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Abstract: Airborne laser scanning (ALS) is increasingly used for detailed vegetation structure map-

ping; however, there are many local-scale applications where it is economically ineffective or unfea-

sible from the temporal perspective. Unmanned aerial vehicles (UAVs) or airborne imagery (AImg) 

appear to be promising alternatives, but only a few studies have examined this assumption outside 

economically exploited areas (forests, orchards, etc.). The main aim of this study was to compare 

the usability of normalized digital surface models (nDSMs) photogrammetrically derived from 

UAV-borne and airborne imagery to those derived from low- (1–2 pts/m2) and high-density (ca. 20 

pts/m2) ALS-scanning for the precise local-scale modelling of woody vegetation structures (the 

number and height of trees/shrubs) across six dynamically changing shrubland sites. The success of 

the detection of woody plant tops was initially almost 100% for UAV-based models; however, 

deeper analysis revealed that this was due to the fact that omission and commission errors were 

approximately equal and the real accuracy was approx. 70% for UAV-based models compared to 

95.8% for the high-density ALS model. The percentage mean absolute errors (%MAE) of shrub/tree 

heights derived from UAV data ranged between 12.2 and 23.7%, and AImg height accuracy was 

relatively lower (%MAE: 21.4–47.4). Combining UAV-borne or AImg-based digital surface models 

(DSM) with ALS-based digital terrain models (DTMs) significantly improved the nDSM height ac-

curacy (%MAE: 9.4–13.5 and 12.2–25.0, respectively) but failed to significantly improve the detec-

tion of the number of individual shrubs/trees. The height accuracy and detection success using low- 

or high-density ALS did not differ. Therefore, we conclude that UAV-borne imagery has the poten-

tial to replace custom ALS in specific local-scale applications, especially at dynamically changing 

sites where repeated ALS is costly, and the combination of such data with (albeit outdated and 

sparse) ALS-based digital terrain models can further improve the success of the use of such data. 

Keywords: unmanned aerial vehicle (UAV); structure from motion (SfM); airborne laser scanning 

(ALS); light detection and ranging (lidar); airborne imaging; individual tree detection (ITD) 

 

1. Introduction 

Accurate information about woody vegetation structure characteristics (height, 

crown diameter, number of individuals, species, biomass estimation, landscape patterns, 

etc.) is very important for tasks associated with nature conservation and management [1] 

and is beneficial for other analyses of applied ecology for evaluating biodiversity, e.g., [2–

4], forest species composition [5], carbon storage dynamics [6], pest outbreaks [7], forest 

microclimates [8], canopy gap patterns [9], and biomass volumes [10]. While describing 

forest structures is more or less standardized, it remains difficult in specific shrubland 
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ecosystems with dynamically changing sparse woody vegetation, the high nature conser-

vation value (i.e., high diversity of habitats and, in effect, high biodiversity) of which is 

associated with frequent landscape disturbances caused by the presence of military activ-

ities [11] or fires [12], among others. Such disturbances usually have positive effects on 

biodiversity [13,14] and cause changes in vegetation composition (especially lower trees 

and shrubs). The monitoring of such changes with field surveys is time-consuming and 

difficult; hence, a time-effective solution for the mapping of such areas at reasonable costs 

is needed for not only ecological studies but also forestry and nature conservation man-

agement purposes. 

Field surveys of the woody plant structure characteristics are usually time-consum-

ing, especially in highly heterogeneous “close-to-nature” environments. Remote sensing 

(RS) methods using airborne laser scanning (ALS; also known as airborne light detection 

and ranging/lidar) are, thanks to their proven advantages, becoming popular and benefi-

cial in detailed mapping of natural environments including shrubland sites with sparse 

woody vegetation [15]. Therefore, ALS can nowadays be considered to represent an ap-

propriate data source for describing woody vegetation structures in detail [16]. However, 

there are many local-scale applications where ALS is ineffective from the economical or 

temporal perspectives (the custom airborne laser scanning of small areas would be costly 

and associated with long wait times for the availability of ALS providers). For such appli-

cations, unmanned aerial vehicle (UAV) or airborne imagery (AImg) processed through 

image-matching techniques (such as structure from motion) seem to be promising alter-

natives that may be beneficial for the detailed mapping of vegetation at local scales [17]; 

there are, however, still not enough studies proving this in specific environments. Com-

prehensive reviews of both ALS and image-based techniques have been presented, e.g., 

by White et al. [18] and Puliti et al. [19]. 

A vegetation structure consists of horizontal and vertical components. The horizontal 

component describes the landscape structure, while the vertical component represents the 

configuration of aboveground vegetation [20]. The calculation of woody vegetation struc-

ture characteristics (especially those describing vertical structure) typically requires a nor-

malized digital surface model (nDSM; in areas without man-made structures, this is iden-

tical to the canopy height model, CHM) [21]. An nDSM/CHM is usually created via the 

subtraction of a digital terrain model (DTM) from a digital surface model (DSM) and is 

most commonly represented in the raster data format [22], although some novel ap-

proaches can be used to derive the information on vegetation structures directly from a 

point cloud [23]. However, whichever of these approaches is used, ground filtering is a 

crucial step of point cloud processing, and optimal ground filtering typically requires ex-

perienced staff [24]. This operation is much easier when using laser scanning techniques 

because these provide a relatively higher amount of ground points than photogrammetric 

techniques. This is caused by the fact that the latter predominantly capture the upper can-

opy, as the photographic imagery cannot penetrate the uppermost surface in the way a 

laser beam can [25,26]. This is especially true in large forest stands or shrublands with 

dense shrubs situated in locations with a high vertical terrain heterogeneity. The difficul-

ties in filtering UAV-borne point clouds were described in more detail by Klápště et al. 

[27]. 

As vegetation cover changes dynamically in some sites while the terrain typically 

remains relatively stable in most environments, combining UAV-borne DSMs (that can be 

repeatedly obtained with a relatively high frequency due to lower costs) with ALS-based 

digital terrain models (where available) might be advantageous for monitoring the 

changes in vegetation cover, mainly for economic reasons. Luckily, the availability of na-

tional ALS datasets is increasing, and despite the fact that they may suffer from lower 

spatial resolution associated with a coarse point cloud density, such data could be a suit-

able source of DTMs (e.g., in the Czech Republic, a 2 m spatial resolution DTM is available 

[28,29]). In many countries, there is also a regular data collection period of airborne im-

agery at the national level (e.g., in the Czech Republic each place is surveyed once every 
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two years), which makes this data source potentially interesting for vegetation pattern 

mapping. 

Once an nDSM is produced, there are many different approaches and algorithms for 

the calculation of both horizontal and vertical components and the description of woody 

vegetation structures [23]. The determination of the number of trees/shrubs (most com-

monly based on local maxima filtering) is a typical nDSM-based horizontal vegetation 

structure descriptor [30,31]. On the other hand, tree/canopy height is a typical vertical 

structure [32]. There are also methods for extracting 3D vegetation structures from point 

clouds [33] and extracting individual trees using geomorphons [34]. To the best of our 

knowledge, the approach presented in this study, i.e., combining photogrammetrically-

derived point clouds from both airborne and UAV-borne imagery with data from out-

dated nationwide ALS-based DTMs for the detection of individual shrubs and trees in 

shrubland with sparse woody vegetation (represented by a military training area), has not 

been used before. Well-arranged reviews of UAV applications focusing on vegetated areas 

have been presented, e.g., by Salamí et al. [35] and Torresan et al. [36]. The current research 

trends predominantly focus on the applicability of UAV imagery in man-managed, eco-

nomically exploited areas (forests, orchards, etc.). However, techniques proven suitable 

for the analysis of vegetation structures in a heterogeneous, dynamically changing envi-

ronment could be valuable in the study of more diverse (and thus ecologically valuable) 

environments, such as steppes, spoil heaps, and swamps. 

The presented research aimed to (1) compare the height differences of woody plant 

tops detected using UAV-borne and airborne image-matching techniques and ALS; (2) 

assess the numbers of detected trees and shrubs based on local maxima filtering; and (3) 

evaluate the complementarity of DTMs created from a sparse national ALS dataset and 

DSMs based on UAV-borne or airborne imagery. The main research questions were: (i) Is 

it possible to replace ALS with UAV-borne or airborne imagery in specific local-scale ap-

plications requiring detailed information about woody vegetation structures with suffi-

cient accuracy? (ii) Can the combination of UAV-derived canopy data and sparse ALS-

derived terrain data improve the accuracy of shrub/tree identification and height meas-

urement? 

2. Materials and Methods 

2.1. Study Sites 

The study area, a NATO military training site, is situated in the western part of the 

Czech Republic (West Bohemia) in Doupovske hory; see Figure 1. The area is a landscape 

mosaic consisting of forests with casual forestry management (pine, larch, spruce, beech, 

oak, and ash) and large no-forest areas mainly covered by herbaceous vegetation and 

shrubs (hawthorn, alder, briar, blackthorn, and willow) that are mainly affected by mili-

tary activities (Figure 2). The elevation of the predominantly hilly relief ranges between 

364 and 933 m above mean sea level. The study area (approx. 630 km2) represents a nature-

close area and is protected as an important Natura 2000 bird site. Six study sites with 

different environmental conditions, mainly situated in the shrubland with woody vegeta-

tion, were selected for this study (see Table 1). 
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Figure 1. Study site overview. 

 

Figure 2. A broader view of the study area (bottom); the senseFly eBee equipped with a consumer-

grade DSC-WX220 digital compact camera (top). 
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Table 1. Detailed selected environmental parameters of individual study sites situated in the 

Doupovske hory military training area (derived from custom-ordered high density ALS data). 

Site Elevation (m amsl) * Mean Slope (°) 
Woody Vegetation 

Cover (%) ** 

Woody Vegetation 

Height (m) *** 
Total Area (ha) 

Site 01 555–645 9.6 (6.6) 33.2 7.5 (6.4) 66.5 

Site 02 579–635 6.8 (5.4) 28.5 5.6 (4.6) 36.7 

Site 03 513–587 9.6 (5.2) 20.9 3.8 (2.1) 31.9 

Site 04 423–492 7.8 (7.0) 27.8 8.4 (6.4) 62.6 

Site 05 684–742 6.2 (3.4) 26.4 5.9 (4.2) 68.4 

Site 06 653–745 7.2 (3.5) 33.9 9.4 (6.0) 75.4 

* Elevation above mean sea level. ** Woody vegetation cover—% of the area covered by woody 

vegetation higher than 2 m. *** Woody vegetation height (m)—mean height of woody vegetation 

higher than 2 m. Both calculations were based on a high-density ALS dataset. Slope and height are 

accompanied by standard deviation in brackets. 

2.2. ALS, UAV, and Airborne Imagery Data Acquisition 

The high-density (HD) airborne laser scanning (ALS) mission data were acquired on 

10th September 2016 using an ALS70 scanner (Leica Geosystems, Aalen, Germany) 

mounted on an aircraft Cessna 402 (Cessna, Wichita, USA). The sensor wavelength was 

1064 nm, and the scan field of view was 40°. The imagery was acquired from the altitude 

of 576–1141 m above ground with 70% side overlap. The acquired ALS point cloud cov-

ered an area of approximately 216 km2 and contained almost 486 million points, with a 

mean density of 20.61 pts/m2 (last return density of 15.54 pts/m2). Simultaneously with 

ALS data, RGB airborne imagery (AImg) with a 0.94 m pixel size was also acquired using 

Leica RCD30 medium format camera. 

A low-density (LD) ALS dataset was acquired from the Czech Office for Surveying, 

Mapping, and Cadastre (ČÚZK). This dataset covers the whole territory of the Czech Re-

public; it was created during a nationwide campaign between 2009 and 2013 using an ALS 

mapping system called LiteMapper 6800 (IGI mbH, Kreuztal, Germany) with an RIEGL 

LMS-Q680 (RIEGL Laser Measurement Systems GmbH, Hoorn, Austria) scanner carried 

by an L-410 FG aircraft at an altitude of 1200–1400 m above ground. The study site was 

sensed in March 2011. Since 2016, the whole dataset has been available at a 2 m resolution 

raster (digital terrain and surface models separately). Only a DTM dataset called DMR 5G 

(Digital Terrain Model of the Czech Republic, 5th Generation) was used in this study. 

UAV imagery was acquired on 27 June 2016 by a fixed-wing eBee Classic (senseFly, 

Cheseaux-sur-Lausanne, Switzerland) unmanned aerial vehicle (UAV) with a maximum 

take-off weight of approximately 0.8 kg and a wingspan of 0.96 m. The UAV was equipped 

with a consumer-grade DSC-WX220 digital compact camera (Sony, Tokyo, Japan), as de-

tailed by Komárek et al. [37]. Flight lines were planned with the senseFly eMotion 2 

ground station software (senseFly, Cheseaux-sur-Lausanne, Switzerland) with 70% side 

and 80% front overlaps. The average flight altitude was 120 m above ground level, and 

almost 1700 images were acquired during six flights at six different study locations (one 

flight per study location). Input datasets are summarized in Table 2. 

Table 2. Detailed characteristics of the four types of remote sensing-based input data used in the 

study. 

Remote Sensing Data Date of Acquisition Resolution Data Type 
Data Extent 

(km2) 

Airborne Laser Scan-

ning—HD 
17 September 2016 

0.21 m 

20 pts/m2 

Elevation Raster 

Point Cloud 
216 

Airborne Imagery 17 September 2016 
0.94 m 

40 pts/m2 

High resolution images 

Point Cloud 
216 
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Airborne Laser Scan-

ning—LD 

March 2011; availa-

ble since 2016 

2 m 

1–2 pts/m2 

Elevation Raster 

Point Cloud 
78,000 

Unmanned Aerial Vehi-

cle 
27 June 2016 

0.15 m 

260 pts/m2 

Very high resolution images 

Point Cloud 
3.5 

The registration and georeferencing methodological framework for all input datasets 

was primarily based on ground control points (GCPs). Point clouds derived from airborne 

laser scanning (both HD and LD) were registered and georeferenced by data providers. 

In the case of the HD dataset, the declared mean horizontal error was lower than 0.15 m 

and the vertical error was lower than 0.11 m. Regarding the LD dataset, The mean hori-

zontal error was 0.15 m and the vertical error was 0.18 m on bare ground and 0.3 m under 

vegetation. 

2.3. Processing of Input Remote Sensing Data 

The methodological framework of input data processing was identical for all study 

sites. The LAStools software (rapidlasso GmbH, Gilching, Germany) was used for pro-

cessing data acquired by HD ALS. The processing consisted of noise removal, point cloud 

classification (ground vs. woody vegetation), normalization, and raster interpolation us-

ing a specialized spike-free algorithm [21]. The spatial resolution of the nDSM was set to 

0.25 m. The UAV-borne and airborne images were processed with the SfM-MVS methods 

utilizing five ground control points per site in Agisoft Metashape, version 1.7.3 (Agisoft 

LLC, Saint Petersburg, Russia). The GCPs were measured in the Czech national S-

JTSK/Krovak East North (EPSG: 5514) and Baltic Sea vertical datum (EPSG: 5705) coordi-

nate systems; no additional co-registration was needed. The mean horizontal error was 

lower than 0.20 m, and the vertical error was lower than 0.11 m. 

2.4. Normalized Digital Surface Model (NDSM) Calculation 

A normalized digital surface model represents the height of objects above the bare 

terrain. In the study sites, this mainly consisted of woody vegetation (trees, shrubs, etc.) 

and steppes with tall grass, with occasional military training area equipment. The identi-

fication of ground (DTM) and non-ground points (DSM) constituted a critical part of cre-

ating the nDSM. In the case of ALS, the DTM, DSM, and nDSM were directly created in 

the previous processing step in the LAStools software. For both UAV-borne and airborne 

imagery, Agisoft Metashape was used for the point cloud classification and for DTM, 

DSM, and orthomosaic interpolation (with spatial resolutions of 0.15 m for UAV and 0.94 

m for AImg). No DSM was created from the LD ALS dataset because this dataset was 5 

years older than the remaining datasets, which would have biased the results. 

Finally, nDSMs were created by subtracting DTMs from DSMs in the ArcGIS soft-

ware, version 10.7.1 (ESRI, Redlands, CA, USA). In addition to models created solely from 

UAV and airborne imagery, nDSMs combining their DSM with LD and HD ALS DTM 

were also created. In total, seven different nDSMs were used for further analysis. Detailed 

descriptions of the compared nDSMs are listed in Table 3. All outputs were computed in 

the Czech national S-JTSK/Krovak East North (EPSG: 5514) and Baltic Sea vertical datum 

(EPSG: 5705) coordinate systems. 

Table 3. Brief descriptions of seven calculated nDSMs and their remote sensing data inputs. Pre-

sented nDSMs were created based on the subtraction of the respective DTMs from DSMs. 

Name of NDSM DSM DTM List of Acronyms 

ALSHD ALSHD ALSHD ALSHD: Airborne Laser Scanning—High Den-

sity 

ALSLD: Airborne Laser Scanning—Low Density 

AImg: Airborne Imagery 

UAV: Unmanned Aerial Vehicle 

AImg AImg AImg 

AImg-ALSLD AImg ALSLD 

AImg-ALSHD AImg ALSHD 

UAV UAV UAV 
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UAV-ALSLD UAV ALSLD 

UAV-ALSHD UAV ALSHD 

2.5. Woody Plant Structure Analysis 

The seven nDSMs (Table 3) were subsequently subjected to the automatic detection 

of woody plant tops using the individual tree detection (ITD) approach with local maxima 

filtering [38–40]. Based on the study location, 0–3 filtering steps with a kernel of 3 × 3 pixels 

and a local maxima searching window with a circular radius of 1.0, 1.5, or 2.0 m was ap-

plied [1]. In addition, the woody vegetation height was calculated (directly extracted from 

nDSMs) for each detected woody plant top in nDSMs. Both analyses were automated and 

performed using custom Python scripts in the ArcGIS software. 

2.6. Statistical Analysis 

The accuracy of nDSMs was assessed by comparing the number of detected woody 

plants (individual trees and shrubs) and their heights (m) with the reference. The study 

sites were overlaid with a 100 × 100 grid; subsequently, five squares within each area were 

randomly selected, and the reference number of individual trees/shrubs in each one was 

manually determined by the visual interpretation of the UAV-borne orthomosaics. 

One hundred tree tops higher than 1 m (lower height was considered to be a possible 

noise), which were automatically detected in each model, were randomly selected at each 

study site. Using the mean absolute error (MAE) and percentage mean absolute error 

(%MAE) statistics, the heights of this woody vegetation were compared with a reference 

dataset created from proprietary ALSHD data owned by our university (high-density ALS 

datasets are generally considered to be the most accurate datasets for the determination 

of tree heights, e.g., Ganz et al. [16]). Both woody plant structure analyses were performed 

at two levels: (a) trees/shrubs and (b) trees (height over 5 m) vs. shrubs (below 5 m; this 

cut-off was established to match the criteria used in the CORINE Land Cover database). 

All statistical analyses were executed by custom scripts written in the R environment, ver-

sion 3.5.1 (R Core Team, Vienna, Austria). The study workflow is schematically described 

in Figure 3. 

 

Figure 3. Description of the study workflow and the preparation of individual nDSMs. 

3. Results 

3.1. The Number of Detected Woody Plant Individuals 

The comparison of the total numbers of automatically detected shrubs/trees to the 

manually determined reference (Table 4, upper row for each site) indicated that the total 
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numbers of woody vegetation derived from models based on UAV imagery yielded better 

results than those based on airborne imagery. The models based on airborne imagery were 

less successful in detection (49.2%) than those based on UAV datasets (99.7%). However, 

combining AImg-based DSMs models with ALS-based DTMs led to a significant increase 

in detection success (AImg-ALSLD: 73.0%; AImg-ALSHD: 73.3%); for UAV-derived models, 

the detection remained close to 100% (UAV-ALSHD: 103.4%; UAV-ALSLD: 102.9%). The re-

sults also showed that the use of DTMs based on high- or low-density ALS for DSM height 

normalization did not lead to major differences in the success of tree detection. 

Table 4. The apparent success rate (%) of the automatic detection of the trees/shrubs over 1 m in 

height (upper rows) and the rate (%) of correctly automatically identified trees/shrubs (bottom rows) 

for individual sites and nDSMs. 

Site ALSHD AImg AImg-ALSLD 
AImg-

ALSHD 
UAV UAV-ALSLD UAV-ALSHD 

Site 01 

Apparent 

success rate 
97.5 49.1 65.8 66.1 95.9 83.9 93.7 

Adjusted 

success rate 
92.9 41.1 50.4 50.3 69.2 65.1 68.6 

Site 02 

Apparent 

success rate 
103.2 53.7 69 67.2 86.2 89.8 87.5 

Adjusted 

success rate 
94.9 46.9 49.5 47.3 65.2 69.3 69.9 

Site 03 

Apparent 

success rate 
103.4 30.4 78.1 72.9 90.2 82.4 100.7 

Adjusted 

success rate 
98.8 24.8 53.7 51.7 64.8 64.2 75.2 

Site 04 

Apparent 

success rate 
99.3 58.9 78.1 83.2 110.8 154.7 127.5 

Adjusted 

success rate 
95 42 53.9 54 67.3 68.9 65.4 

Site 05 

Apparent 

success rate 
102.1 56.2 93.9 76.7 118.2 103.2 95.9 

Adjusted 

success rate 
96.2 44.9 57.2 55.8 81.1 77.1 76.2 

Site 06 

Apparent 

success rate 
102.7 52.5 53.2 75.9 102.5 115.4 113.5 

Adjusted 

success rate 
92.3 46.1 44.3 49.9 66.8 70.8 70.3 

Overall 

Apparent 

success rate 
101.2 49.2 73 73.3 99.7 103.4 102.87 

Adjusted 

success rate 
95.1 40.1 51.6 51.4 68.7 68.6 70.9 

At first sight, the results for many of the models utilizing photogrammetrically-de-

rived methods shown in the Table 4 appeared to be very promising. However, a deeper 

analysis revealed that being satisfied with such seemingly high values could be prema-

ture, as the success rates close to 100% actually resulted from a combination of omission 

and commission errors of similar magnitudes. When looking only at the trees/shrubs that 

were located in the same positions by manual and automatic detection, the success rates 

dropped significantly (Table 4, the bottom row for each site). The actual numbers of 

woody plant tops correctly detected by the automated algorithm indicated that none of 

the tested nDSMs achieved an accuracy comparable with the ALSHD model (95.1%). The 



Remote Sens. 2022, 14, 2287 9 of 19 
 

 

detection accuracies of all models for woody vegetation (i.e., trees and shrubs) slightly 

differed across study locations. The model based on UAV imagery yielded a better total 

detection accuracy (68.7%) than that based on the AImg nDSM (40.1%). When considering 

these adjusted success rates, we can see that the combinations of both DSMs with ALS 

DTMs yielded only negligible improvements for both the UAV and AImg models. 

We can see that AImg-based models suffered from notable omission errors while in 

UAV-based models, commission and omission errors were of the approximately same 

magnitude (which led to the apparent high success rates; see Appendix A, Table A1 for a 

detailed breakdown of accuracy and errors in the detection of the numbers of treetops for 

individual sites). 

3.2. Woody Vegetation Height Detection 

The results of woody vegetation height detection are presented in Table 5. The mean 

absolute errors (MAEs) of the UAV (MAE 1.6 m) and AImg (MAE 2.5 m) show the mag-

nitude of the model’s difference from the ALSHD reference. However, combining these 

datasets with terrain data derived from ALS datasets led to an improvement of height 

accuracy. In this case, the most accurate UAV-based model (UAV-ALSHD) yielded an MAE 

of 1.0 m and the most accurate AImg-based model (AImg-ALSHD) yielded an MAE of 1.4 

m. The differences between the use of ALSHD and ALSLD were minimal, which means that 

even outdated coarse ALS-based digital terrain models can be combined with UAV and 

AImg data to improve the quality of resulting nDSMs, even in study sites as heterogene-

ous as military training areas. Figure A3 (Appendix C) summarizes the basic descriptive 

statistics in height differences for individual models across all study sites (i.e., each box 

plot contains 600 randomly selected woody tops). 

Table 5. The height accuracy (mean absolute error—MAE, in meters; percentage mean absolute er-

ror—%MAE, in percentages) of woody plant tree tops detected from six nDSMs based on UAV and 

airborne imagery and their combinations with HD and LD ALS DTMs compared to the reference 

based on the HD ALS dataset. 

Site AImg AImg-ALSLD AImg-ALSHD UAV UAV-ALSLD UAV-ALSHD 

Site 01 2.2/28.9 1.3/16.8 1.3/16.9 1.6/20.8 0.8/10.7 0.8/10.6 

Site 02 2.2/35.2 1.2/18.3 1.2/18.5 1.3/20.5 0.6/9.8 0.6/9.4 

Site 03 2.9/47.4 1.6/26.3 1.2/25.0 1.5/23.7 0.8/12.6 0.7/11.6 

Site 04 3.6/31.3 1.5/13.3 1.5/13.2 2.2/18.7 1.5/13.3 1.6/13.5 

Site 05 1.9/25.0 1.0/12.9 0.9/12.2 0.9/12.2 0.9/12.1 0.9/11.4 

Site 06 2.2/21.4 1.8/17.5 1.7/16.3 2.1/20.8 1.4/13.2 1.3/12.9 

Overall 2.5/31.5 1.4/17.5 1.4/17.0 1.6/19.5 1.0/11.9 1.0/11.5 

However, major differences in MAE between study sites were detected (Table 5). For 

UAV-based models, a significant dependence (R2 = 0.98) between the MAE and the mean 

height of woody vegetation on the particular sites (see Table 1) was detected. In other 

words, the %MAE remained more or less constant, contrary to AImg-based models (R2 = 

0.23). Summaries of the descriptive statistics of both the absolute heights of woody vege-

tation and the differences from the reference dataset for individual sites and nDSMs are 

shown in Figures A1 and A2. The results of the analyses of height accuracy and detection 

success according to the woody plant categories (tree/shrub) are shown in Table 6 and 

commented on in the Section 4. 
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Table 6. The number of detected trees and shrubs (percentage of automatically correctly detected) 

and the height accuracy (percentage mean absolute error—%MAE) of trees, shrubs, and their com-

binations. Detected woody plants of 1–5 m were considered shrubs; those above 5 m were consid-

ered trees. 

 AImg AImg-ALSLD AImg-ALSHD UAV UAV-ALSLD UAV-ALSHD 

The number of detected trees and shrubs (mean, min–max in individual sites; %) 

Trees 
57.4 

(50.9–71.1) 

61.8 

(59.0–74.6) 

64.9 

(59.7–76.3) 

80.0 

(74.0–90.9) 

75.6 

(71.6–85.6) 

76.3 

(71.0–85.6) 

Shrubs 
30.2 

(20.4–48.1) 

47.4 

(33.9–54.4) 

45.9 

(37.8–52.1) 

67.3 

(51.7–81.9) 

65.8 

(60.4–75.5) 

68.7 

(56.2–75.0) 

Overall 
40.1 

(24.8–46.9) 

51.6 

(44.3–57.2) 

51.4 

(47.3–55.8) 

68.7 

(64.8–81.1) 

68.7 

(64.2–77.1) 

70.9 

(65.4–76.2) 

The %MAE of tree and shrub heights (mean, min–max in sites) 

Trees 
26.9 

(18.2–36.1) 

14.4 

(10.0–20.1) 

13.9 

(9.3–19.2) 

18.1 

(9.8–20.6) 

10.9 

(8.8–12.5) 

10.7 

(8.3–12.1) 

Shrubs 
46.2 

(39.1–57.5) 

27.8 

(21.4–32.8) 

27.2 

(21.0–30.9) 

25.1 

(19.4–29.8) 

17.6 

(13.4–26.7) 

10.0 

(12.8–26.9) 

Overall 
31.5 

(21.4–47.4) 

17.5 

(12.9–26.3) 

17.0 

(12.2–25.0) 

19.5 

(12.2–23.7) 

11.9 

(9.8–13.3) 

11.5 

(9.4–13.5) 

4. Discussion 

4.1. The Number of Detected Woody Plant Individuals 

At first sight, the overall detection accuracies appeared to be very good. However, 

our study demonstrates that reporting only those results would be problematic and that 

it is necessary to perform a deeper analysis when evaluating the true agreement between 

detection and reality (Table 4 and especially Table A1). After a closer look, the drop in 

accuracies of the UAV-based detection of individual trees/shrubs (apart from ALSHD) to 

64.8–81.1 may appear to be unsatisfactory. On the other hand, it is necessary to point out 

that most studies on the automatic detection of shrubs/trees utilizing UAV/AImg (see be-

low) have investigated the usability of such data and methods in economically exploited 

areas (forests, orchards, etc.)—not in highly heterogeneous, ecologically valuable, nature-

close environments similar to the military area evaluated in this study, where it was even 

difficult to distinguish individual woody vegetation by visual interpretation. Figure 4 

shows a graphic example of the detection success for individual models at Site 5. Other 

studies utilizing UAV-based nDSMs have also reported variances in observed successes. 

Mohan et al. [41] detected individual trees with an accuracy of 80% using UAV-borne data 

combined with variable filtering and the moving window technique. A similar accuracy 

was reported by Liu et al. [42], who achieved an 85% success in the detection of trees in 

urban areas using ALS data. In contrast, Surový et al. [32] reported 43–80% success rates 

and Nevalainen et al. [43] reported 40–95% success rates depending on the characteristics 

of the study sites (in particular, on the plant species constituting the vegetation cover). 
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Figure 4. Examples of the individual woody plant detections for seven created nDSMs and the ref-

erence orthomosaic created by visual interpretation (top left corner) on the sample of Site 5. White 

dots represent individual detected shrubs and trees. White frame represents a subset of the study 

Site 5. 

Table A1 describes detailed values of ITD accuracies. Besides the overall accuracy, 

the numbers of omitted and committed shrub- and tree-tops are also important. The omis-

sion of ITD is also associated with the height accuracy. As the height of low woody vege-

tation (mainly shrubs) is very similar to that of noise generated during nDSM calculations 

(subtraction of DTM from DSM), they are often incorrectly eliminated during ITD pro-

cessing. The number of omitted tops decreases with the improving height accuracy of 

nDSMs; however, the improving accuracy also results in an increased number of commis-

sions (mainly in shrubland with sparse woody vegetation). The detection success proba-

bly depends on both the input data and the chosen algorithm. In this study, we aimed to 

evaluate the possibilities offered by various RS input data. For this reason, we did not 

attempt to search for the best possible ITD algorithm but rather used the most widely used 

one with a fixed local maxima search window. Therefore, there are ways that could likely 

lead to ITD result improvements through (a) the use of adaptive local maxima search win-

dow or (b) the involvement of spectral information. 

4.2. Woody Vegetation Height Detection 

The height differences between the UAV-borne/airborne data and the ALSHD refer-

ence dataset represented by the MAE were small enough to be of value for practical ap-

plications related to the woody vegetation structures, in particular when ALS data are 

used for terrain characterization (Table 5 and Figure A2 in the Appendix B). The overall 

absolute MAEs of 1.0 m were the same for both most accurate nDSMs, which is very prom-

ising and comparable with the accuracy of in situ field measurements; for example, [16] 

reported an RMSE of 1.0 m when using a Vertex clinometer. Their study, however, fo-

cused on typical European forests, not on woody vegetation as heterogeneous as in our 

study area. In their study, an RMSE of 1.1 m (mean error: −1.0 m) was reported for a UAV-

based nDSM and an RMSE of 2.9 m (mean error: −2.7) was reported for an AImg-based 

model. The total height MAEs for the UAV-based nDSM and the AImg model in our study 

were 1.6 and 2.5 m, respectively. 

Our research yielded satisfactory results, which are similar to those of other studies 

focusing on the validation of the height accuracy of UAV-based nDSMs against field 

measurements. For example, Tuominen et al. [44] reported a tree stand height %RMSE of 

approx. 10%, which differed among tree species. On the other hand, Puliti et al. [45] 

achieved a %RMSE of approx. 13.3%; the RMSE difference was around 1.4 m. Wallace et 

al. [46] measured the tree height with an RMSE of 1.30 m for SfM input data in a eucalypt 

forest in Tasmania. Panagiotidis et al. [1] reported MAEs of 2.62 and 2.88 m (RMSEs of 
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3.00 and 3.08 m; %RMSEs of 11.42 and 12.62%) in the forests of the Czech Republic. Zarco-

Tejada et al. [47] reported an RMSE of 0.35 m (%RMSE: 11.50%) and Díaz-Varela et al. [48] 

reported RMSEs ranging from 0.20 to 0.45 m (%RMSE: 6.55–19.24%) in (mainly) olive or-

chards in Spain. Surový et al. [32] reported RMSEs of 0.6–1.1 m in Portuguese plantations 

with cork oak, holm oak, and umbrella pine. 

Unlike the work of Surový et al. [32], the MAEs in our study were higher at certain 

sites (in particular, Sites 4 and 6) while the %MAE remained more or less unchanged. In 

other words, although the relative accuracy remained the same across sites, the absolute 

differences increased with tree/shrub height. It should be also noted that the variability in 

the height of woody plant tops in Sites 4 and 6 was generally higher than in the remaining 

sites (see Figure A1 in the Appendix B). This was not observed in the case of airborne 

imagery. We assume that this was due to the coarser spatial resolution of airborne imagery 

compared to that of UAVs (0.94 vs. 0.15 m, respectively). A coarser resolution can often 

completely fail to identify shrubby vegetation due to its low height and relatively small 

diameter or, if recognized, may not support the precise identification of the tree/shrub top 

and calculate a mean height of the area instead. 

4.3. Tree vs. Shrub Height Accuracy and Detection Success 

A comparison of the detection success between trees (height over 5 m) and shrubs 

(below 5 m) is an interesting and unique analysis that had not been performed previously. 

When considering the accuracies of trees and shrubs separately, we could see that 

throughout the models, the relative accuracy was better for trees than for shrubs (Table 6). 

The relatively poorer detection of shrubs in the purely UAV- or AV-based models was 

likely caused by the fact that it is highly difficult to distinguish a low shrub from the sur-

rounding terrain/herbaceous vegetation in such a model; additionally, the canopy in 

shrub thickets tends to smoothen out minor terrain undulations, which made the individ-

ual shrub tops more distinct after the correction for the ALS-based DTM. The tree height 

was detected with better relative accuracy than shrub height in all cases (%MAE). Still, 

none of the methods of individual tree detection yielded accuracies similar to ALSHD. For 

this reason, we propose that for such heterogeneous, nature-close areas with dense tree 

stands and thickets, it might be more reasonable to detect the total woody plant area rather 

than the number of shrub/tree individuals. 

4.4. UAV-Based DSM and ALS-Based DTM Fusion 

Combining UAV-borne or airborne DSMs with ALS-based DTM represents a suc-

cessful solution for the problems of heterogeneous environments such as our study area. 

The fact that there were no major differences between the use of the terrain model derived 

from the expensive custom-ordered “high density” ALS (ALSHD) and of the DTM derived 

from the nationwide freely available low-density ALS (ALSLD) is an important result of 

our study; even more important is that the point cloud densities (20.61 vs. 2.00 pts/m2) and 

acquisition dates (2016 vs. 2011) were different, with the ALSLD being more outdated. In 

our study, ALSLD was sensed in the leaf-off period (March), which is typical of nationwide 

ALS campaigns predominantly aimed at obtaining topographic information, while ALSHD 

was acquired in the vegetation period (September), which was necessary for the acquisi-

tion of suitable data for accurate vegetation models. In any case, our results indicated that 

even in sites as heterogeneous as our study area with frequent disturbances, digital sur-

face models built from up-to-date UAV/airborne data can be successfully combined with 

older ALS-based DTMs, even those with low density. The time of data acquisition is also 

important for accurate DSM construction [49], with the vegetation period preferred for 

this purpose. Therefore, the imagery was sensed in June (UAV) and September (ALSHD 

and AImg, respectively). 
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4.5. Landscape/Vegetation Patterns Classification 

Standard approaches for the classification of landscape patterns (in terms of vegeta-

tion) use both spectral and vertical RS-based information. The most common landscape 

pattern analyses typically use image interpretation/classification or field measurement 

methods [20]. Bakx et al. [23] predominantly focused on the use of ALS for deriving the 

characteristics of vegetation structures. ALS-based vegetation properties thus demonstra-

bly represent information beneficial for analyses of landscape patterns; however, based 

on our results, we can propose that UAV-based characteristics of woody vegetation struc-

tures could be a valuable addition for such analyses. The promising accuracy of calculated 

UAV-based woody plant structure properties (see Table 6), particularly in combination 

with (even outdated and low-resolution) ALS data, is indicative of their possible benefit 

for further landscape spatial pattern analyses. 

For illustration and a brief evaluation of the possible benefit of the combination of 

UAV imagery and freely available nationwide ALS data, we calculated the percentage of 

the woody plant area, which constitutes a common characteristic of vegetation structures. 

From the results presented in Table 7, it is evident that the values of both parameters were 

close enough to values obtained from a model solely derived from expensive high-density 

ALS data. 

Table 7. The application of UAV-ALSLD nDSM for the estimation of vegetation structure character-

istics compared to ALSHD as reference. The area of woody vegetation represents a percentage of 

vegetation cover (trees and shrubs). Woody plants of 1–5 m were classified as shrubs, and those 

above 5 m were classified as trees. Vegetation property calculations are presented in Tables 5 and 6. 

 Area of Woody Vegetation (%) 

Trees Shrubs Overall 

ALSHD 12.9 20.5 33.4 

UAV-ALSLD 11.3 22.5 33.8 

5. Conclusions 

Our study was aimed to evaluate the potential of UAV- and AImg-based nDSMs for 

the estimation of tree/shrub heights and the detection of individual woody vegetation. We 

confirmed the usability of UAV-borne and airborne imagery outside economically ex-

ploited areas (forests, orchards, etc.). Our results prove that UAV-borne imagery can pro-

vide valuable vegetation structure data for analyses of local, dynamically changing, 

highly heterogeneous, nature-close environments; thus, it can offer an alternative to ex-

pensive high-tech solutions such as ALS on a suitable spatial scale. In addition, we com-

bined DSMs based on UAV-borne and airborne imagery with ALS-based DTMs. Their 

fusion significantly increased the accuracy of (especially) woody plant height estimation 

(trees and shrubs). It is also possible that the use of spectral information from UAVs could 

further improve the success of woody plant detection, which is a potentially promising 

direction for further research. The results also confirmed that even coarse and outdated 

ALS datasets (ALSLD in the study) can be a valuable source of DTMs for UAV- or AImg-

based nDSMs, capable of improving height data detection to a degree comparable with 

laborious manual measurement. Additionally, up-to-date UAV- and AImg-based DSMs 

can be also beneficial for updating outdated ALS-based DSMs. 
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Appendix A 

Table A1. Summary of individual tree detection (ITD) results of woody vegetation in six study lo-

cations. 

  ALSHD AImg AImg-ALSLD AImg-ALSHD UAV UAV-ALSLD UAV-ALSHD 

S
it

e 
01

 

Detected 1183 596 799 802 1164 1018 1138 

Reference 1214 1214 1214 1214 1214 1214 1214 

True 1128 499 612 610 840 790 833 

Omission 86 715 602 604 374 424 381 

Commission 55 97 187 192 324 228 305 

Accuracy (%) 92.9 41.1 50.4 50.3 69.2 65.1 68.6 

S
it

e 
02

 

Detected 976 508 653 636 815 849 828 

Reference 946 946 946 946 946 946 946 

True 898 444 468 447 617 656 661 

Omission 48 502 478 499 329 290 285 

Commission 78 64 185 189 198 193 167 

Accuracy (%) 94.9 46.9 49.5 47.2 65.2 69.3 69.9 

S
it

e 
03

 

Detected 1256 369 949 886 1096 1001 1224 

Reference 1215 1215 1215 1215 1215 1215 1215 

True 1200 301 653 628 787 780 914 

Omission 15 914 562 587 428 435 301 

Commission 56 68 296 258 309 221 310 

Accuracy (%) 98.8 24.8 53.7 51.7 64.8 64.2 75.2 

S
it

e 
04

 

Detected 1016 603 799 851 1133 1582 1304 

Reference 1023 1023 1023 1023 1023 1023 1023 

True 972 430 551 552 688 705 669 

Omission 51 593 472 471 335 318 354 

Commission 44 173 248 299 445 877 635 

Accuracy (%) 95.0 42.0 53.9 54.0 67.3 68.9 65.4 

S
it

e 
05

 

Detected 842 464 775 633 975 851 791 

Reference 825 825 825 825 825 825 825 

True 794 370 472 460 669 636 629 

Omission 31 455 353 365 156 189 196 

Commission 48 94 303 173 306 215 162 

Accuracy (%) 96.2 44.8 57.2 55.76 81.1 77.1 76.2 

S
it

e 
06

 Detected 853 436 442 631 852 959 943 

Reference 831 831 831 831 831 831 831 

True 767 383 368 415 555 588 584 

Omission 64 448 463 416 276 243 247 
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Commission 86 53 74 216 297 371 359 

Accuracy (%) 92.3 46.1 44.2 49.9 66.8 70.8 70.3 

O
v

er
al

l 

Detected 6126 2976 4237 4439 6035 6260 6228 

Reference 6054 6054 6054 6054 6054 6054 6054 

True 5759 2427 3124 3112 4156 4155 4209 

Omission 295 3627 2988 2942 1898 1899 1764 

Commission 367 549 1171 1327 1879 2105 1938 

Accuracy (%) 95.1 40.1 51.6 51.4 68.7 68.6 70.9 

Appendix B 

 

Figure A1. Box-plots displaying quartile characteristics (median, Q25, and Q75) of the absolute 

nDSM heights for each study location. For each location, 100 randomly selected woody plant tops 

were used. Black dots represent outliers. 
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Figure A2. Box-plots displaying quartile characteristics (median, Q25, and Q75) of nDSM height 

differences for individual study locations. For each location, 100 randomly selected woody plant 

tops were used. Black dots represent outliers. 
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Appendix C 

 

Figure A3. Box-plots of summary quartile characteristics (median, Q25, and Q75) of nDSM height 

differences from ALSHD reference for all study locations. For every nDSM, 600 randomly selected 

woody plant tops were used. Black dots represent outliers. 
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