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Abstract: The rapid expansion of solar industries presents unknown technological challenges. A ded-
icated and suitable energy forecast is an effective solution for the daily dispatching and production
of the electricity grid. The traditional forecast technique uses weather and plant parameters as the
model information. Nevertheless, these are insufficient to consider problematic weather variability
and the various plant characteristics in the actual field. Considering the above facts and inspired by
the excellent implementation of the multi-column convolutional neural network (MCNN) in image
processing, we developed a novel approach for forecasting solar energy by transforming multipoint
time series (MT) into images for the MCNN to examine. We first processed the data to convert the
time series solar energy into image matrices. We observed that the MCNN showed a preeminent
response under a ground-based high-resolution spatial–temporal image matrix with a 0.2826% and
0.5826% RMSE for 15 min-ahead forecast under clear (CR) and cloudy (CD) conditions, respectively.
Our process was performed on the MATLAB deep learning platform and tested on CR and CD
solar energy conditions. The excellent execution of the suggested technique was compared with
state-of-the-art deep neural network solar forecasting techniques.

Keywords: convolutional neural network (CNN); multi-column convolutional neural network
(MCNN) multipoint approach; solar generation forecast

1. Introduction

Over several years, the main objective of global sustainable development and mit-
igation policies for climate change has been to focus on renewable against coal energy
production. The energy crisis and environmental issues are being raised all over the world.
Photovoltaic (PV) production has grown fast due to wide applications in clean energy [1].
According to the International Renewable Energy Agency (IRENA) statistics, the worldwide
deployed potential exceeded 580 GW in 2019 [2]. The output of solar PV generation and
solar thermal power stations or photovoltaic/thermal (PV/T) reservoir systems [3] depends
on various factors such as solar irradiance, temperature, climate, and other factors [4]. The
prediction of solar irradiance plays a significant role in the security of the power grid [5].
Several models have been developed by experts for the prediction of global horizontal
irradiance (GHI), which are classified under six categories as follows: persistence mod-
els, classical statistical models, machine learning methods, cloud motion tracking methods,
numerical weather prediction models (NWP), and hybrid models [6]. In persistence models,
the solar irradiance measurement at time T is equal to that at time T-1. During the last few
years, persistence models have been used to compare the improvements in the performance
of other models. The most popular method for predicting solar irradiance is climatology-
persistence (Clim-Pers) [7]. The classical statistical models establish the relation between
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the parameters obtained through the dataset’s statistical analysis. Such models are as
follows: Markov processes, regression, exponential smoothing models, autoregressive (AR)
models, autoregressive moving average (ARMA) models, and autoregressive integrated
moving average (ARIMA) models [8]. One of the demerits of statistical models is that they
cannot tackle instantly varying non-static data. The prediction accuracy for the sudden
change in the non-static data of solar irradiance is low. A machine-learning-based model
can learn and design the complex non-linear relationship using the solar irradiance data
and meteorological parameters. Artificial neural networks (ANNs), support vector machine
(SVM), extreme learning machine (ELM), the genetic algorithm (GA), the hidden Markov
model (HMM), naive Bayes, the Gaussian process (GP), the k-means clustering algorithm,
and decision trees (DTs) were formulated for irradiance prediction [9–11]. Caldas and
Alonso-Suarez, Peng et al., and Chu et al. reported that various algorithms are utilized
for cloud motion tracking to predict the irradiances by the all-sky imagers or satellites.
ANN-based GHI prediction is assessed using satellite images, where the cloud fraction is
used as the input, obtained from satellite image processing [12]. In order to simulate the
physical system in atmospheric transformation and forecast weather, the current weather
mathematical model is utilized in the NWP method [13–15]. In [16–18], the authors utilized
the NWP model and related technology to predict the solar irradiance. The hybrid models
are widely used as they combine other methods’ advantages. Currently, many hybrid
models have been developed to predict solar irradiance. In [19], Ji and Chee developed
a hybrid model consisting of the ARMA model and the controversial time-delay neural
network (TDNN) for hourly solar energy forecasting. ARMA and the TDNN show good
accuracy, where ARMA is designed for the prediction of linear components of time series
and the TDNN is also used to predict the solar irradiance. In [20], the HMM and gener-
alized fuzzy model (GFM) were utilized for solar forecasting. Unsupervised clustering
is used in the HMM method, and GFM has been applied to fine-tune the clustering for a
desirable accuracy of solar radiation prediction. In [21], Voyant et al. developed a model
that combines ANN and ARMA for an hourly forecast of global horizontal irradiance.
The ANN is utilized for cloudy conditions, and ARMA is utilized on sunny days. In [22],
Dong et al. formulated a new hybrid framework that combines the exponential smoothing
state space (ESSS) and the ANN for predicting GHI from satellite images. The ESSS was
used to predict the cloud cover index, and solar irradiance estimation depending on the
cloud cover index was performed utilizing the ANN. In [23], a hybrid framework was
developed, which was the combination of self-organizing maps (SOMs), SVR, and the
particle swarm optimization (PSO) technique. Several disorganized regions were created
corresponding to all the inputs utilizing the SOMs, then SVR and PSO were utilized to
frame each disjointed region to predict the output. A hybrid model was developed, which
combined fuzzy regression functions (FRFs) and SVM in order to predict horizontal global
solar radiation [24].

Some other hybrid models have been developed for the prediction of solar radiation,
which are based on different data preprocessing methods such as the wavelet transform
(WT), wavelet decomposition (WD), wavelet packet decomposition (WPD), empirical mode
decomposition (EMD), ensemble empirical mode decomposition (EEMD), complete en-
semble empirical mode decomposition-adaptive noise (CEEM-DAN), principal component
analysis, etc.

Mohammadi et al. [25] and Deo et al. [26] developed a hybrid model where SVMs and
the WT algorithm were combined together for the prediction of GHI. Wavelet analysis was
utilized to decompose time series into various sub-time series. These sub-time series were
utilized as the input for the SVMs to complete the GHI prediction. In [27], Hussian and A.I.
Alili proposed a hybrid model, which combines WD with the ANN for the decomposition
of complex meteorological signals into simple sub-time series. Then, these sub-time series
were modeled using the ANN, and the output was reconstructed to predict GHI. In [28],
Lan et al. proposed a novel method consisting of the EEMD-SOM-BP method. EEMD
was utilized to decompose the original data into sub-time series with different frequencies.
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These sub-time-series were used as the input to the SOM-BP networks. The output of
each SOM-BP network is the predicted output of the solar radiance. This output is the
algebraic sum of each SOM-BP network. In [29], Davo et al. introduced a hybrid model,
which was the combination of principal component analysis (PCA) with the ANN and the
analog ensemble (AnEn) for the prediction of solar radiance and wind power. The main
objective of PCA was to reduce the dimension of the NWP data, whereas the ANN and
AnEn were used to train and forecast solar radiances. In [30], the data were decomposed
using WPD, and a new deep-learning-based hybrid model was developed in which WPD
was combined with LSTM for PV power prediction. In [31], a CNN, LSTM, and CNN-LSTM
comparison was given for 60 min-ahead PV power prediction for different seasons using
the historical PV power. Rami Al-Hajj [32] leveraged the advantages of the multi-level
stacking of LSTM and MLP for day-ahead solar radiation forecasting. The CNN, LSTM,
and its derivatives were developed for solar PV power forecast using ground and satellite
data. The innovations of this study are given as follows:

• We propose the Gramian cloud field (GCF) matrix (Section 2.1.1) to understand the
clouds’ impact on solar power generation from ground-measured spatial and temporal
solar power components.

• We evaluated the performance of the proposed models in different domains, namely
time series, temporal, spatial, and spatial–temporal.

• For the first time, the CNN was used to forecast solar PV power using the multipoint
and GCF approaches.

• We designed the MCNN model for use with multi-resolution input images from
satellite and ground data. However, the target was the ground (in situ) data only.

The following Section 2.1 describes the data processing and the filling of the missing
values involved in the model. Section 2.1.1 describes the time series-to-image matrix
conversion approach. Section 2.2 gives the DNN framework of the two network structures
for the present model. Section 2.3 describes the training of the DNN for the present
model, which consists of the model setup in Section 2.3.1, the settings in Section 2.3.2, and
the performance in Section 2.3.3. The results are discussed in Section 3, which include a
comparison of the models in Section 3.1, the effect of the MCNN in Section 3.2, the effect of
clear–cloudy conditions in Section 3.3, and the effect of the satellite inputs in Section 3.4
for the model validation. The conclusions of this research work are described in the last
Section 4.

2. Methodology
2.1. Data Processing

Solar PV energy depends on multiple factors, primarily geographic location and at-
mospheric conditions. These factors were further classified into and analyzed as spatial
and temporal distributions. The spatial analysis consisted of plant size, weather phenom-
ena, panel distribution, panel orientation, facing direction , Sun tracing, etc. Furthermore,
the temporal analysis depends on weather disturbance and the seasons, months, days,
and hours of the years [33]. The careful investigation of these spatial and temporal data
can enhance the accuracy of the prediction [34]. We included solar irradiance and power
generation data to forecast 2 h solar energy production. The collected raw dataset con-
tains solar irradiance and the power generation time series from 00:00H, 1 March 2020,
to 24:00H, 31 March 2021, from Southern India. The solar power generation consists of
spatial and temporal components at 5 min intervals and 22 random locations of the plants,
as depicted in Figure 1. Figure 1 is the general layout of the studied solar farm to show
the sub-distribution of the panels and data collection regions. Our plant capacity is 80
MW, consists of 2.5 million modules, and covers an area of almost 1.2 km2. Our aim
was to elaborate the plant for better accuracy. Of course, we can increase the number of
observation points, as well as the plants, but we had limitations. The units for solar energy
are presented in kWh and MWh. The Gramian cloud field (GCF) matrix [35] is proposed to
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convert solar temporal series to spatial image matrices, which comprised the input data
framework of the DNN model.

Figure 1. The spatial distribution of PV plants’ layout and data collection regions.

2.1.1. GCF Matrix

The Gram matrix (GM) is commonly used to evaluate the linear dependence of a set
of vectors. The Gram matrix is defined in Equation (1) for a given set of vectors [35]. The
Gram matrix was formulated by the use of actual time series data to create Figure 2b, and
the spatial data were used to create Figure 2c.

GM =

< x1, x1 > ... < x1, xm >
... ... ...

< xn, x1 > ... < xn, xm >

 (1)

where <> is the inner product of the two matrices.
Inspired by the Gram matrix, we suggest the Gramian cloud field (GCF) matrix [36].

Here, to understand the clouds’ impact on solar power generation from the ground-
measured parameters given in time series u1, u2, ...un and spatial data v1, v2, ...vn, the solar
components provide the movements of the clouds. The cloud movements can be divided
into two components for the ease of calculation. The first determines the cloud direction
DCi and, the second, an approximation of the cloud potential CPi from multiple coordinates
at every 5 min by Equation (2):

DCi = arctan
(

ui
vi

)
; CPi = ·5×

√
u2

i + v2
i (2)

After rescaling cloud potential component CP to [0, 1] by min–max normalization,
we built a vector, C = c1, c2....cn, which contains cloud features ci, in the polar coordinate

system
︷︸︸︷
CPi ,

︷︸︸︷
DCi . The elements of vector ci are cloud features that contain the normal-

ized value of DC and CP. The min–max normalization was obtained using Equation (3)
to improve the computational speed and accelerate the network’s training convergence
speed [37]. ︷︸︸︷

CPi =
CP− CPmin

CPmax − CPmin
(3)
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where
︷︸︸︷
CPi is the data after the min–max normalization of the original data (CP). CPmax

and CPmin are the maximum and minimum value of the original data. The GCF matrix
formulation is explained in Equation (4):

GCF =

< w1, w1 > ... < w1, wm >
... ... ...

< wn, w1 > ... < wn, wm >

 (4)

where < w1, w2 > is inner product between w1 and w2:

< w1, w2 >=
︷︸︸︷
CP1 cos

︷︸︸︷
DC1 ×

︷︸︸︷
CP2 cos

︷︸︸︷
DC2 +

︷︸︸︷
CP1 sin

︷︸︸︷
DC1 ×

︷︸︸︷
CP2 sin

︷︸︸︷
DC2 (5)

Every timestamp (i) of the time series (TS) data is represented as vector wi in the polar
coordinate system (CPi, DCi). Diagonal elements characterize the features of the cloud
correlation vectors at each timestamp. In comparison, the other elements represent the
cross-co-relationship between cloud vectors at different timestamps. In the raw dataset,
there were twenty-two TSs from different locations, which were mapped to five-channel
images, as shown in Figure 2b–f.

Regarding the GCF image matrix conversion, the matrix’s row and column are the
22 locations (every 5 min) of solar power in the space and time domains. Therefore, n and m
in the GCF matrix represent the 22 locations. An example of the GCF image formation based
on the available spatial–temporal solar data is shown in Figure 2a; the spatial distributions
of the normalized solar power of the 22 locations are shown in the bottom x-axis (space
label) versus solar power in the left y-axis, similar to the time domain distribution of the
previous 22 values (t1, t2, ......t22) shown in the top x-axis (time label) versus solar power in
the right y-axis. In Figure 2a, the spatial data (red line) illustrate the values of a certain point
in time, and temporal data (black line) are for a certain location. The image in Figure 2b,c is
derived from the GM in Equation (1). The GCF image matrix is derived from Equation (4),
and the proposed combination of multiple space and time correlation matrices is shown
in Figure 2d–f to understand the solar power distribution properly in the time and space
domains. Figure 2b is an image of the temporal distribution of Figure 2a (black color) of
the solar power of the 22 previous temporal values derived from the GM in Equation (1).
The row (n) and column (m) of Figure 2b are the time vectors. Figure 2c is also derived
from the GM in Equation (1), which is based on the spatial distribution of the solar power
at the 22 locations, shown in Figure 2a in red color. The row and column of Figure 2c are
the space vectors. The GCF images in Figure 2d,e were derived from Equation (4), keeping
the time and space domain values, respectively. Figure 2f represents the spatiotemporal
image from Equation (4) of the 22 points’ space and time distributions.

The satellite irradiance components diffuse horizontal irradiance (DHI), direct normal
irradiance (DNI), global horizontal irradiance (GHI), and insolation (INS) were considered
for the further analysis and verification of the solar power generation at the plant location,
as shown in Figure 3.

The satellite data’s 4 km spatial and 15 min temporal resolution were different from
the ground-measured data, requiring transforming the GCF images. The satellite images
benefited the cloud movement tracking for the large-scale spatial analysis. Therefore,
the spatial distribution of the image size was considered as 100× 100 km, which is 30-times
larger than the actual plant size. The Sun’s movement was considered better with a larger
satellite image, around the clock. The cloud shadow variation calculated over the plants was
based on the clouds’ altitude (roughly 8 to 20 km) with respect to the horizontal and vertical
movements in the sky. In the present study, we used the radiative transfer model (RTM)
simulations produced by libRadtran [38,39] to estimate the solar irradiance. A fast version
of RTM was developed by [40] based on pre-calculated look-up tables and a replicate for
India by [41]. The major input parameters for the RTM simulations are the aerosol and
cloud optical properties, the solar elevation and orientation, the total ozone column, and
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the columnar water vapor. The outputs of the RTM simulation are the DHI, DNI, GHI,
and INS, which cover the wavelength range from 285 to 2700 nm and use the SBDART
radiative transfer solver [42] with the pseudo-spherical approximation to generate the valid
output for solar elevations between 0 and 90 degrees. The model simulation was performed
using the band parameterization method based on the correlated-K approximation [43],
along with aerosol and cloud determination, which were performed based on the default
available aerosol models [44].
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Figure 2. Time series-to-spatial–temporal image matrix conversion: (a) variation of power over space
(red color) and time (black color); (b) time domain image matrix derived from Equation (1); (c) spacial
domain image matrix derived from Equation (1); (d) time domain GCF image; (e) space domain GCF
image; (f) time–space domain GCF image.
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Figure 3. The satellite irradiance components DHI, DNI, GHI, and insolation (INS).

2.2. Deep Neural Network Structure

The TS-to-image matrix conversion using the GCF algorithm in Equation (4), the avail-
able twenty-two 1D images , five 2D single-channel sequential images’ spatiotemporal
mapping, and one 3D four-channel satellite image formed the solar irradiance dataset used
for the study. The comparison was performed using the popular convolutional neural
network (CNN) [45], long short-term memory (LSTM) [46], a combination of both (CNN-
LSTM) [47], and the MCNN [48] to retrieve the features from the above matrices and the
output of a 2 h solar power forecast, as shown in Figure 4, showing the complete model
network structure. From Figure 4, Seq, Cov, Batch Nor, Tran Cov, Max Pool, F.C., and Reg de-
note the sequence, convolution, batch normalization, transposed convolution, max pooling,
fully connected, and regression layers, respectively. The sequence input layer features are
defined as per the input data types 1× 1, 22× 1, 22× 22× 1, 22× 22× 5, and 26× 26× 4
for single-input time series, multiple-input time series, 2D images with five channels, and
3D images with four channels for the input dimensions, respectively [49]. The filters and
convolution kernel size started from 8@ 3× 3 for the first, 16@3× 3 for the second, etc.,
as depicted in Figure 4. In the present study, in the CNN model, a five-times Cov layer was
used, with a maximum filter size of 72@3× 3. Each Cov layer consisted of a stride of one
and zero padding.

We used the Tran Cov layer for upsampling [50]. The Tran Cov layer creates an output
feature map with a greater spatial dimension than the input, making the regression more
robust. To avoid the overfitting problem and speed up the training procedure, we used a
dropout layer (the dropout rate was 0.25) [51], a batch normalization layer, max pooling,
to help extract low-level features, and ReLU, to avoid the vanishing gradient problem,
which has a much lower runtime [52]. We used the BiLSTM layer [53,54] following the
convolutional layer. The BiLSTM layer can control the bidirectional dependencies passed
on in the sequence data at every step. The fully connected layer starts from 484, 242, 121,
60, and 22 units to the final regression layer. In order to prevent potential interferences,
we merged the two networks (CNN and LSTM) and connected the final forecast layer to
another fully connected layer. We used two spatial image sources, one the ground and
the other the satellite image, with different spatial resolutions, to overcome the different
spatial resolution problems using multi-stream CNN, multi-input CNN, or multi-column
CNN-LSTM (MCCN) [48], as shown in Figure 4b.
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Figure 4. The DNN model networks’ structure with GD, Sat, and Sat-GD data as the input: (a) The
framework of the CNN-LSTM model. (b) The framework of the MCNN model.

2.3. DNN Properties

Once having processed the data (Sections 2.1 and 2.1.1) and created the model network
structure (Section 2.2), the next step was the model properties’ definition. This is divided
into the following sub-sections:

Section 2.3.1: DNN Setup;
Section 2.3.2: DNN Settings;
Section 2.3.3: DNN Performance Parameters.

2.3.1. DNN setup

The whole dataset consisted of 22 TS data points, and each TS contained 1,03,680 points
for every 5 min of solar power generation from March 2020 to 2021. Each TS point was
considered an independent case, and we divided the 1,03,680-sample dataset into training
and testing sets with a 7:3 ratio. Finally, we trained and tested the whole dataset using
the deep learning toolbox from MATLAB 2021b for data processing, network design,
and training using a GPU.

2.3.2. DNN Settings

Three popular time series forecasting methods for all possible input datasets were
tested to demonstrate and analyze the proposed hybrid method. The proposed well-known
methods were CNN-LSTM [47], LSTM [46], and CNN [45], taken for the comparison and
assessments. The input data types were kept the same: 1D, 2D, and 3D, to assess the three
network structures uniformly. The basic model settings and parameters are listed in Table 1.
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Table 1. Model properties.

Settings Parameters

Solar dataset number 22
Training set size 72,576
LSTM network layer number 6
LSTM neuron number in each layer 100
CNN network layer number 6
CNN neuron number in each layer 100
LSTM-CNN network layer number 12
LSTM-CNN neuron number in each layer 100
Hidden dense layer number 2
Hidden neuron number 200, 200
Dropout rate 0.2
Training method Adam optimizer
Loss function RMSE, MAE
Forecast horizon (min) 5–120 (2-h)

2.3.3. DNN Performance Parameters

The model performance was evaluated based on the root-mean-squared error (RMSE)
and mean absolute error (MAE) metrics for the purposes of comparison, which are formu-
lated as below:

RMSE method: This method evaluates the standard deviations in the predicted solar
power, calculated by using the equation:

RMSEYT =

√
∑N

i=1(yactual − ypredict)2

N
(6)

where RMSEYT denotes the RMSE of solar power, yactual is the solar power from the field
test, ypredict is the predicted solar power from the machine learning algorithm, and N is the
number of non-missing data points.

MAE method: This method calculates the mean absolute error involved in solar power
measurement. The absolute error is the difference between the actual and predicted one.
The formula to calculate the MAE for power is given below:

MAEYT =
∑N

i=1 |yactual − ypredict|
N

(7)

where MAEYT is the mean absolute error of the power and N is the number of errors.
The assessment consisted of four major domains, namely time series, temporal, spatial,

and spatiotemporal, to understand the response of the predefined methods as mentioned
in Table 2:

1. The validation of the proposed approach was performed by comparing with single
and multiple inputs to match the single and multiple outputs on a typical time series
dataset.

2. The validation of the proposed approach is illustrated to reveal the effectiveness of
the 2D input image metrics in the spatial domain to match the single and multiple
outputs on a typical time series dataset.

3. Similarly, the validation of the proposed approach is illustrated to reveal the effective-
ness of the 2D input image metrics in the temporal domain to match the single and
multiple outputs on a typical time series dataset.

4. Finally, the validation of the proposed approach is illustrated to reveal the effectiveness
of the 2D input image metrics in the spatiotemporal domain to match the single and
multiple outputs on a typical time series dataset.
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Table 2. Experiment settings and parameters.

Name DI Unit Type Sources Category Layers M-Type Outputs

M1 1D MW Ts GD CR+CD 2 LSTM 1
M2 1D kW Ts GD CR+CD 2 LSTM 1
M3 1D kW Ts GD CR+CD 2 LSTM 22
M4 2D kW Sp GD CR+CD 2 CNN 1
M5 2D kW Sp GD CR+CD 2 CNN 22
M6 2D kW Tp GD CR+CD 2 CNN 1
M7 2D kW Tp GD CR+CD 2 CNN 22
M8 2D kW Sp-Tp GD CR+CD 2 CNN 1
M9 2D kW Sp-Tp GD CR+CD 2 CNN 22
M10 1D kW Sp-Tp V GD CR+CD 2 LSTM 1
M11 1D kW Sp-Tp V GD CR+CD 2 LSTM 22
M12 2D kW Sp GD CR+CD 4 CNN-LSTM 1
M13 2D kW Sp GD CR+CD 4 CNN-LSTM 22
M14 2D MW Tp GD CR+CD 4 CNN-LSTM 1
M15 2D kW Tp GD CR+CD 4 CNN-LSTM 22
M16 2D kW Sp-Tp GD CR+CD 4 CNN-LSTM 1
M17 2D kW Sp-Tp GD CR+CD 4 CNN-LSTM 22
M18 2D kW Sp-Tp GD CR 4 CNN-LSTM 22
M19 2D kW Sp-Tp GD CD 4 CNN-LSTM 22
M20 2D kW Sp-Tp Sat CR 4 CNN-LSTM 22
M21 2D kW Sp-Tp Sat CD 4 CNN-LSTM 22
M22 2D kW Sp-Tp Sat+GD CR 4 CNN-LSTM 22
M23 2D kW Sp-Tp Sat+GD CD 4 CNN-LSTM 22
M24 2D kW Sp-Tp GD CR 4 MCNN 22
M25 2D kW Sp-Tp GD CD 4 MCNN 22
M26 2D kW Sp-Tp Sat CR 4 MCNN 22
M27 2D kW Sp-Tp Sat CD 4 MCNN 22
M28 2D kW Sp-Tp Sat+GD CR 4 MCNN 22
M29 2D kW Sp-Tp Sat+GD CD 4 MCNN 22

3. Experimental Results and Evaluation

Once having processed the data (Sections 2.1 and 2.1.1), created the model network
structure (Section 2.2), and defined the model properties (Section 2.3), the next step was the
evaluation process. This is divided into the following sub-sections:

Section 3.1: Comparison of Methods;
Section 3.2: Effects of Multi-Column CNN-LSTM Model;
Section 3.3: Effects of Cloudy Conditions;
Section 3.4: Effects of Satellite Inputs.

3.1. Comparisons of Methods

To evaluate the performance of the proposed method, we compared the performance
of different methods in the following time steps in minutes: 5, 10, 15, 20, 25, 30, 35, 40, 45,
50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 100, 115, 120. The results of the twenty-two
locations were combined and presented in Figures 5 and 6, and the detailed MAE and
RMSE results are given in Table 3. Moreover, we provide the detailed MAE and RMSE
comparison results for the twenty-two locations under the 90 and 15 min time steps in
Figures 7 and 8, respectively. In addition, we introduce the MCNN to combine the ground
and satellite images in Figure 9. Further, we introduced the clear and cloudy day effect on
the model’s performance, as shown in Figures 10 and 11, respectively, at 15 min time steps.
We finally introduce the satellite spatial information compared to the ground database,
as shown in Figure 12.

Table 3 presents the detailed MAE and RMSE comparison of all 29 models at multiple
time steps (15, 30, and 90 min). We compared the few models that performed well, such as
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M7, M15, and M17, based on the ground image inputs under clear–cloudy circumstances.
For further analysis of the model performance, we tested the models [M18-M29] based
on the ground (GD), satellite (Sat), and satellite–ground (Sat-GD) combined inputs under
the consideration of clear and cloudy situations separately. Among all these models, M18,
M19, M24, and M25 showed excellent performance for all time steps. Above all, [M15,M17],
[M18,24], and [M19, M25] performed well for multiple time steps based on the GD approach
under the CR-CD, CR, and CD conditions, respectively. Further, the multiple input and
output model’s results were constantly improved in comparison to the single input–output
model [55,56].

Figure 5 shows the performance of the single versus multiple points approach for 2 h-
ahead forecast in time steps of 5 min. Shown in Figure 5a,b are single versus multiple inputs
and in Figure 5c,d single versus multiple outputs. The multipoint approach outperformed
the single-point approach for all time steps. The multiple point approach offered 29.2060%
and 36.5758% reductions in the MAE and 41.6292%, and 56.4366% reductions in the RMSE
compared to the single-point approach. Notably, the multipoint approach had better
performance between 1–9 and 8–21 time steps for the multiple input (M2) and multiple
output (M3) approach, respectively.

Table 3. Metrics of methods with time steps.

Model MAE RMSE

15 30 90 15 30 90

M1 27.2203 27.5405 24.7239 9.7590 10.3284 8.4229
M2 9.5770 15.3224 25.2258 1.5453 3.1543 9.0886
M3 17.3940 12.3964 20.9350 4.7824 2.2567 6.2924
M4 26.2417 26.2595 26.3432 9.0746 9.0960 9.1694
M5 25.8696 25.8866 25.9707 8.8227 8.8378 8.9141
M6 26.2419 26.2598 26.3453 9.0777 9.0982 9.1745
M7 8.4704 10.7054 19.9611 1.4691 2.1297 5.4158
M8 25.9674 24.8605 26.3303 8.8689 8.0851 9.1643
M9 13.7934 12.0208 20.1083 2.8352 2.2700 5.4955
M10 20.6757 14.4866 20.8888 6.4844 3.1501 5.9975
M11 13.9041 15.9961 22.4180 3.1708 3.8144 6.8712
M12 8.9575 12.1475 20.9664 1.5873 2.4501 5.9187
M13 9.0794 11.9933 20.9083 1.5672 2.3315 5.9165
M14 9.2380 10.4488 15.7862 1.6760 2.0737 4.1134
M15 8.9872 10.6592 15.3156 1.5511 1.9917 3.6687
M16 8.9911 10.9749 15.3569 1.6573 2.2885 3.9627
M17 8.7971 10.6773 14.8766 1.5922 2.1281 3.5232
M18 3.0580 2.1712 5.0391 0.1135 0.1093 0.7463
M19 4.4561 4.4877 9.9952 0.3324 0.3796 1.2174
M20 4.9387 5.1428 10.9953 0.6260 0.8058 2.6585
M21 9.6306 9.9354 13.2887 1.7636 1.8470 3.3160
M22 5.2187 5.4727 11.4658 0.6640 0.8664 2.7936
M23 9.9740 10.6457 15.4560 1.9031 2.5889 4.8156
M24 4.8158 3.5540 5.5037 0.2826 0.2826 0.4237
M25 5.0246 4.5348 9.3128 0.5826 0.5752 1.7748
M26 5.8434 8.03844 19.6718 0.7357 1.8813 8.7471
M27 8.9803 8.9398 19.0666 1.7213 1.7662 6.0082
M28 5.5534 7.0940 18.9287 0.6613 1.1534 5.9412
M29 9.2267 9.5179 18.3195 1.4669 1.8996 5.8551
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Figure 5. Comparison of the single- versus multiple-point approach: (a) single vs. multiple inputs;
(b) single vs. multiple inputs; (c) single vs. multiple outputs; (d) single vs. multiple outputs.

Figure 6 shows the CNN and combined model (CNN-LSTM) approaches with spatial,
temporal, and spatiotemporal as the input conditions and witnesses the MAE and RMSE
decline for the spatiotemporal approach. However, the CNN-LSTM multi-output approach
(M13 and M15) in both the spatial (Figure 6a,b) and temporal (Figure 6c,d) domains main-
tained outstanding forecasting performance without significant fluctuations. The combined
model performed better than the individual approaches in the spatiotemporal domain, as
shown in Figure 6e,f. The final comparison of all combined models is shown in Figure 6g,h,
where the multi-output (M17) approach showed outstanding responses. We can therefore
conclude that the spatiotemporal input in a multi-output approach is effective.

In [57], the CNN-LSTM hybrid model was simulated with meteorological parameters
for PV power forecast with an RMSE of 22.5677% and an MAE of 58.9563% for 30 min-ahead
forecast. Our proposed M17 (CNN-LSTM) hybrid model tested on a spatial–temporal image
matrix showed excellent performance with a 2.1281% RMSE and a 10.67738% MAE for
30 min-ahead forecast, as shown in Table 3, and the detailed forecasting accuracy for 5 min
time steps is shown in Figure 6g,h, being in the permissible range for 2 h-ahead forecast.



Remote Sens. 2023, 15, 107 13 of 22

0 5 10 15 20 25

Timesteps

5

10

15

20

25

30

%
M

A
E

MAE-M4

MAE-M5

MAE-M12

MAE-M13

(a)

0 5 10 15 20 25

Timesteps

0

2

4

6

8

10

12

%
R

M
S

E

RMSE-M4

RMSE-M5

RMSE-M12

RMSE-M13

(b)

0 5 10 15 20 25

Timesteps

5

10

15

20

25

30

35

%
M

A
E

MAE-M6

MAE-M7

MAE-M14

MAE-M15

(c)

0 5 10 15 20 25

Timesteps

0

2

4

6

8

10

12

14

16

18

20

%
R

M
S

E

RMSE-M6

RMSE-M7

RMSE-M14

RMSE-M15

(d)

0 5 10 15 20 25

Timesteps

0

10

20

30

40

50

60

%
M

A
E

MAE-M2

MAE-M10

MAE-M116

(e)

0 5 10 15 20 25

Timesteps

0

5

10

15

20

25

30

35

40

%
R

M
S

E

RMSE-M2

RMSE-M10

RMSE-M16

(f)

0 5 10 15 20 25

Timesteps

4

6

8

10

12

14

16

18

20

22

24

%
M

A
E

MAE-M12

MAE-M13

MAE-M14

MAE-M15

MAE-M16

MAE-M17

(g)

0 5 10 15 20 25

Timesteps

0

1

2

3

4

5

6

7

8

%
R

M
S

E

RMSE-M12

RMSE-M13

RMSE-M14

RMSE-M15

RMSE-M16

RMSE-M17

(h)

Figure 6. Comparison of spatial, temporal, spatial–temporal, and mixed approaches: (a) spatial
input; (b) spatial output ; (c) temporal input; (d) temporal output ; (e) spatial–temporal input;
(f) spatial–temporal output ; (g) mixed approaches; (h) mixed approaches.
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In Figure 7, all the models with multiple outputs were tested with time series, with
the spatiotemporal vector and spatiotemporal input on different models with a fixed time
of 90 min. The improvements for different locations did not follow the same pattern.
The enhancement in the MAE and RMSE among the different points was different for
Models M3, M9, and M11. However, the MAE and RMSE were significantly improved
for M17 compared to M3, M9, and M11. Hence, the spatiotemporal approach with the
CNN-LSTM is practical. The deep CNN with multi-input factors had an RMSE under
mixed seasonal conditions for 1 h-ahead PV power forecast of 3.7448% [58]. Our CNN
framework M9 based on the spatial–temporal image matrix achieved an RMSE ≤ 4% for 19
locations out of the 22 for the 90 min-ahead forecast, as shown in Figure 7.
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Figure 7. Comparison of the 22 locations of solar plants at 90 min time steps.

In Figure 8, all the models were tested with the time series, with the spatiotemporal
vector and spatiotemporal input, and the environment is shown in the form of a box plot.
The box plot shows the absolute forecast errors of different models. Forecasting error
(FE) =

(
yactual − ypredict

)
, which is the absolute difference between the actual and predicted

value. It seems that the performance ranking of different models according to the median
(mean) of the absolute errors was consistent with the previous conclusion. The average
deviation for all 22 locations for Model M17 was uniform, which signifies the suitability of
Model M17. A narrower range of the error distribution was found with M17 compared to
any other model under the CR-CD conditions. Hence, the spatiotemporal input showed a
promising result in comparison to the other input types. The red-colored crosses in Figure 8
are outliers. The outliers are those data points that are significantly different from the rest of
the dataset. Furthermore, most of the outliers in M9 were smaller than in any other model.
Besides, the dispersion of the absolute errors was higher for longer forecast horizons.
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Figure 8. The absolute errors of the 22 locations at 15 min-timesteps .

3.2. Effects of Multi-Column CNN-LSTM model

The important applications and framework of the MCNN are explained in Section 2.2
and Figure 4b. There are multiple works in the literature [48,49,59,60] in favor of multiple
columns for image classification. Here, we tried to use the MCNN for regression on different
inputs. The first is from satellite images at low spatial resolutions (1–4 km), but with more
spatial coverage, roughly a 100 × 100 km2 grid area. Furthermore, the second is from
ground spatial images at high resolutions with a low coverage area within 1 × 1 km 2. The
MCNN performed better for the multi-resolution input images, and the target was the in
situ data. Actually, we performed the comparison at the ground level only. The comparison
of the CNN-LSTM and MCNN for different data types such as GD, Sat, and the combined
Sat-GD as the inputs were considered under the CR and CD conditions for time steps of
15 min, as shown in Figure 9. In Figure 9, [M18-M23] (left: 6-color bar) represents the
CNN-LSTM model and [M24-M29] (right: 6-color bar) represents the MCNN model, whose
details are given in Table 2. All these inputs were tested, and from the test response, we
found that the ground-based approach showed a better response under both the CR and
CD conditions due to the high-resolution spatial images. The multilevel stacking-based
design of LSTM-MLP was used in the solar radiation forecasting, where a 6.08% RMSE was
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obtained in [32], whereas the CNN-LSTM [M18-M23] and MCNN [M24-M29] framework
shown in Figure 9 achieved a <2% RMSE with Sat, GD, and Sat-GD as the inputs.
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Figure 9. Comparison of different models under clear and cloudy days with GD, Sat, and Sat-GD
inputs, when time steps = 15.

3.3. Effects of Cloudy Conditions

In Figure 10, the comparison of the hybrid forecasting model CNN-LSTM [M18,M19]
and MCNN [M24,M25] under clear and cloudy sky conditions is shown separately. The
top-left plot (Figure 10a) shows the actual and forecast power on a clear day using a dataset
with 15 min time steps. The middle-left plot (Figure 10b) shows a linear regression graph
of measured (actual) and predicted values on a clear day. The bottom-left plot (Figure 10c)
shows the frequency of the forecast error graph of different models on a clear day. Similarly,
all right-side plots represent a cloudy day. It is clearly shown in both conditions that the
model prediction differed from clear day performance due to the non-linear nature of
irradiance. Therefore, the linear regression and frequency distribution of the errors are
scattered more in cloudy conditions in all three forecast plots.

The Taylor diagram is an acceptable and suitable tool to reflect the comparison results
and evaluation of different models in a graphical fashion. It provides a concise statistical
summary of how well patterns match each other regarding their standard deviation, root-
mean-squared deviations (RMSD), and the correlation coefficient. It was applied to compare
different energy forecast frameworks such as [M18, M24] and [M19, M25] under a clear
and cloudy day, respectively. For these Taylor diagrams, the lower-right corner (where
the correlation coefficient I = 1 and RMSD = 0) was considered the ground truth or the
measured values (observation point). Moving along the radial distance towards the origin
indicates that the standard deviation decreases, while moving along the radial angle toward
the bottom axis improves the correlation. With the enhancement in the standard deviation
and correlation coefficient, the RMSD will decrease. The better model will be close to
the observation point on the graph. As shown in Figure 11, for all forecast models, all
correlation coefficients were in the range of [0.99–1.00] and [0.95–0.99] under clear and
cloudy conditions, whereas the models’ RMSD lies in the range of [0–0.1]. The observation
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arc shows that the standard deviation of the models lies in the range of 0.3–0.4 for both
conditions.
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Figure 10. Comparison of different models under clear and cloudy days at time steps = 15: (a) Power
prediction under clear sky. (b) Power prediction under cloudy sky. (c) Scatter plot under clear sky.
(d) Scatter plot under cloudy sky. (e) Frequency of forecast error under clear sky. (f) Frequency of
forecast error under cloudy sky.
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Figure 11. Comparison of clear and cloudy days when time steps = 15: (a) Clear sky. (b) Cloudy sky.

3.4. Effects of Satellite Inputs

We also compared the above methods with satellite datasets since satellite coverage
has a greater spatial dimension with a low spatial and temporal resolution, but the cloud
origin and movement are easily calculated in such a region. In the present simulation and
forecasting models, the satellite coverage area was more than (10-times) the ground-based
approach. As shown in Figure 12, for all forecast models [M20, M26] and [M21, M27],
the correlation coefficients were in the range [0.95–0.99] under clear and [0.9–0.95] under
cloudy days. In comparison, the RMSDs of the models were in the range of [0–0.1] for
clear and [0.1–0.2] for cloudy days. The observation arc shows that all models’ standard
deviations lie in the range of [0.3–0.4] for clear and [0.2–0.4] for cloudy days. The correlation
coefficients, standard deviations, and RMSD parameters are desirable with the GD inputs
compared to the Sat inputs because of the high spatial and temporal resolution, and hence,
the GD-based approach is promising in comparison to the Sat-based on.
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Figure 12. Comparison of clear and cloudy days for satellite data when time steps = 15: (a) Clear sky.
(b) Cloudy sky.
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4. Conclusions

There are two basic problems when dealing with multiple data sources with the CNN.
First, the application of the CNN to time series data is a bit difficult. Second, the handling of
data with different spatial resolutions is challenging. For the first time, this paper assessed
the potential of utilizing the convolutional neural network to forecast solar power using the
multipoint and GCF approaches. The MCNN encodes the solar power from time series and
spatial data to map the plants’ data into image matrices. The assessed results indicate that
the ground-based approach with the multipoint input and output approach significantly
improved the solar power generation forecast. In comparison with state-of-the-art time-
series-based LSTM and image-based CNN, the multiple point approach offered 29.2060%
and 36.5758% reductions in the MAE and 41.6292% and 56.4366% reductions in the RMSE.
The spatial–temporal-based hybrid CNN-LSTM model outperformed all methods with the
CR and CD conditions under the ground data.

Furthermore, the model was tested under the clear and cloudy conditions separately
for the ground and satellite data to better analyze it. The findings for the proposed approach
were best with the spatiotemporal ground inputs, as the correlation coefficients were in
the range of [0.99–1.00] and [0.95–0.99] under clear and cloudy days, respectively, which
are closer to the observational point, as shown in Figure 11. Furthermore, the CNN-LSTM
and MCNN showed excellent performance with the ground-based spatiotemporal image
in comparison with other approaches, with an RMSE of 0.3324% and 0.5826%, respectively,
under cloudy conditions, for a 15 min-ahead forecast. The assessments of our approach
could be further improved with more data points and more cloud information at multiple
locations.
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Nomenclature and Abbreviations
The following abbreviations are used in this manuscript:

MCCN Multi-column convolutional neural network
MT Multipoint time series
GCF Gramian cloud field matrix
PV Photovoltaic
CNN Convolutional neural network
LSTM Long short-term memory
DNN Deep neural network
FC Fully connected layer
Reg Regression
CP Cloud potential
M− Type Model-type
DI Input dimension
Ts Time series
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Sp Spatial
Tp Temporal
Sp− Tp Spatial–temporal
GD Ground
Sat Satellite
Sat− GD Satellite–ground
CR Clear
CD Cloudy
CR− CD Clear–cloudy
RMSE Root-mean-squared error
MAE Mean absolute error
RMSD Root-mean-squared deviation
GHI Global horizontal irradiance
DNI Direct normal irradiance
DHI Diffuse horizontal irradiance
INS Insolation
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