constants. The mathematical derivation of SSIM refers to Wang’s work [53]. This metric
is used for measuring the similarity between the ground true radar map and the forecast map.

3. Results
3.1. Overall Forecast Results on Testing Data

Here we present the forecast results of TSRC, OF and UNet which uses the radar reflec-
tivity data over 2021 as the testing data. Figure 4 shows the four evaluation metrics POD, FAR,
MAE and SSIM with the three radar reflectivity intervals ∼20, ∼30 and ∼40 dBz. Obviously,
PODs in TSRC are higher than in OF and UNet for all three reflectivity intervals. At least
PODs with the value of 0.5 in TSRC can be maintained 2 h, 96 min and 1 h in three reflectivity
intervals, respectively, suggesting that our model yields almost half of the successful forecasts
in the lead time of 2 h, 96 min and 1 h. Another finding is that for TSRC, there are linear
decrease tendencies in PODs with increased forecast times. In contrast, for both OF and
UNet, the whole PODs are less than 0.4 in ∼30 dBz reflectivity and are almost near 0 for all
forecast times in ∼40 dBz reflectivity, suggesting that it is quite difficult to forecast strong
precipitations with the two models, especially for long-range forecasting.

In terms of FAR, for all three reflectivity intervals, it is easy to find that FARs for TSRC
climb slowly from 12 min to 3 h forecast times. In contrast, the increasing trends of FARs for
both OF and UNet are relatively steep. In ∼20 and ∼30 dBz reflectivity intervals, although
UNet acquires relatively low FARs, the PODs are also low, while the reverse occurs in
TSRC. Note that in ∼40 reflectivity intervals, OF and UNet both produce lower FARs than
in TSRC before 36 min lead times, but they rapidly climb to 0.8 at 1 h lead times, while all
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three models obtain relatively high FARs after 1 h lead time. Overall, our model ranks the
best forecast after 1 h lead times.

Figure 4. Overall forecast results in terms of four evaluation metrics on testing data on the whole
year of 2021.
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We calculate the MAE and SSIM between ground truth and forecasts. It can be found
that MAEs in the three models increase with lead times. Specifically, OF has the lowest
MAEs before the 84 min lead time, while TSRC has the lowest MAEs after 2 h lead time,
UNet acquires relatively greater MAEs than the other two models beginning at 36 min lead
time, these indicating that OF is more appropriate for predicting precipitation intensity
for the first hour while TSRC is for the last 2 h. As for SSIM, TSRC performs the best
with SSIM values greater than 0.96, followed by OF and UNet, suggesting that TSRC
reproduces the shapes of the precipitation field with relatively high similarity. According
to the analysis of MAE and SSIM, it can be found that OF is more prone to predicting
short-range precipitation, while TSRC shows its unexampled advantage in producing
long-range precipitation fields (both intensities and shapes) and UNet has a poor capacity
to predict precipitation fields.

To sum up the above results, our model TSRC performs the best in long-range forecasts,
OF shows certain superiority in short-range forecasts and UNet has poor ability in both
long-range and short-range forecasts. Some possible reasons include the following: OF
produces precipitation fields based on assumptions of Lagrangian persistence and smooth
motion fields; however, it cannot trace the fast changes of precipitation fields in short-range
times [8,54], while it also brings about cumulated errors due the discrepancy between
training and test objectives from short-range to long-range forecasts. UNet is essentially a
2D CNN-based DL architecture; it implements convolution operations only on a spatial
dimension, which easily causes information loss and is unfavorable for extracting spatial-
temporal features of radar reflectivity. Meanwhile, the encoder–decoder module inevitably
introduces information losses; therefore, it is difficult to capture the changes in precipitation
fields. TSRC compensates the current spatial-temporal features of radar reflectivity with
previous ones so that the information loss problem and cumulated errors can be alleviated.

3.2. Results of Case Study

Here we present two case studies (Figure 5) to further understand the forecast perfor-
mances of three models.

Figure 5. The overview of two case studies.

3.2.1. Case 1

The first precipitation case happened on 23 May 2021, 00:06:00 UTC (Figure 5a); it was
a large-scale rainfall covering most of China. Figure 6-top presents the forecast results of
TSRC, OF and UNet. As can be seen from ground truth (GT), the rainfall area unobtrusively
enlarged with increased lead times, but the high-intensity area (>40 dBz) gradually became
more centralized. In terms of the rainfall area, TSRC shows the best forecast skill. Though
OF depicts rough rainfall shapes, they are more like depictions of precipitation fields from
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shorter lead time to longer lead time, which can also be found from a string of trajectories
of rainfall fields. In other words, OF only shifts the rainfall fields at a horizontal scale
and ignores the local changes in the rainfall field; that is the reason why the differences
in rainfall area from the first lead time to the last lead time are very slight; this raises the
question of whether OF can forecast rapid changes of rainfall field, especially long-term
forecasts. UNet performs poorly in rainfall area forecasting when a degradation problem
of precipitation field is striking and the missing forecasts increase with forecast lead times.
In addition, through a delicate investigation, the problem of generation and extinction is
conspicuous in both OF and UNet, while this problem has been partly improved by TSRC.

Figure 6. The forecast results of precipitation case 1 (23 May 2021, 00:06:00 UTC); top: ground truth
of echo maps and corresponding forecast echo maps; middle: the plots of radially averaged power
spectral density; bottom: the mean of radar echo values over a whole map.
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The plots of radially averaged power spectral density (Figure 6-middle) provide a
more intuitive method to evaluate the smoothing effect on three forecast models, while
the lower the power, the more serious the smoothing effect will be. Obviously, OF has
the weakest smoothing effect and it outperforms the other two models for all forecast
times. According to the discussion above, OF performs well in shorter lead time and the
rainfall fields of longer lead time are almost copied from previous forecast frames; that is
the reason why OF introduces relatively meticulous rainfall fields. In contrast to OF, the
two DL-based models TSRC and UNet inevitably bring in the smoothing effect. For the
first 90 min forecast times, TSRC achieves the lowest power at wavelength < 40 km, while
for the last 90 min forecast times TSRC’s power is slightly improved compared to UNet. It
is a generally existing problem that most DL-based models unavoidably report smoothing
forecasts due to the use of convolutional operation; consequently, their forecast rainfall
fields are usually smoother than that from OF ([24,28]).

We calculate the mean reflectivity (Figure 6-bottom) to examine the performance of
reflectivity intensity forecasting at different lead times. Evidently, UNet performs poorly
and the cumulated error increases with forecast lead time; it cannot capture radar echo
shapes and substantially underestimates radar echo intensities, especially at longer lead
times, this is confirmed by the low POD and high FAR in high-intensity echo forecasting
(see POD and FAR in Figure 4). Comparatively, TSRC ranks the best for all forecast
lead times since the errors are smallest and it follows the same trend of echo intensity
as in GT; therefore, it can efficiently extrapolate the radar echo evolution at longer lead
times. Conversely, although OF also obtains small forecast errors; however, it follows the
opposite trend of echo intensity and underestimates the echoes in the first 2 h lead times
and overestimates the echoes in the last hour. In other words, OF simply preserves echo
intensities over all forecast times and is unable to capture the temporal correlations and
spatial information of the rainfall field.

3.2.2. Case 2

This case occurred on 25 July 2021, 03:24:00 UTC (Figure 5b) and includes a rainfall
process influenced by severe typhoon In-Fa and two isolated convective precipitations
influenced by a high-level trough and warm-moist air in the low level. Figure 7 shows
the forecast results of the three models. In GT, we can observe that the falling areas of
convective precipitation slowly expand, while the high-intensity echo areas are sporadic-
like distributions and the counterclockwise rotation is clear from the spiral rainband of In-Fa.
TSRC roughly reproduces the shapes of convective precipitation and the spiral rainband.
For OF, unsurprisingly, it exhibits almost the same echo maps in all forecast lead times
and hence has limited ability to provide the local features of convective precipitation and
spiral rainband. For UNet, the shapes of both spiral rainband and convective precipitation
degenerate seriously; hence, most missing forecasts can be found.

The three models introduce different levels of smoothing effect, especially TSRC and
UNet. Specifically, in shorter forecast lead times (first 1 h), TSRC shows the lowest power at a
wavelength of <40 km, while in longer lead times TSRC and UNet show similar smoothing
effects. It is indisputable that OF yields the lowest level of smoothing effect because the rainfall
fields rarely change over all forecast lead times. In terms of the mean echo intensity, UNet
shows the worst performance and OF keeps a relatively stable performance at shorter lead
times but sorely underestimates the echo intensity at longer lead times. TSRC obtains the most
proper echo intensity at the first hour while its performance begins to decline at a lead time of
2 h (at least echo intensity > 35 dBz at a lead time of 3 h can be found only in TSRC). To sum up
the above results, TSRC demonstrates a certain advantage in handling the forecast of typhoon
rainfall compared to the simply extrapolated method OF and the DL-based method UNet.
However, due to the complex law of cyclone propagation, both rainfall shape forecasting and
echo intensity forecasting still need to be improved in all models.
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Figure 7. Same as in Figure 6, but for the precipitation case 2 (25 July 2021, 03:24:00 UTC).

4. Discussions

Here we summarize the three models’ advantages and disadvantages. From a quanti-
tative point of view, the calculation of OF is based on the changes of echo and the correlation
of two adjacent echo maps; it seeks the relationship of different maps and lastly determines
the information of echo motion and the change of echo intensity in a motion vector field.
Therefore, OF can accurately track and predict the moving object in an echo map. The
advantage of OF is that it obtains considerable success in forecasting precipitation systems
of slow change in the short term. Meanwhile, OF submits to the hypotheses of gray-scale
invariance in radar echoes, but there are rapid generations and extinctions in strong con-
vection systems which will make OF produce relatively large forecast errors due to the
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non-conservation radar echo reflectivities. In a word, OF shows poor forecast skills in
strong convection. Moreover, strong convection is a highly complex and nonlinear system
and is usually accompanied by rotary motion which will result in great discrepancies be-
tween extrapolative echoes and ground truth due to the linear extrapolation of the optical
flow field. Even with further improved methods such as the semi-Lagrangian method
relying on the advection equation, it is still difficult to unravel the vorticose structures
of precipitation systems. Therefore, OF performs poorly in operational forecasting tasks
such as precipitation systems with rapid change, typhoon precipitation systems and strong
convection systems.

UNet is essentially an encoder–decoder DL architecture; its advantages are as follows:
there are clear feature representations in different network frames, whereas deep network
frames with greater receptive fields focus on those global (abstract or essential) features
of precipitation systems; in contrast, shallow network frames pay more attention to local
and textured features of the precipitation system; the upsampling operation in UNet may
lead to information losses on the image edge, while those losses can be supplemented by
conducting feature concatenation layers in UNet. The disadvantage is it has a contradiction
between receptive fields and information losses: greater receptive fields need more pooling
layers for feature dimension reduction, which lead to more information losses; in contrast,
smaller receptive fields are incompetent in terms of capturing global or large-scale features,
thus also leading to information losses. In addition, UNet conducts convolution only on
a spatial scale; nonetheless, radar echoes have variability at various temporal and spatial
scales, so it is not insufficient for UNet to capture spatial-temporal features of radar echo.
Consequently, UNet performs poorly in forecasting the shape of the precipitation system
and the echo intensity; also its forecast skill rapidly deteriorates with lead time.

The main objectives of TSRC in this study are to alleviate two issues: the smoothing
effect in forecast precipitation and the degenerate effect of forecasting precipitation intensity.
The forecasting results, from a quantitative point of view at least, suggest that our model
achieves relatively superior forecast performances in several evaluation metrics: POD,
FAR, MAE and SSIM. Two rainfall cases show that with TSRC it is unavoidable to report
a smoothing effect (it underperforms the OF but outperforms UNet); of course, this is
not specific to our model and most DL-based models must also contend with the same
issue. The most prominent result is that TSRC can yield high-intensity radar echoes even
in typhoon precipitation systems while both OF and UNet cannot, illuminating that the
degenerate effect of forecasting precipitation intensity can be alleviated in our model.
Specifically, two issues (information loss and cumulated error) will be inevitable in most
DL-based models as long as convolutions are used, resulting in many practical forecasting
problems such as the smoothing effect, the degenerate effect of echo intensity, the generation
and extinction of rainfall field, the propagation of precipitation system, etc. Basically, TSRC
also contains an encoder–decoder DL architecture which is as essential to information
compression and feature extraction for radar echo maps. In addition, TSRC skillfully
utilizes the ‘residual module’ term so that a past radar echo feature at previous time steps
can be retained to a certain degree. There are also two design tricks in TSRC, such as
intermediate feature masking, feature fusion, etc. Theoretically, all the above operations
in TSRC are conducive to alleviating the smoothing effect and reducing cumulated errors
accordingly and they are also confirmed by the forecast results in this study at least. At
any rate, TSRC is a pure data-driven radar echo extrapolation model which fails to take
physical constraints and atmospheric dynamics into consideration. However, merely
TSRC achieving several inspiring evaluation metrics does not represent the limit of TSRC
performance reached. In the future, from an early warning perspective, great efforts are
still necessary to improve TSRC’s forecasting skills and further make practical applications.

5. Conclusions

We propose a DL-based architecture TSRC for the radar echo short-term (3 h) forecast-
ing over China and this model is compared to two commonly used extrapolation methods:
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OF and UNet. We test the three models using radar echo data throughout 2021 and analyse
two specific precipitation events. Results show that TSRC achieves the most impressive
forecasting skills with relatively high POD and low FAR compared with OF and UNet,
especially for high-intensity radar echo. The forecast results from two rainfall cases suggest
that TSRC yields acceptable outlines of rainfall fields and produces relatively high-intensity
echoes at longer forecast lead times; by contrast, OF and UNet cannot do this. The smooth-
ing effect is an eternal topic in DL-based models, both TSRC and UNet inevitably introduce
different levels of the smoothing effect. Although the smoothing effect in OF is minimal,
nonetheless it is not appropriate for long-term forecasting. From a statistical perspective,
all three models are essentially radar echo extrapolations based on the characteristic of the
previous echo advection field.

The short-term precipitation nowcasting models in this study only consider multi-
time radar echoes as the training inputs; however, any meteorological data (e.g., wind
field, air temperature, humidity, etc.) and underlying surface information could also be
considered in the future. These data include but are not limited to radar echoes, satellite
images, reanalysis data, real-time observations, output from NWP, etc. The combination
of multi-source data may provide a measure of physical constraints or data assimilation
for a pure data-driven precipitation nowcasting model. Currently, the smoothing effect in
forecast precipitation and the degenerate effect of forecasting precipitation intensity are two
thorny problems in most DL-based models. Apart from the combination of multi-source
data, some reasonable adjustments on convolution or feature extraction modules seem
desirable, such as ‘Deep Forest’ [55], axial self-attention in MetNet [25], 3D Earth-Specific
Transformer in Pangu-Weather [26], skip connection in RainNet [24] and Fourier neural
operators in FourCastNet [56]. Moreover, TSRC performs precipitation nowcasting tasks
over China with a lead time of 3 h; future works should focus on how to extend the forecast
time and expand the forecast area and how to balance the computational/time resource
and the forecast accuracy.
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