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Abstract: It has been widely certified that hyperspectral images can be effectively used to monitor 

soil organic matter (SOM). Though numerous bands reveal more details in spectral features, infor-

mation redundancy and noise interference also come accordingly. Due to the fact that, nowadays, 

prevailing dimensionality reduction methods targeted to hyperspectral images fail to make effective 

band selections, it is hard to capture the spectral features of ground objects quickly and accurately. 

In this paper, to solve the inefficiency and instability of hyperspectral feature selection, we proposed 

a feature selection framework named reinforcement learning for feature selection in hyperspectral 

regression (RLFSR). Specifically, the Markov Decision Process (MDP) was used to simulate the hy-

perspectral band selection process, and reinforcement learning agents were introduced to improve 

model performance. Then two spectral feature evaluation methods were introduced to find internal 

relationships between the hyperspectral features and thus comprehensively evaluate all hyperspec-

tral bands aimed at the soil. The feature selection methods—RLFSR-Net and RLFSR-Cv—were 

based on pre-trained deep networks and cross-validation, respectively, and achieved excellent re-

sults on airborne hyperspectral images from Yitong Manchu Autonomous County in China. The 

feature subsets achieved the highest accuracy for most inversion models, with inversion R2 values 

of 0.7506 and 0.7518, respectively. The two proposed methods showed slight differences in spectral 

feature extraction preferences and hyperspectral feature selection flexibilities in deep reinforcement 

learning. The experiments showed that the proposed RLFSR framework could better capture the 

spectral characteristics of SOM than the existing methods. 

Keywords: deep reinforcement learning; actor-critic network; feature selection; hyperspectral  

image regression; SOM prediction 

 

1. Introduction 

Soil organic matter (SOM) is an essential component of soil, and monitoring SOM is 

a crucial element of soil quality assessment [1]. Since the advent of hyperspectral sensors, 

the acquisition capability of hyperspectral data has been dramatically enhanced, and 

large-scale and detailed ground observation has become possible, which can provide rich 

data support for soil environmental quality monitoring [2,3]. As a result, hyperspectral 

images, with their rich and continuous spectral bands from visible to short-wave infrared, 

have been widely used in predictions of SOM [4–6]. The numerous spectral bands of hy-

perspectral images provide the possibility of accurate extraction of SOM reflection 
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features, but at the same time, the noise and useless information contained in the data can 

interfere with SOM prediction. Therefore, it is necessary to reduce the hyperspectral data 

redundancy when building hyperspectral SOM regression models.  

To make full use of the valid information from hyperspectral data, researchers have 

usually conducted characterization of the raw spectra before building a regression model. 

Specifically, spectral transformations based on signal processing, such as simple mathe-

matical transformations and frequency domain transformations, are able to detect the 

changing features that are sensitive to the target variables and can increase the amount of 

effective information in hyperspectral data. Next, researchers have explored various 

means of dimensionality reduction concerning the rich spectral information. Feature se-

lection, which can remove redundant information while preserving the physical meaning 

of the original image spectra, is one of the main methods for the dimensionality reduction 

of hyperspectral data, which also enhances the interpretation of the subsequent modeling 

process from a spectral perspective.  

Feature selection is the process of selecting a subset of relevant features or candidate 

features and using evaluation criteria to obtain the optimal subset. Subset generation is 

mainly accomplished by a heuristic search. There are three main search methods: sequen-

tial search, exhaustive search, and random search [7]. The sequential search iteratively 

adds and removes features to complete the subset generation. Many methods have been 

proposed based on this idea, such as sequential forward selection (SFS) [8–10], sequential 

backward elimination (SBE) [11,12], and bi-directional selection [13]. Shafiee et al. [14] in-

vestigated the performance of support vector regression (SVR) in combination with SFS 

for grain yield prediction and showed that SVR in combination with SFS is a robust 

method. The exhaustive search iterates through all the possible feature subsets to generate 

the best solution. Although it is possible to obtain the best and most stable subset, this 

usually consumes a lot of computational resources and time. Random search starts with a 

random feature subset and generates the next subset in the feature space according to the 

preset strategy. The typical random search algorithms, such as simulated annealing [15], 

genetic algorithms [16], evolutionary programming [17], and particle swarm optimization 

[18,19], sacrifice optimality guarantees to quickly finding a relatively good solution [20]. 

However, due to the random sampling process of the algorithms, there is instability in the 

search process, and two random search processes can lead to very different results. Mean-

while, it is necessary to evaluate the newly generated feature subset using certain criteria. 

The optimal subset of features generated from the same data can vary according to the 

evaluation criteria. Based on the dependence and independence of the algorithms, there 

are independent criteria and dependent criteria. Independent criteria do not involve any 

learning algorithm, and they use the underlying characteristics of the training data to eval-

uate the performance of a subset of features. Many independent criteria have been pro-

posed in the literature, including distance measures [21], information or uncertainty 

measures [22], probability of error measures [23], dependency measures [24,25], interclass 

distance measures [26], and consistency measures [27], which are generally very efficient. 

However, the dependent criteria require a predefined mining algorithm to evaluate the 

goodness of the feature subset and determine which features are selected. Although de-

pendent criteria usually obtain better performance, they come with a greater computa-

tional cost [21,28].  

In hyperspectral data processing, various dimensionality reduction methods are 

widely used. The common feature selection methods include variable importance in the 

projection (VIP), the successive projections algorithm (SPA), the Pearson product–mo-

ment correlation coefficient (PPMCC), competitive adaptive reweighted sampling 

(CARS), genetic algorithms (GAs), and simulated annealing (SA). Bangelesa et al. [29] ap-

plied the VIP and recursive feature selection methods to feature selection in partial least 

squares (PLS) regression and random forest regression, respectively, and finally deter-

mined that the significant wavelengths for SOM prediction were located in the range of 

400–700 nm. Song et al. [30] reduced the dimensionality of HJ-1A hyperspectral data with 
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the help of the Pearson’s correlation coefficient and principal component analysis (PCA), 

and the extracted feature spectra achieved better results on a back-propagation neural 

network (BPNN) model with double hidden layers. Wei et al. [31] proposed a gradient 

boosting regression tree (GBRT) hyperspectral inversion algorithm based on Spearman’s 

rank correlation analysis (SCA) coupled with CARS, which achieved a better inversion 

effect than the support vector machine and random forest. Kawamura et al. [32] applied 

a GA to select significant bands in laboratory visible and near-infrared spectroscopy, and 

found that the GA has the advantage of optimizing the PLS regression bands.  

The common methods mentioned above usually employ conventional feature collec-

tion and evaluation methods, which are not optimized for hyperspectral data. As a result, 

the obtained feature subsets cannot guarantee a satisfactory output in the inversion mod-

eling, and the stability of the methods is questionable. Moreover, the above methods are 

limited by the inefficient search capability, which makes it challenging to extract superior 

and small-scale feature subsets quickly. In addition to the common feature selection meth-

ods already described, deep learning has also been applied to hyperspectral data pro-

cessing. In the field of hyperspectral feature selection, a novel ternary weight convolution 

neural network (TWCNN) was proposed, which uses a depth-wise convolutional layer 

with 1 × 1 filters as the first layer of the network, and can achieve end-to-end feature se-

lection and classification [33]. Lorenzo et al. [34] developed a data-driven hyperspectral 

band selection algorithm that couples an attention-based convolutional neural network to 

identify the most information-rich regions in the spectrum. Meanwhile, the framework 

named integrated learning and feature selection (ILFS) [35] determines the characteristic 

bands by measuring the contribution of each band to the overall loss of the optimization. 

This approach is effective for the dimensionality reduction of multispectral and hyper-

spectral imagery, and can significantly improve the performance in the semantic segmen-

tation task for high-dimensional imagery. Bernal et al. [36] learned a convolutional Sia-

mese network by optimizing the contrast loss, and they performed band selection based 

on the low-dimensional data embedding generated by the network. However, the deep 

network-based feature selection techniques require considerable computational resources 

and have limitations when balancing the accuracy and efficiency of computing the opti-

mal subset.  

Deep reinforcement learning (DRL) combines the perceptual capabilities of deep 

learning with the decision-making capabilities of reinforcement learning in a generalized 

form. The powerful exploration capabilities of DRL allow us to strike a better balance be-

tween finding the optimal subset and conserving computational resources, which allows 

for better adaptation to different task requirements by adjusting the reward policy. Some 

researchers have considered the band selection task of hyperspectral imagery as a combi-

natorial optimization problem of searching for band combinations in discrete space and 

solving the feature selection problem with the learning ability of DRL. Mou et al. [37] de-

fined the unsupervised band selection problem as a Markov decision process (MDP), and 

explored the application of DRL in hyperspectral image analysis by using information 

entropy as the reward function for adding new bands. Feng et al. [38] established a semi-

supervised convolutional neural network to evaluate the band selection state, and 

achieved efficient evaluation of the band state for image classification tasks through lim-

ited labeled sample errors and intra-class tightness constraints for unlabeled samples, 

which was shown to be an effective approach for the publicly available hyperspectral clas-

sification datasets.  

By designing a reasonable reward policy, DRL can quickly and accurately generate 

feature subsets that solve the problem of the unstable hyperspectral feature extraction re-

sults of the commonly used methods. In addition, in hyperspectral inversion work, we are 

more interested in features strongly correlated with the inversion parameters. According 

to the characteristics of the inversion index and the requirements of inversion modeling, 

DRL can flexibly adjust the optimization strategy to select the spectral features for better 

SOM prediction. In this paper, we propose a feature selection framework named 
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reinforcement learning for feature selection in hyperspectral regression (RLFSR). By mod-

eling the hyperspectral feature search problem as an MDP, we introduce two spectral fea-

ture sampling strategies that use the internal linkage of the hyperspectral features and the 

accuracy of the hyperspectral inversion as comprehensive evaluation indicators. Specifi-

cally, we adopted sample data to pre-train an inverse network and evaluate the feature 

subsets by inversion accuracy, which was named RLFSR-Net. In contrast, RLFSR-Cv ran 

cross-validation on the dataset to assess the value of the results. Finally, the advantage 

actor critic (A2C) algorithm was introduced to optimize the set of features by maximizing 

the expected cumulative rewards of the MDP.  

Our contributions are summarized as follows:  

1. To achieve efficient and accurate feature selection, a reinforcement learning frame-

work was proposed. A supervised feature selection method was used, which consid-

ered the needs of the inversion task. We believe this is the first time reinforcement 

learning has been introduced into feature selection for a hyperspectral inversion task.  

2. The spectral feature selection problem was formulated as an MDP. A selection agent 

was then constructed, and the state of the agent was updated based on the spectral 

feature selection. To comprehensively evaluate the value of the features selected by 

the agent, two evaluation strategies were proposed: RLFSR-Net and RLFSR-Cv. With 

the support of the two strategies, the training of the feature selection model was com-

pleted to maximize the cumulative reward.  

3. The feature subsets selected by RLFSR-Net and RLFSR-Cv achieved inversion results 

that were comparable with those of the XGBoost model, and they outperformed the 

other data dimensionality reduction methods. As the number of features increased, 

the inversion accuracy of the feature subset generally improved. However, after 

reaching a certain number of features, the inversion accuracy decreased instead, due 

to the increase in noise and invalid information. 

4. The spectral features extracted by RLFSR-Net and RLFSR-Cv appeared to be in high 

agreement with those extracted by CARS, and were concentrated in the visible range 

and 2.2 μm, which was in line with the experience of SOM inversion. However, the 

proposed method could extract a more compact subset of features and achieve better 

inversion results.  

The rest of this paper is organized as follows. Section 2 introduces the proposed 

methods in detail, including the Markov modeling for feature selection and the two fea-

ture subset evaluation strategies. In Section 3, we describe the experimental results ob-

tained on airborne hyperspectral data from the Yitong Manchu Autonomous County in 

China. The discussion is presented in Section 4 to show the effectiveness of the RLFSR. In 

Section 5, the conclusions of this paper are provided. 

2. Methods 

The proposed RLFSR framework is displayed in Figure 1. This feature selection 

framework is designed from a reinforcement learning perspective, and includes the MDP 

modeling for the feature-selecting agent and the reward function settings. Firstly, the hy-

perspectral SOM regression dataset was constructed based on airborne hyperspectral im-

ages and laboratory chemical observations, and the training set and test set were ran-

domly, divided according to the SOM distribution, with a ratio of 2:1. The training set was 

then used for the feature selection modeling. With regard to the agent’s MDP modeling, 

the feature selection status was described in the form of a {0,1} array, where 0 means un-

selected and 1 means selected. Every time the actions of selecting features were executed, 

the state and reward were updated for the training of the agent. Two reward strategies—

RLFSR-Net and RLFSR-Cv—were then introduced to evaluate the subset of features. 

RLFSR-Net is based on pretraining an inverse network to obtain the reward function, and 

RLFSR-Cv evaluates the subset with the help of cross-validation accuracy. Finally, the re-

inforcement learning agent was trained based on the A2C algorithm, which used an 



Remote Sens. 2023, 15, 127 5 of 24 
 

 

experienced pool for recording the agent behavior. Finally, a subset of features was gen-

erated for the training and testing with the help of the trained DRL-based algorithm, and 

the SOM regression model was built to perform the SOM mapping.  

 

Figure 1. The proposed RLFSR framework. 

2.1. Feature Selection Modeling 
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As is shown in Figure 1, a reinforcement learning agent was introduced for the fea-

ture selection. It was necessary to formulate the process as an MDP, which allowed the 

reinforcement learning agent to optimize the feature selection problem. The core elements 

of the MDP were the state, the action, the Markov transition function, the reward, and the 

discount factor.  

(1) The state �: In this feature selection case, the state � records the history of the 

feature selection. It consists of a set of n-dimensional vectors, which are coded to represent 

the selection among the n features. The i-th chosen feature among n is denoted as �� = 1, 

while �� = 0 means that this feature is not selected for now.  

(2) The action �: The action of the agent, in this case, includes choosing a feature from 

the hyperspectral image or stopping. The action is determined by the current state of the 

agent and constraints. Until the set number of features is reached, the agent will continue 

the act of selection; otherwise, it will end the work.  

(3) The transition function �: When an action is performed, the state � transitions 

from the previous state to a new one. This transformation process is defined as the transi-

tion function �. The function � is determined by the current state–action pair. For exam-

ple, the state �� at time � will convert to a new state ���� if the action is to choose a new 

feature. The state �� will remain the same if the selected feature already exists in ��, and 

will finally terminate when reaching the preset number of bands. 

���� = �

��������     �� ����ℎ��� �ℎ� ������ ������
��  �� �� =  ������ � ������� �ℎ�� ������� ������ �� ��

�� + ��  �� �� =  ������ � ��� �������
 (1) 

(4) The reward �: The reward ��  refers to the reward expectation that can be ob-

tained by performing the action �� in the current state �� and moving to the next mo-

ment. The reward function is the reward gained by leaving the state, not the reward 

gained by entering the state. In this case, two types of reward functions are modeled— 

RLFSR-Net and RLFSR-Cv—which evaluate the final feature subset in different ways. 

�� = �

����� ������ ��������  �� ����ℎ��� �ℎ� ������ ������
������� ������ �  �� �� =  ������ � ������� �ℎ�� ������� ������ �� ��

������� ������ ��������     �� �� =  ������ � ��� �������
 (2) 

The final reward function and process reward function in the above formula are de-

fined differently in RLFSR-Net and RLFSR-Cv, and they are introduced in Sections 2.2 

and 2.3. The penalty factor C is a constant to suppress repetitive features.  

(5) The discount factor �: In most Markov reward processes and MDPs, the discount 

factor � ∈ [0,1] is introduced to reduce the uncertainty of the forward earnings, in that 

immediate rewards can be more beneficial than longer-term ones.  

2.2. Feature Evaluation in RLFSR-Net 

The current research on feature selection using reinforcement learning frameworks 

has focused on classification tasks, with unsupervised and semi-supervised methods be-

ing primarily used to evaluate the feature subsets. In the inversion task, we are more in-

terested in whether the features are correlated with the inversion parameters, so we de-

signed a supervised evaluation procedure. Inspired by the pre-trained evaluation net-

works introduced in [38], we built a hyperspectral regression deep neural network (DNN) 

that was trained by random features extracted from the dataset as the final reward func-

tion. In each epoch, some feature dimensions were shut down randomly in the training 

set to explore the most effective feature combinations. The objective function of the re-

gression part was MSE loss. 

As is shown in Figure 2, the framework of RLFSR-Net included three main parts: 1) 

feature generation; 2) the DNN for inversion; and 3) the reward calculation module. In the 

part of feature generation, the state of the MDP coded as {0,1} arrays was translated to a 

subset of the original feature data for reward calculation. A common type of DNN, which 
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is mainly stacked by fully connected layers, was introduced for evaluation. To avoid the 

gradient disappearance problem and to speed up the training, batch normalization layers 

were added after the fully connected layers. The coefficient of determination (R2), the 

mean square error (MSE), and the mean absolute error (MAE) are usually measured in 

terms of prediction accuracy. Therefore, in the reward calculation module, the MSE of the 

output of the DNN with respect to the true value was taken as the evaluation index. 

 

Figure 2. Feature evaluation framework of RLFSR-Net. 

It was finally necessary to perform the computation of the reward with the {0,1} array 

transformed by the feature selection case. Therefore, random {0,1} arrays were generated 

in the training process, and the corresponding numbered features were selected and fed 

into the DNN, with MSE as the loss function.  

When evaluating feature subsets transformed from the terminal state coded as a {0,1} 

array, the MSE of the subset of all the hyperspectral training datasets is taken to calculate 

the final reward. Since it can be expected to obtain a subset of features with higher accu-

racy, and since the MSE represents the error about the true value, ������ = −��������� 

was accepted in RLFSR-Net. Thus, the reward function of RLFSR-Net was modified as 

follows: 

�� = �

−���������      if reaching the preset number
C  if �� =  select a feature that already exists in ��

0  if �� =  select a new feature
 (3) 

where ��������� represents the MSE of the DNN for inversion, and C is a constant num-

ber to avoid repetitive actions. As it is not necessary to reward or punish the new features, 

the reward will be 0 when selecting a new feature. 

2.3. Feature Evaluation in RLFSR-Cv 

The basic idea of cross-validation is to group the original data into a training set and 

a validation set. The training set is first applied to train the model, and then the validation 

set is used to test the trained model, which is taken as the performance index for evaluat-

ing the model. Cross-validation algorithms perform well in parameter tuning for most 

models and perform the feature selection task in CARS very well. Consequently, in intro-

ducing the idea of cross-validation into the DRL framework, we proposed RLFSR-Cv. 
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2.3.1. Selecting a New Feature 

Since there is a dependency between the soil hyperspectral features, especially in the 

neighboring bands, the selected new features may not enhance the information of the fea-

ture subset, and may cause only a small improvement in model accuracy, which does not 

meet our goal of feature robustness. To avoid selecting spectral features that were too 

similar, the reward for selecting a new feature was defined as a negative function: 

��� = �(�, �) =
Cov (�, �)

�Var [�]Var [�]
 (4) 

The Pearson’s correlation coefficient, which ranges from −1 to 1, describes the degree 

of linear correlation between the variables. The correlation coefficient ��� quantitatively 

portrays the degree of correlation between X and Y. That is, the larger ����� is, the greater 

the correlation. In this case, to suppress the selection of relevant features, the Pearson’s 

correlation coefficient was computed between the newly selected feature and the features 

already existing in the subset, and min −����� was taken as the reward for selecting the 

new feature, as is shown in the following equation:  

Process Reward Function = ��� (−|�(��, ���������)|) (5) 

where �� means the newly chosen feature, and ��������� represents the features already 

existing in the subset.  

2.3.2. Termination 

When the stopping condition of the MDP was satisfied, meaning that the feature sub-

set reached a preset number, the reward function was calculated by the cross-validation 

algorithm. In this case, the 10-fold cross-validation method was chosen to evaluate the 

feature subsets. As is shown in Figure 3, the dataset was divided into ten parts, nine of 

which were rotated for training and testing the accuracy of the remaining data. After com-

pleting all the tests, the opposite of the average MSE of the dataset was presented as the 

final reward:  

Final Reward Function = −����(�����) (6) 

Therefore, the reward function of RLFSR-Cv was modified as follows: 

�� = �

−����(�����)  if reaching the preset number
C  if �� =  select a feature that already exists in ��

��� (−|�(��, ���������)|)     if �� =  select a new feature
 (7) 

where ����� represents the MSEs of the 10-fold cross-validation, C is a constant number 

to avoid repetitive actions, and �(��, ���������) refers to the Pearson’s correlation coefficient 

between the new feature and the previous ones.  
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Figure 3. Feature evaluation framework of the RLFSR-Cv. 

2.4. Deep Reinforcement Learning for the RLFSR Framework 

2.4.1. Introduction to Deep Reinforcement Learning 

In Section 2.3, we described how the feature selection problem was modeled as the 

MDP and defined the two forms of reward functions. After completing these tasks, it was 

now possible to solve the problem by employing a reinforcement learning approach.  

In the MDP, it seeks to maximize the long-term return, denoted as ��, which, in the 

simplest case, is the sum of the returns at each time step: 

�� = �  

���

���� = �� + ����� + ������ + ⋯ + ������ (8) 

where � represents the terminal time, and � represents the discount factor that demon-

strates a focus on future returns. The larger the value of �, the more visionary the dis-

counted payoff is in considering more future returns, while the smaller the value of �, the 

more short-sighted the intelligence is. When � = 0, the intelligence only considers max-

imizing the current payoff.  

In the MDP, the state value function of policy �, denoted as ��(�), represents the 

probability expectation value of the gain obtained by the agent from state � by deciding 

according to policy �, which is denoted as:  

��(�) = ��[�� ∣ �� = �] = �� ��  

�

���

�������� ∣ �� = �� (9) 

Similarly, the action value function of policy �, denoted as ��(�, �), represents the 

probability expectation of all the subsequent gains obtained by the agent after taking ac-

tion starting from state �, which is denoted as:  

��(�, �) = ��[�� ∣ �� = �, �� = �] = �� ��  

�

���

�������� ∣ �� = �, �� = �� (10) 

Since there is a recursive relationship between ��(�) and ��(�, �), based on the Bell-

man equation, the above equations can be rewritten as follows:  
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��(�) = ��[���� + ���(����) ∣ �� = �] (11) 

��(�, �) = ��[���� + ���(����, ����) ∣ �� = �, �� = �] (12) 

To solve the reinforcement learning problem, finding an optimal policy that maxim-

izes the reward of the agent in the long-term process is necessary. In the MDP, the optimal 

policy is denoted as �∗, and its state value function �∗ is the optimal state value function, 

which is denoted as:  

�∗(�) = ���
�

 ��(�) (13) 

2.4.2. Training of the A2C Algorithm 

Unlike the value-based and policy-based reinforcement learning algorithms, the A2C 

algorithm is an algorithm that combines value-based and policy-based methods, in that 

the policy-based actor learns a policy and interacts with the environment, and the value-

based critic evaluates the goodness of the policy to guide the next actions.  

The actor part is implemented by the policy gradient method, which belongs to the 

Monte Carlo class of methods. The objective of the policy gradient method is to maximize 

the reward function by adjusting � under policy �. The objective function is expressed 

as �� = ��∼�[�(�)]. 

The derivation yields the gradient of the objective function as:  

∇��(�) = E��
[∇�log ��(�, �)��] (14) 

The A2C algorithm assesses the policy based on an advantage function that reduces 

the variance without introducing bias, and the advantage function subtracts the estimated 

value function from a set benchmark, which is generally estimated using the state value 

function, which is denoted as ���(�, �) = �(�, �) − ���(�). 

Therefore, the policy gradient of the A2C algorithm is formalized as follows: 

∇��(�) = ���
[∇�log ��(�, �)(�(�, �) − ���(�))] (15) 

Figure 4 shows how an actor network and a critic network are constructed and 

stacked by several fully connected layers. The two networks share the first few layers in 

order to extract common features and save computational power. 

 

Figure 4. The architecture of the A2C-based network. 
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In the case of RLFSR-Net and RLFSR-Cv, the selected features were encoded as {0,1} 

arrays and fed into the network to learn the policy. The actor (policy network) generates 

the probability distribution of all the possible actions, which determines the next action. 

The critic (value network) evaluates the current state–action pair and guides the network 

to maximize the cumulative reward.  

The procedure for training the A2C-based network is summarized in Algorithm 1. 

The two policies, i.e., RLFSR-Net and RLFSR-Cv, were applied to the reward function. 

RLFSR-Net required a prior pre-trained regression network stage, and RLFSR-Cv was in-

put into the operation directly.  

Algorithm 1: The procedure of training the A2C-based network 

  Input: hyperspectral training dataset � 

  Output: selected feature code number 

 1: randomly initialize policy network parameter � and value network parameter �� 

 2: initialize max iteration �, update interval � 

 3: for 1 to K: 

 4:   for 1 to T: 

 5:     while �� is terminate 

 6:       initialize state � = 0�⃗ , the reward � = 0 

 7:     end 

 8:     compute the output distribution of action according to policy ��(��) 

 9:     perform �� based on probability 

 10:     �� = ��(��) 

 11:     get the reward �� and new state ���� 

 12:     ����, �� = ����(��, ��) 

 13:     �� ← ���� 

 14:   end 

 15:   calculate long-term return �� = ∑  ��� ���� 

 16:   update �� based on the TD error 

 17:   �� = �� + �∇��
log���

 (�� ∣ ��)�(�) 

 18:   update �� according to the advantage function 

 19:   � = � + �∇�log��
 (�� ∣ ��)�(�, �, �) 

 20: end 

3. Experimental Results 

In this section, the hyperspectral data used in the experiments are presented. The aim 

was to test the influence of the number of features of RLFSR-Net and RLFSR-Cv on the 

inversion accuracy. Comparison experiments were also conducted with other dimension-

ality reduction methods and inversion models.  

3.1. Datasets and Preprocessing 

A total of nine airborne hyperspectral image strip datasets were acquired in the 

Yitong Manchu Autonomous County in Jilin province, China, between 18 April and 22 

April 2017, using a HyMap airborne imaging spectrometer. After stitching, the hyperspec-

tral image data were formed into a spectral cube consisting of 2734 rows, 2508 columns, 

and 135 bands. The spectral resolution was 10–20 nm, and the spatial resolution was 4.5 

m. As is shown in Figure 5, 90 soil samples were sampled simultaneously and were evenly 

distributed in the study area.  
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Figure 5. Study area. 

3.1.1. Preprocessing of the Hyperspectral Data Cube 

Firstly, to convert the digital number (DN) values into radiometric values that have 

a physical meaning, the original hyperspectral images were radiometrically calibrated us-

ing the standard data obtained by an integrating sphere. After obtaining parameters, such 

as the atmospheric conditions in the study area, an atmospheric correction was performed 

using the MODTRAN4 atmospheric radiation transmission model [39]. To solve the prob-

lem of geometric distortion, a look-up table was constructed using high-precision position 

and orientation system (POS) data and digital elevation model (DEM) data. A geometric 

correction was performed strip by strip, and the photometric correction algorithm based 

on the bi-directional reflectance distribution function (BRDF) was also used to correct the 

radiation differences between strips [40]. Finally, a spatial-spectral cube was created with 

the help of image-stitching technology. As the imagery contained some bands disturbed 

by water vapor, which are ineffective for the inversion task, the contaminated bands were 

deleted, and 101 spectral bands were finally retained.  

3.1.2. Processing of the Soil Samples 

Ninety topsoil samples at depths of 0–20 cm were processed by removing impurities, 

air-drying, grinding, and 100-mesh sieving. Soil organic carbon content (SOCC) was 

measured using the K2Cr2O7–H2SO4 oxidation method. A conversion factor of 1.724 is 

commonly used to convert SOCC to SOMC, where SOMC (%) = SOCC (%) × 1.724 [41]. 

In order to reasonably assess the advantages and disadvantages of the selected fea-

tures and the inversion accuracy, the 90 samples were divided into training and test sets 

in a 2:1 ratio, according to the distribution of the SOM. 

For spectral preprocessing, the soil spectrum is a combination of various kinds of 

information, and feature extraction processing can reduce the influence of noise and other 

interference factors to a certain extent, as well as highlight the feature information. Spe-

cifically, continuum removal can be introduced to suppress the background information 

and normalize the values of weakly absorbed spectra [42], and the first-order differentia-

tion is taken to enhance the correlation between the SOM and the spectrum [6,43]. The 

band ratio can express the hyperspectral response characteristics of SOM from two-di-

mensional spectral spaces, which reduces the impact of other soil composition 
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information on the estimation. Therefore, the continuum removal, first-order differentia-

tion, and band ratio were computed for the raw spectrum, and a new set of hyperspectral 

features was generated by combining the above results, which are explained in the fol-

lowing steps:  

(1) Calculate the absorption depth after continuum removal processing:  

��� = �/� (16) 

��� = 1 − �� (17) 

where ��� represents the continuum removal spectrum, � represents the raw spectrum, 

� represents the continuum curve, and ��� is the absorption depth of the continuum re-

moval.  

(2) Calculate the first-order differentiation of the spectrum:  

��� =
���� − ����

���� − ����
 (18) 

where ����  and ����  respectively represent the reflectance of the former and latter 

bands, ����  and ����  respectively represent the wavelength of the former and latter 

bands, and ��� is the first-order differential value at that band.  

(3) Calculate the band ratio: Since there were 101 bands in the dataset, calculating all the 

band ratios would result in a large amount of feature redundancy. Therefore, for each 

band, its ratio to the other bands was calculated, and the ratio with the highest cor-

relation with SOM in all band ratios was selected as the optimal ratio of that band.  

(4) Combine all the above features (raw spectrum, absorption depth of the continuum 

removal, first-order differentiation, and optimal band ratios).  

(5) Sample expansion based on the spatial distance: Considering Tobler’s first law of ge-

ography and the stability of the SOM at the meter level, to improve the model stabil-

ity, the training set was expanded according to the spatial distance and spectral angle 

distance from the labeled samples. Unlabeled samples that were spatially neighbor-

ing and spectrally close to the training set were added to the new training set.  

After processing the soil samples in the spatial and spectral dimensions, 243 training 

samples and 30 test samples (each with 385 features) were finally obtained.  

3.2. Experiment in RLFSR 

In this section, we describe how the RLFSR feature selection algorithm was per-

formed on the Yitong airborne hyperspectral dataset. The performance of the two strate-

gies (RLFSR-Net and RLFSR-Cv) with different feature numbers was also tested. Some 

other popular methods for the dimensionality reduction of hyperspectral data were also 

performed for comparison. The spectral dimensionality reduction methods involved in 

the experiments were as follows:  

(1) PCA: principal component analysis, which extracts features to a cumulative contri-

bution rate of 0.99.  

(2) ICA: independent component analysis with 10 components.  

(3) Pearson: the Pearson product-moment correlation coefficient, which selects the 30 

characteristics that are most relevant to the dependent variable.  

(4) VIP: variable importance projection, which selects the 30 features of the highest im-

portance for the inversion modeling.  

(5) SOS: symbiotic organisms search.  

(6) IRF: interval random frog.  

(7) CARS: competitive adaptive reweighted sampling.  

After acquiring the appropriate features, the accuracy evaluation was performed us-

ing four commonly used hyperspectral inversion models:  
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(1) PLS: partial least squares regression with 20 latent variables.  

(2) RF: random forest regression, which is a supervised learning algorithm that uses an 

ensemble learning method for the regression.  

(3) SVM: support vector machine regression equipped with a radial basis function (RBF) 

kernel. Parameters � and � were determined by 10-fold cross-validation.  

(4) XGBoost: extreme gradient boosting, which is an implementation of gradient-

boosted decision trees designed for speed and performance. The main parameters 

were determined by 10-fold cross-validation.  

The coefficient of determination (R2), the MSE, and the MAE were calculated to meas-

ure the regression accuracy of the models:  

(1) R2: the coefficient of determination is the proportion of the variation in the dependent 

variable that is predictable from the independent variable.  

(2) MSE: the mean squared error of an estimator measures the average of the squares of 

the errors, i.e., the average squared difference between the estimated value and the 

true value.  

(3) MAE: the mean absolute error is the arithmetic average of the absolute errors.  

3.3. Results of Different Dimensionality Reduction Methods 

The proposed method was evaluated by comparing it with the widely used dimen-

sionality reduction methods described in Section 3.2. For each dimensionality reduction 

method, the inversion performance was validated for the Yitong airborne hyperspectral 

dataset, and the accuracy indicators of the selected features obtained using the current 

model were calculated for the training set and the test set.  

From Table 1, it can be seen that ICA had the worst performance among the seven 

methods, mainly because the uncertainty of the energy and the order of the independent 

components led to a failure to effectively eliminate irrelevant information. In contrast, 

PCA removed the noise while retaining most of the information, thus achieving effective 

dimensionality reduction, but its extracted features could not explain the spectral charac-

teristics of the SOM. These signal-processing techniques are oriented to retain as much 

information as possible and are not optimized for specific tasks, so the extracted features 

cannot always effectively represent the spectral response of SOM. The Pearson and VIP 

methods evaluate the importance of each feature with different metrics, and select the 

most important features to form the subset of features. As a result, these two methods 

achieved high-precision inversion with the XGBoost model. The SOS algorithm simulates 

the symbiotic interaction strategies that organisms use to survive in the ecosystem [44], 

but it performed poorly. The IRF provided satisfactory prediction results, but over 100 

features were selected, and the dimensionality reduction task was not well accomplished. 

The proposed methods of RLFSR-Net and RLFSR-Cv obtained the best prediction accu-

racy, with at least a 0.05 increase in R2 on the test set. Based on the XGBoost model, the 

two methods yielded similar prediction results, with R2 exceeding 0.75, which represents 

very high accuracy. The PLS model achieved worse inversion results than SVM, RF, and 

XGBoost, which is shown in Table 1. PLS regression employs independent variables to 

extract latent variables and conducts regression modeling; thus, the redundant features 

selected by IRF and CARS will have a greater impact on the generation of latent variables. 

The DRL-based algorithms incorporate the SOM prediction accuracy into the optimiza-

tion metric and can effectively explore the optimal subset of features for the current sce-

nario, which is the most applicable to SOM inversion modeling. Since RLFSR-Cv utilizes 

the cross-validation accuracy of the XGBoost model to evaluate the feature subset when 

selecting features, its performance on the XGBoost model was naturally better than that 

of the RLFSR-Net, but it was relatively slightly worse for other regression models. Fur-

thermore, in RLFSR-Net, the specially designed accuracy evaluation network greatly im-

proves the stability of the feature subset under different inversion models. As a result, the 

extracted spectral features showed better accuracy under multiple models, and the 
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evaluation policy of multiple cross-validations in RLFSR-Cv also had a similar effect. In 

conclusion, the two proposed feature selection methods realized stable and excellent di-

mensionality reduction by introducing 10-fold cross-validation and an evaluation net-

work trained by random features, respectively. 

Table 1. Regression results of PCA, ICA, Pearson, VIP, SOS, IRF, CARS, RLFSR-Net, and RLFSR-

Cv using the representative regression models of PLS, SVM-RBF, RF, and XGBoost. The best three 

regression performances of the dimensionality reduction methods are highlighted in bold, italic, 

and underlined, respectively. 

Method Regression Model 
Training Set Test Set 

R2 MAE MSE R2 MAE MSE 

PCA 

PLS 0.5968 3.2967 16.9878 0.3386 3.9512 25.6450 

SVM-RBF 0.9998 0.0989 0.0098 0.0636 4.6384 36.3075 

RF 0.5580 3.3086 18.6191 0.5488 3.3328 17.4946 

XGBoost 0.9729 0.7786 1.1435 0.5332 3.5420 18.0982 

ICA 

PLS 0.4182 3.9287 24.5114 0.5788 3.2597 16.3295 

SVM-RBF 0.9998 0.0991 0.0099 0.0791 4.6205 35.7049 

RF 0.6942 2.6750 12.8822 0.3452 4.0807 25.3871 

XGBoost 0.8526 1.8588 6.2109 0.3386 3.8821 25.6452 

Pearson 

PLS 0.4609 3.7721 22.7120 0.4209 3.7285 22.4544 

SVM-RBF 0.6623 2.2414 14.2281 0.5977 3.3790 15.5993 

RF 0.6763 2.8541 13.6371 0.5891 3.1342 15.9333 

XGBoost 0.7929 2.2260 8.7256 0.6122 2.8507 15.0379 

VIP 

PLS 0.5880 3.3063 17.3584 0.2480 4.0115 29.1573 

SVM-RBF 0.5636 2.9460 18.3826 0.5134 3.3498 18.8654 

RF 0.5861 3.2546 17.4362 0.5579 3.5180 17.1430 

XGBoost 0.9960 0.3060 0.1696 0.5686 3.2672 16.7250 

SOS 

PLS 0.6217 3.1355 15.9358 0.3224 3.8480 26.2733 

SVM-RBF 0.8166 1.5208 7.7243 0.4664 3.7999 20.6903 

RF 0.7841 2.3960 9.0969 0.5541 3.5191 17.2875 

XGBoost 0.9999 0.0472 0.0043 0.5024 3.6873 19.2929 

IRF 

PLS 0.7738 2.4291 9.5302 0.0012 5.4822 57.2887 

SVM-RBF 0.9211 0.7375 3.3228 0.5682 3.1987 16.7439 

RF 0.7910 2.3532 8.8043 0.6649 3.0512 12.9923 

XGBoost 0.9999 0.0470 0.0041 0.6514 2.9768 13.5181 

CARS 

PLS 0.7418 2.6394 10.8791 0.0018 4.9548 44.3211 

SVM-RBF 0.8302 1.4981 7.1515 0.6902 2.8810 12.0125 

RF 0.6943 2.8585 12.8799 0.6541 2.9864 13.4113 

XGBoost 0.9750 0.7535 1.0512 0.6228 2.9414 14.6253 

RLFSR-Net 

PLS 0.5211 3.4638 20.1745 0.4080 3.6995 22.9549 

SVM-RBF 0.7514 1.8932 10.4742 0.6955 2.7447 11.8063 

RF 0.7320 2.5578 11.2919 0.7312 2.6398 10.4218 

XGBoost 0.9999 0.0006 0.0001 0.7506 2.7276 9.6700 

RLFSR-Cv 

PLS 0.5390 3.4213 19.4200 0.3960 3.3683 23.4192 

SVM-RBF 0.7227 2.0551 11.6808 0.6549 2.9157 13.3790 

RF 0.7739 2.3723 9.5260 0.6800 2.8373 12.4054 

XGBoost 0.9997 0.0735 0.0108 0.7518 2.4512 9.6215 

In Figure 6, the SOM prediction maps obtained from the best models of different fea-

ture reduction methods are plotted. Many methods demonstrated an overall high (ICA) 
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or low (PCA, Pearson, VIP, SOS, and IRF) bias in SOM predictions. In contrast, the CARS 

and DRL-based methods demonstrated excellent cartographic results, and they accurately 

characterized the spatial distribution of the SOM in the study area. The CARS and pro-

posed methods indicated a zone of high SOM values in the study area extending from the 

northwest to the southeast. When compared with CARS, the proposed methods captured 

the spatial differences of the SOM more clearly, and the distribution of the high-value 

regions was also more apparent, which demonstrated the superior performance of the 

proposed methods in the spectral feature recognition task. 
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Figure 6. SOM prediction maps for Yitong Manchu Autonomous County. (a) PCA. (b) ICA. (c) Pearson. (d) VIP. (e) SOS. (f) IRF. (g) CARS. (h) RLFSR-

Net. (i) RLFSR-Cv.



Remote Sens. 2023, 15, 127 18 of 24 
 

 

Table 2 shows the inference time of the proposed DRL-based method and other di-

mensionality reduction methods. Some dimensionality reduction methods do not include 

a feature subset collection process; hence, they have short inference times and the effec-

tiveness is also relatively limited, e.g., PCA, ICA, Pearson and VIP. Other methods include 

feature subset generation and feature subset evaluation and have longer inference times. 

The proposed method consumes a relatively small amount of inference time. 

Table 2. Comparation of the computational times on different methods. 

Method Inference Time (s) 

PCA 0.04 

ICA 0.10 

Pearson 0.01 

VIP 0.12 

CARS 22.96 

SOS 353.46 

IRF 397.84 

RLFSR-Cv 177.51 

RLFSR-Net 92.97 

4. Discussion 

4.1. Performance with Different Numbers of Selected Features 

For the dimensionality reduction methods with a constant number of features, we 

explored their prediction performance with different feature subsets. Since the SVM-RBF 

and XGBoost regression models demonstrated satisfactory accuracy in the experiments 

described in Section 4.1, we explored the performance of several dimensionality reduction 

methods with the SVM-RBF and XGBoost regression models. As is shown in Figure 7, in 

general, the inversion accuracy improved as the number of features increased, but the 

accuracy of each model stabilized or decreased slightly beyond 40 features, which was 

probably due to the gradual redundancy of features. Modeling with all features did not 

yield a satisfactory prediction, with the R2 below 0.6. The prediction accuracy of the VIP 

method was poor, and no suitable spectral features were effectively extracted. The spec-

tral extraction method based on the Pearson’s correlation coefficient showed a more stable 

inversion accuracy with a different number of features, but due to the strong correlation 

within the spectral features, increasing the number of selected features may not have re-

sulted in consistent changes in the spectral information, i.e., the added spectral features 

were mostly redundant information. The CARS method was quite random in generating 

feature subsets and achieved good prediction accuracy after several iterations. The pro-

posed RLFSR-Net and RLFSR-Cv methods achieved better feature selection results than 

the VIP and Pearson methods, and they achieved a close or better R2 for each number of 

features. 
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Figure 7. R2 curves of the different feature selection methods. The x-axis indicates the number of 

features, and the y-axis indicates the R2 obtained from the test set. (a) R2 of the SVM-RBF model. 

(b) R2 of the XGBoost model. 

Both the SVM-RBF and XGBoost regression models provided excellent prediction ac-

curacy, but the two proposed methods obtained better performance with XGBoost, and 

achieved higher R2 values and better prediction results than the CARS method. Therefore, 

we analyzed the regression results of RLFSR on different numbers of features in Table 3. 

When the number of features reached 35, RLFSR-Net and RLFSR-Cv achieved the highest 

inversion accuracy at 35 features, with R2 values of 0.7506 and 0.7518, respectively. Both 

methods failed to select suitable features and showed poor inversion accuracy with 

XGBoost when too few features were selected. When the number of features exceeded 35, 

the spectral feature information started to appear redundant, which led to a slight de-

crease in prediction accuracy.  
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Table 3. Regression Results of RLFSR on different number of features. 

Method Number of Features 
Training Set Test Set 

R2 MAE MSE R2 MAE MSE 

RLFSR-Net 

10 0.9977 0.2144 0.0959 0.4514 3.7140 21.2701 

15 0.9991 0.1346 0.0364 0.6758 2.6654 12.5721 

20 0.9989 0.1518 0.0457 0.6609 3.0678 13.1479 

25 0.9995 0.1097 0.0223 0.7055 2.9341 11.4206 

30 0.9995 0.1003 0.0205 0.7103 2.8101 11.2323 

35 0.9999 0.0006 0.0001 0.7506 2.7276 9.6700 

40 0.9997 0.0742 0.0111 0.7171 2.3913 10.9676 

45 0.9998 0.0685 0.0097 0.7044 2.9024 11.4620 

50 0.9999 0.0556 0.0058 0.6690 3.0277 12.8336 

RLFSR-Cv 

10 0.9985 0.1862 0.0624 0.4876 3.6880 19.8690 

15 0.9996 0.0848 0.0154 0.5100 3.7000 18.9994 

20 0.9994 0.1113 0.0254 0.6744 2.6709 12.6227 

25 0.9997 0.0764 0.0122 0.6886 2.9802 12.0740 

30 0.9997 0.0825 0.0125 0.6529 2.9904 13.4596 

35 0.9997 0.0735 0.0108 0.7518 2.4512 9.6215 

40 0.9999 0.0480 0.0052 0.7362 2.3955 10.2286 

45 0.9999 0.0563 0.0060 0.6949 2.8559 11.8290 

50 0.9999 0.0473 0.0042 0.6710 2.9491 12.7550 

4.2. Analysis of the Spectral Features 

To further explore the value of the proposed framework in SOM prediction, we ex-

tracted the distribution of the selected feature subsets. Figure 8 plots the spectral features 

of the 90 soil samples and annotates the locations of the feature subsets selected by the 

three best-performing algorithms. The CARS method selected more than 70 features, 

which was far more than the 35 features of the RLFSR-Net and RLFSR-Cv, and it mainly 

focused on the 2.2 μm area of the original spectrum and the other preprocessed spectra. 

In the original spectrum, the proposed RLFSR methods tended to extract features at 0.5 

μm, 0.8 μm, and 2.2 μm, which was consistent with the distribution range of spectral char-

acteristics of the SOM found by some scholars [6,45–48]. For the pre-processed spectra, 

the SOM spectral features appeared in the same position as the original spectrum. How-

ever, from Figure 8b,c, it can be clearly observed that there are more significant peaks in 

the visible range and in the 2.2 μm range, which demonstrated the vital enhancement of 

the pre-processing method for extracting spectral features. 

(a) (b) 
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(c) (d) 

Figure 8. The features selected by the different methods: CARS (blue), RLFSR-Net (orange), and 

RLFSR-Cv (gray). The x-axis indicates the wavelength. The spectral features are (a) the original spec-

trum, (b) the absorption depth of continuum removal, (c) the first derivative, and (d) the band ratio. 

Generally, the feature subsets of the three methods had relatively high consistency, 

and the feature subset of the CARS method contained most of the spectral features of 

RLFSR-Net and RLFSR-Cv. However, when compared with the CARS method, the two 

proposed methods exhibited better prediction accuracy on multiple models and signifi-

cantly reduced the size of the feature subset. The large reward for the feature subset pre-

diction accuracy in Markov modeling makes the RLFSR-Net and RLFSR-Cv algorithms 

more inclined to search for the spectral features that contribute the most to the SOM pre-

diction, while limiting the number of features that do not contribute much to SOM pre-

diction. This design enables the proposed methods to fully characterize the SOM distri-

bution with a small feature subset, which improves the accuracy of SOM inversion while 

suppressing information redundancy with excellent performance.  

A comparison of the two proposed methods shows that RLFSR-Net selected several 

spectral features in nearby bands, while RLFSR-Cv avoided the duplicate selection of sim-

ilar features as much as possible. This discrepancy can be attributed to the difference in 

the preference for the agents’ reward policies in the design of reinforcement learning. In 

RLFSR-Net, an environment is designed where the prediction accuracy of the pre-trained 

network serves as a reward. Meanwhile, in RLFSR-Cv, an environment that includes a 

greater variety of rewards and punishments is proposed, for which the correlation coeffi-

cient serves as the negative reward and the cross-validation accuracy serves as the active 

reward. By fine-tuning the interaction behavior of the reinforcement learning agents with 

the environment, the model’s preference in feature selection changes correspondingly, 

and the selected feature subsets demonstrated an excellent SOM inversion performance.  

5. Conclusions 

In this paper, we have proposed a feature selection method using reinforcement 

learning as a framework (RLFSR) to address the problem of unclear features in airborne 

hyperspectral SOM regression. To model the feature subset selection process, an MDP 

was formulated. Two feature evaluation structures were proposed by introducing a pre-

trained evaluation network and a cross-validation technique, respectively. In RLFSR-Net, 

the spectral features were randomly fed to train a deep regression network, and the per-

formance of the reinforcement learning agent was measured using the prediction error for 

a subset of features in the deep network. In contrast, 10-fold cross-validation was used in 

RLFSR-Cv to evaluate the feature subset and add a suppression condition for the inter-

feature correlation. Through this design, unique and valuable spectral features could be 

effectively selected. The effectiveness of the proposed methods was demonstrated using 

HyMap airborne hyperspectral data from the Yitong Manchu Autonomous County in 
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China. The extracted feature subsets performed well in each inversion model, while out-

performing commonly used feature selection methods, such as CARS, which demon-

strated the better stability of the proposed framework and obtained the best inversion 

results with the XGBoost model. The R2 values for RLFSR-Net and RLFSR-Cv were 0.7506 

and 0.7518, respectively. The DRL-based method and CARS method both demonstrated 

good accuracy in the SOM mapping, but the two proposed methods extracted more con-

cise and efficient subsets of features, which makes them better for the feature selection 

task. By flexibly setting the reward strategy of reinforcement learning, the proposed meth-

ods showed different performances, with RLFSR-Cv demonstrating better results in sup-

pressing the repetitive selection of similar features. In our future work, optimizing the 

feature evaluation policies for different applications will be an exciting application of re-

inforcement learning in hyperspectral inversion. 
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