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Abstract: Airborne laser scanning (ALS) is increasingly used for detailed vegetation structure map-
ping; however, there are many local-scale applications where it is economically ineffective or un-
feasible from the temporal perspective. Unmanned aerial vehicles (UAVs) or airborne imagery
(AImg) appear to be promising alternatives, but only a few studies have examined this assumption
outside economically exploited areas (forests, orchards, etc.). The main aim of this study was to
compare the usability of normalized digital surface models (nDSMs) photogrammetrically derived
from UAV-borne and airborne imagery to those derived from low- (1–2 pts/m2) and high-density
(ca. 20 pts/m2) ALS-scanning for the precise local-scale modelling of woody vegetation structures
(the number and height of trees/shrubs) across six dynamically changing shrubland sites. The success
of the detection of woody plant tops was initially almost 100% for UAV-based models; however,
deeper analysis revealed that this was due to the fact that omission and commission errors were ap-
proximately equal and the real accuracy was approx. 70% for UAV-based models compared to 95.8%
for the high-density ALS model. The percentage mean absolute errors (%MAE) of shrub/tree heights
derived from UAV data ranged between 12.2 and 23.7%, and AImg height accuracy was relatively
lower (%MAE: 21.4–47.4). Combining UAV-borne or AImg-based digital surface models (DSM) with
ALS-based digital terrain models (DTMs) significantly improved the nDSM height accuracy (%MAE:
9.4–13.5 and 12.2–25.0, respectively) but failed to significantly improve the detection of the number of
individual shrubs/trees. The height accuracy and detection success using low- or high-density ALS
did not differ. Therefore, we conclude that UAV-borne imagery has the potential to replace custom
ALS in specific local-scale applications, especially at dynamically changing sites where repeated ALS
is costly, and the combination of such data with (albeit outdated and sparse) ALS-based digital terrain
models can further improve the success of the use of such data.

Keywords: unmanned aerial vehicle (UAV); structure from motion (SfM); airborne laser scanning
(ALS); light detection and ranging (lidar); airborne imaging; individual tree detection (ITD)

1. Introduction

Accurate information about woody vegetation structure characteristics (height, crown
diameter, number of individuals, species, biomass estimation, landscape patterns, etc.) is
very important for tasks associated with nature conservation and management [1] and
is beneficial for other analyses of applied ecology for evaluating biodiversity, e.g., [2–4],
forest species composition [5], carbon storage dynamics [6], pest outbreaks [7], forest mi-
croclimates [8], canopy gap patterns [9], and biomass volumes [10]. While describing
forest structures is more or less standardized, it remains difficult in specific shrubland
ecosystems with dynamically changing sparse woody vegetation, the high nature con-
servation value (i.e., high diversity of habitats and, in effect, high biodiversity) of which
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is associated with frequent landscape disturbances caused by the presence of military
activities [11] or fires [12], among others. Such disturbances usually have positive effects
on biodiversity [13,14] and cause changes in vegetation composition (especially lower
trees and shrubs). The monitoring of such changes with field surveys is time-consuming
and difficult; hence, a time-effective solution for the mapping of such areas at reasonable
costs is needed for not only ecological studies but also forestry and nature conservation
management purposes.

Field surveys of the woody plant structure characteristics are usually time-consuming,
especially in highly heterogeneous “close-to-nature” environments. Remote sensing (RS)
methods using airborne laser scanning (ALS; also known as airborne light detection and
ranging/lidar) are, thanks to their proven advantages, becoming popular and beneficial in
detailed mapping of natural environments including shrubland sites with sparse woody
vegetation [15]. Therefore, ALS can nowadays be considered to represent an appropriate
data source for describing woody vegetation structures in detail [16]. However, there are
many local-scale applications where ALS is ineffective from the economical or temporal
perspectives (the custom airborne laser scanning of small areas would be costly and asso-
ciated with long wait times for the availability of ALS providers). For such applications,
unmanned aerial vehicle (UAV) or airborne imagery (AImg) processed through image-
matching techniques (such as structure from motion) seem to be promising alternatives
that may be beneficial for the detailed mapping of vegetation at local scales [17]; there
are, however, still not enough studies proving this in specific environments. Compre-
hensive reviews of both ALS and image-based techniques have been presented, e.g., by
White et al. [18] and Puliti et al. [19].

A vegetation structure consists of horizontal and vertical components. The horizontal
component describes the landscape structure, while the vertical component represents
the configuration of aboveground vegetation [20]. The calculation of woody vegetation
structure characteristics (especially those describing vertical structure) typically requires
a normalized digital surface model (nDSM; in areas without man-made structures, this
is identical to the canopy height model, CHM) [21]. An nDSM/CHM is usually created
via the subtraction of a digital terrain model (DTM) from a digital surface model (DSM)
and is most commonly represented in the raster data format [22], although some novel
approaches can be used to derive the information on vegetation structures directly from
a point cloud [23]. However, whichever of these approaches is used, ground filtering is
a crucial step of point cloud processing, and optimal ground filtering typically requires
experienced staff [24]. This operation is much easier when using laser scanning techniques
because these provide a relatively higher amount of ground points than photogrammetric
techniques. This is caused by the fact that the latter predominantly capture the upper
canopy, as the photographic imagery cannot penetrate the uppermost surface in the way
a laser beam can [25,26]. This is especially true in large forest stands or shrublands with
dense shrubs situated in locations with a high vertical terrain heterogeneity. The difficulties
in filtering UAV-borne point clouds were described in more detail by Klápště et al. [27].

As vegetation cover changes dynamically in some sites while the terrain typically
remains relatively stable in most environments, combining UAV-borne DSMs (that can be
repeatedly obtained with a relatively high frequency due to lower costs) with ALS-based
digital terrain models (where available) might be advantageous for monitoring the changes
in vegetation cover, mainly for economic reasons. Luckily, the availability of national
ALS datasets is increasing, and despite the fact that they may suffer from lower spatial
resolution associated with a coarse point cloud density, such data could be a suitable source
of DTMs (e.g., in the Czech Republic, a 2 m spatial resolution DTM is available [28,29]).
In many countries, there is also a regular data collection period of airborne imagery at the
national level (e.g., in the Czech Republic each place is surveyed once every two years),
which makes this data source potentially interesting for vegetation pattern mapping.

Once an nDSM is produced, there are many different approaches and algorithms for
the calculation of both horizontal and vertical components and the description of woody
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vegetation structures [23]. The determination of the number of trees/shrubs (most com-
monly based on local maxima filtering) is a typical nDSM-based horizontal vegetation
structure descriptor [30,31]. On the other hand, tree/canopy height is a typical vertical
structure [32]. There are also methods for extracting 3D vegetation structures from point
clouds [33] and extracting individual trees using geomorphons [34]. To the best of our
knowledge, the approach presented in this study, i.e., combining photogrammetrically-
derived point clouds from both airborne and UAV-borne imagery with data from outdated
nationwide ALS-based DTMs for the detection of individual shrubs and trees in shrubland
with sparse woody vegetation (represented by a military training area), has not been used
before. Well-arranged reviews of UAV applications focusing on vegetated areas have been
presented, e.g., by Salamí et al. [35] and Torresan et al. [36]. The current research trends
predominantly focus on the applicability of UAV imagery in man-managed, economically
exploited areas (forests, orchards, etc.). However, techniques proven suitable for the analy-
sis of vegetation structures in a heterogeneous, dynamically changing environment could
be valuable in the study of more diverse (and thus ecologically valuable) environments,
such as steppes, spoil heaps, and swamps.

The presented research aimed to (1) compare the height differences of woody plant tops
detected using UAV-borne and airborne image-matching techniques and ALS; (2) assess
the numbers of detected trees and shrubs based on local maxima filtering; and (3) evaluate
the complementarity of DTMs created from a sparse national ALS dataset and DSMs based
on UAV-borne or airborne imagery. The main research questions were: (i) Is it possible
to replace ALS with UAV-borne or airborne imagery in specific local-scale applications
requiring detailed information about woody vegetation structures with sufficient accuracy?
(ii) Can the combination of UAV-derived canopy data and sparse ALS-derived terrain data
improve the accuracy of shrub/tree identification and height measurement?

2. Materials and Methods
2.1. Study Sites

The study area, a NATO military training site, is situated in the western part of the
Czech Republic (West Bohemia) in Doupovske hory; see Figure 1. The area is a landscape
mosaic consisting of forests with casual forestry management (pine, larch, spruce, beech,
oak, and ash) and large no-forest areas mainly covered by herbaceous vegetation and
shrubs (hawthorn, alder, briar, blackthorn, and willow) that are mainly affected by military
activities (Figure 2). The elevation of the predominantly hilly relief ranges between 364 and
933 m above mean sea level. The study area (approx. 630 km2) represents a nature-close
area and is protected as an important Natura 2000 bird site. Six study sites with different
environmental conditions, mainly situated in the shrubland with woody vegetation, were
selected for this study (see Table 1).

Table 1. Detailed selected environmental parameters of individual study sites situated in the
Doupovske hory military training area (derived from custom-ordered high density ALS data).

Site Elevation (m amsl) * Mean Slope (◦) Woody Vegetation
Cover (%) **

Woody Vegetation
Height (m) *** Total Area (ha)

Site 01 555–645 9.6 (6.6) 33.2 7.5 (6.4) 66.5
Site 02 579–635 6.8 (5.4) 28.5 5.6 (4.6) 36.7
Site 03 513–587 9.6 (5.2) 20.9 3.8 (2.1) 31.9
Site 04 423–492 7.8 (7.0) 27.8 8.4 (6.4) 62.6
Site 05 684–742 6.2 (3.4) 26.4 5.9 (4.2) 68.4
Site 06 653–745 7.2 (3.5) 33.9 9.4 (6.0) 75.4

* Elevation above mean sea level. ** Woody vegetation cover—% of the area covered by woody vegetation higher
than 2 m. *** Woody vegetation height (m)—mean height of woody vegetation higher than 2 m. Both calculations
were based on a high-density ALS dataset. Slope and height are accompanied by standard deviation in brackets.
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2.2. ALS, UAV, and Airborne Imagery Data Acquisition

The high-density (HD) airborne laser scanning (ALS) mission data were acquired
on 10th September 2016 using an ALS70 scanner (Leica Geosystems, Aalen, Germany)
mounted on an aircraft Cessna 402 (Cessna, Wichita, USA). The sensor wavelength was
1064 nm, and the scan field of view was 40◦. The imagery was acquired from the altitude of
576–1141 m above ground with 70% side overlap. The acquired ALS point cloud covered
an area of approximately 216 km2 and contained almost 486 million points, with a mean
density of 20.61 pts/m2 (last return density of 15.54 pts/m2). Simultaneously with ALS
data, RGB airborne imagery (AImg) with a 0.94 m pixel size was also acquired using Leica
RCD30 medium format camera.

A low-density (LD) ALS dataset was acquired from the Czech Office for Surveying,
Mapping, and Cadastre (ČÚZK). This dataset covers the whole territory of the Czech
Republic; it was created during a nationwide campaign between 2009 and 2013 using
an ALS mapping system called LiteMapper 6800 (IGI mbH, Kreuztal, Germany) with an
RIEGL LMS-Q680 (RIEGL Laser Measurement Systems GmbH, Hoorn, Austria) scanner
carried by an L-410 FG aircraft at an altitude of 1200–1400 m above ground. The study
site was sensed in March 2011. Since 2016, the whole dataset has been available at a 2 m
resolution raster (digital terrain and surface models separately). Only a DTM dataset
called DMR 5G (Digital Terrain Model of the Czech Republic, 5th Generation) was used in
this study.

UAV imagery was acquired on 27 June 2016 by a fixed-wing eBee Classic (senseFly,
Cheseaux-sur-Lausanne, Switzerland) unmanned aerial vehicle (UAV) with a maximum
take-off weight of approximately 0.8 kg and a wingspan of 0.96 m. The UAV was equipped
with a consumer-grade DSC-WX220 digital compact camera (Sony, Tokyo, Japan), as de-
tailed by Komárek et al. [37]. Flight lines were planned with the senseFly eMotion 2 ground
station software (senseFly, Cheseaux-sur-Lausanne, Switzerland) with 70% side and 80%
front overlaps. The average flight altitude was 120 m above ground level, and almost
1700 images were acquired during six flights at six different study locations (one flight per
study location). Input datasets are summarized in Table 2.

Table 2. Detailed characteristics of the four types of remote sensing-based input data used in the study.

Remote Sensing Data Date of Acquisition Resolution Data Type Data Extent (km2)

Airborne Laser
Scanning—HD 17 September 2016 0.21 m

20 pts/m2
Elevation Raster

Point Cloud 216

Airborne Imagery 17 September 2016 0.94 m
40 pts/m2

High resolution images
Point Cloud 216

Airborne Laser
Scanning—LD March 2011; available since 2016 2 m

1–2 pts/m2
Elevation Raster

Point Cloud 78,000

Unmanned Aerial Vehicle 27 June 2016 0.15 m
260 pts/m2

Very high resolution images
Point Cloud 3.5

The registration and georeferencing methodological framework for all input datasets
was primarily based on ground control points (GCPs). Point clouds derived from airborne
laser scanning (both HD and LD) were registered and georeferenced by data providers. In
the case of the HD dataset, the declared mean horizontal error was lower than 0.15 m and the
vertical error was lower than 0.11 m. Regarding the LD dataset, The mean horizontal error
was 0.15 m and the vertical error was 0.18 m on bare ground and 0.3 m under vegetation.

2.3. Processing of Input Remote Sensing Data

The methodological framework of input data processing was identical for all study
sites. The LAStools software (rapidlasso GmbH, Gilching, Germany) was used for pro-
cessing data acquired by HD ALS. The processing consisted of noise removal, point cloud
classification (ground vs. woody vegetation), normalization, and raster interpolation using
a specialized spike-free algorithm [21]. The spatial resolution of the nDSM was set to 0.25 m.
The UAV-borne and airborne images were processed with the SfM-MVS methods utiliz-
ing five ground control points per site in Agisoft Metashape, version 1.7.3 (Agisoft LLC,
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Saint Petersburg, Russia). The GCPs were measured in the Czech national S-JTSK/Krovak
East North (EPSG: 5514) and Baltic Sea vertical datum (EPSG: 5705) coordinate systems; no
additional co-registration was needed. The mean horizontal error was lower than 0.20 m,
and the vertical error was lower than 0.11 m.

2.4. Normalized Digital Surface Model (NDSM) Calculation

A normalized digital surface model represents the height of objects above the bare
terrain. In the study sites, this mainly consisted of woody vegetation (trees, shrubs, etc.) and
steppes with tall grass, with occasional military training area equipment. The identification
of ground (DTM) and non-ground points (DSM) constituted a critical part of creating the
nDSM. In the case of ALS, the DTM, DSM, and nDSM were directly created in the previous
processing step in the LAStools software. For both UAV-borne and airborne imagery,
Agisoft Metashape was used for the point cloud classification and for DTM, DSM, and
orthomosaic interpolation (with spatial resolutions of 0.15 m for UAV and 0.94 m for AImg).
No DSM was created from the LD ALS dataset because this dataset was 5 years older than
the remaining datasets, which would have biased the results.

Finally, nDSMs were created by subtracting DTMs from DSMs in the ArcGIS software,
version 10.7.1 (ESRI, Redlands, CA, USA). In addition to models created solely from UAV
and airborne imagery, nDSMs combining their DSM with LD and HD ALS DTM were
also created. In total, seven different nDSMs were used for further analysis. Detailed
descriptions of the compared nDSMs are listed in Table 3. All outputs were computed in
the Czech national S-JTSK/Krovak East North (EPSG: 5514) and Baltic Sea vertical datum
(EPSG: 5705) coordinate systems.

Table 3. Brief descriptions of seven calculated nDSMs and their remote sensing data inputs. Presented
nDSMs were created based on the subtraction of the respective DTMs from DSMs.

Name of NDSM DSM DTM List of Acronyms

ALSHD ALSHD ALSHD

ALSHD: Airborne Laser Scanning—High Density
ALSLD: Airborne Laser Scanning—Low Density

AImg: Airborne Imagery
UAV: Unmanned Aerial Vehicle

AImg AImg AImg
AImg-ALSLD AImg ALSLD
AImg-ALSHD AImg ALSHD

UAV UAV UAV
UAV-ALSLD UAV ALSLD
UAV-ALSHD UAV ALSHD

2.5. Woody Plant Structure Analysis

The seven nDSMs (Table 3) were subsequently subjected to the automatic detection of
woody plant tops using the individual tree detection (ITD) approach with local maxima
filtering [38–40]. Based on the study location, 0–3 filtering steps with a kernel of 3 × 3 pixels
and a local maxima searching window with a circular radius of 1.0, 1.5, or 2.0 m was
applied [1]. In addition, the woody vegetation height was calculated (directly extracted
from nDSMs) for each detected woody plant top in nDSMs. Both analyses were automated
and performed using custom Python scripts in the ArcGIS software.

2.6. Statistical Analysis

The accuracy of nDSMs was assessed by comparing the number of detected woody
plants (individual trees and shrubs) and their heights (m) with the reference. The study
sites were overlaid with a 100 × 100 grid; subsequently, five squares within each area were
randomly selected, and the reference number of individual trees/shrubs in each one was
manually determined by the visual interpretation of the UAV-borne orthomosaics.

One hundred tree tops higher than 1 m (lower height was considered to be a possible
noise), which were automatically detected in each model, were randomly selected at each
study site. Using the mean absolute error (MAE) and percentage mean absolute error
(%MAE) statistics, the heights of this woody vegetation were compared with a reference
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dataset created from proprietary ALSHD data owned by our university (high-density ALS
datasets are generally considered to be the most accurate datasets for the determination of
tree heights, e.g., Ganz et al. [16]). Both woody plant structure analyses were performed
at two levels: (a) trees/shrubs and (b) trees (height over 5 m) vs. shrubs (below 5 m; this
cut-off was established to match the criteria used in the CORINE Land Cover database). All
statistical analyses were executed by custom scripts written in the R environment, version
3.5.1 (R Core Team, Vienna, Austria). The study workflow is schematically described in
Figure 3.
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3. Results
3.1. The Number of Detected Woody Plant Individuals

The comparison of the total numbers of automatically detected shrubs/trees to the
manually determined reference (Table 4, upper row for each site) indicated that the total
numbers of woody vegetation derived from models based on UAV imagery yielded better
results than those based on airborne imagery. The models based on airborne imagery were
less successful in detection (49.2%) than those based on UAV datasets (99.7%). However,
combining AImg-based DSMs models with ALS-based DTMs led to a significant increase
in detection success (AImg-ALSLD: 73.0%; AImg-ALSHD: 73.3%); for UAV-derived models,
the detection remained close to 100% (UAV-ALSHD: 103.4%; UAV-ALSLD: 102.9%). The
results also showed that the use of DTMs based on high- or low-density ALS for DSM
height normalization did not lead to major differences in the success of tree detection.

At first sight, the results for many of the models utilizing photogrammetrically-derived
methods shown in the Table 4 appeared to be very promising. However, a deeper analysis
revealed that being satisfied with such seemingly high values could be premature, as
the success rates close to 100% actually resulted from a combination of omission and
commission errors of similar magnitudes. When looking only at the trees/shrubs that
were located in the same positions by manual and automatic detection, the success rates
dropped significantly (Table 4, the bottom row for each site). The actual numbers of woody
plant tops correctly detected by the automated algorithm indicated that none of the tested
nDSMs achieved an accuracy comparable with the ALSHD model (95.1%). The detection
accuracies of all models for woody vegetation (i.e., trees and shrubs) slightly differed across
study locations. The model based on UAV imagery yielded a better total detection accuracy
(68.7%) than that based on the AImg nDSM (40.1%). When considering these adjusted
success rates, we can see that the combinations of both DSMs with ALS DTMs yielded only
negligible improvements for both the UAV and AImg models.
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Table 4. The apparent success rate (%) of the automatic detection of the trees/shrubs over 1 m in
height (upper rows) and the rate (%) of correctly automatically identified trees/shrubs (bottom rows)
for individual sites and nDSMs.

Site ALSHD AImg AImg-ALSLD AImg-ALSHD UAV UAV-ALSLD UAV-ALSHD

Site 01
Apparent success rate 97.5 49.1 65.8 66.1 95.9 83.9 93.7
Adjusted success rate 92.9 41.1 50.4 50.3 69.2 65.1 68.6

Site 02
Apparent success rate 103.2 53.7 69 67.2 86.2 89.8 87.5
Adjusted success rate 94.9 46.9 49.5 47.3 65.2 69.3 69.9

Site 03
Apparent success rate 103.4 30.4 78.1 72.9 90.2 82.4 100.7
Adjusted success rate 98.8 24.8 53.7 51.7 64.8 64.2 75.2

Site 04
Apparent success rate 99.3 58.9 78.1 83.2 110.8 154.7 127.5
Adjusted success rate 95 42 53.9 54 67.3 68.9 65.4

Site 05
Apparent success rate 102.1 56.2 93.9 76.7 118.2 103.2 95.9
Adjusted success rate 96.2 44.9 57.2 55.8 81.1 77.1 76.2

Site 06
Apparent success rate 102.7 52.5 53.2 75.9 102.5 115.4 113.5
Adjusted success rate 92.3 46.1 44.3 49.9 66.8 70.8 70.3

Overall
Apparent success rate 101.2 49.2 73 73.3 99.7 103.4 102.87
Adjusted success rate 95.1 40.1 51.6 51.4 68.7 68.6 70.9

We can see that AImg-based models suffered from notable omission errors while in
UAV-based models, commission and omission errors were of the approximately same
magnitude (which led to the apparent high success rates; see Appendix A, Table A1 for a
detailed breakdown of accuracy and errors in the detection of the numbers of treetops for
individual sites).

3.2. Woody Vegetation Height Detection

The results of woody vegetation height detection are presented in Table 5. The mean
absolute errors (MAEs) of the UAV (MAE 1.6 m) and AImg (MAE 2.5 m) show the mag-
nitude of the model’s difference from the ALSHD reference. However, combining these
datasets with terrain data derived from ALS datasets led to an improvement of height
accuracy. In this case, the most accurate UAV-based model (UAV-ALSHD) yielded an MAE
of 1.0 m and the most accurate AImg-based model (AImg-ALSHD) yielded an MAE of 1.4 m.
The differences between the use of ALSHD and ALSLD were minimal, which means that
even outdated coarse ALS-based digital terrain models can be combined with UAV and
AImg data to improve the quality of resulting nDSMs, even in study sites as heterogeneous
as military training areas. Figure A3 (Appendix C) summarizes the basic descriptive statis-
tics in height differences for individual models across all study sites (i.e., each box plot
contains 600 randomly selected woody tops).

Table 5. The height accuracy (mean absolute error—MAE, in meters; percentage mean absolute
error—%MAE, in percentages) of woody plant tree tops detected from six nDSMs based on UAV and
airborne imagery and their combinations with HD and LD ALS DTMs compared to the reference
based on the HD ALS dataset.

Site AImg AImg-ALSLD AImg-ALSHD UAV UAV-ALSLD UAV-ALSHD

Site 01 2.2/28.9 1.3/16.8 1.3/16.9 1.6/20.8 0.8/10.7 0.8/10.6
Site 02 2.2/35.2 1.2/18.3 1.2/18.5 1.3/20.5 0.6/9.8 0.6/9.4
Site 03 2.9/47.4 1.6/26.3 1.2/25.0 1.5/23.7 0.8/12.6 0.7/11.6
Site 04 3.6/31.3 1.5/13.3 1.5/13.2 2.2/18.7 1.5/13.3 1.6/13.5
Site 05 1.9/25.0 1.0/12.9 0.9/12.2 0.9/12.2 0.9/12.1 0.9/11.4
Site 06 2.2/21.4 1.8/17.5 1.7/16.3 2.1/20.8 1.4/13.2 1.3/12.9
Overall 2.5/31.5 1.4/17.5 1.4/17.0 1.6/19.5 1.0/11.9 1.0/11.5

However, major differences in MAE between study sites were detected (Table 5). For
UAV-based models, a significant dependence (R2 = 0.98) between the MAE and the mean
height of woody vegetation on the particular sites (see Table 1) was detected. In other words,
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the %MAE remained more or less constant, contrary to AImg-based models (R2 = 0.23).
Summaries of the descriptive statistics of both the absolute heights of woody vegetation
and the differences from the reference dataset for individual sites and nDSMs are shown in
Figures A1 and A2. The results of the analyses of height accuracy and detection success
according to the woody plant categories (tree/shrub) are shown in Table 6 and commented
on in the Section 4.

Table 6. The number of detected trees and shrubs (percentage of automatically correctly detected) and
the height accuracy (percentage mean absolute error—%MAE) of trees, shrubs, and their combinations.
Detected woody plants of 1–5 m were considered shrubs; those above 5 m were considered trees.

AImg AImg-ALSLD AImg-ALSHD UAV UAV-ALSLD UAV-ALSHD

The number of detected trees and shrubs (mean, min–max in individual sites; %)

Trees 57.4
(50.9–71.1)

61.8
(59.0–74.6)

64.9
(59.7–76.3)

80.0
(74.0–90.9)

75.6
(71.6–85.6)

76.3
(71.0–85.6)

Shrubs 30.2
(20.4–48.1)

47.4
(33.9–54.4)

45.9
(37.8–52.1)

67.3
(51.7–81.9)

65.8
(60.4–75.5)

68.7
(56.2–75.0)

Overall 40.1
(24.8–46.9)

51.6
(44.3–57.2)

51.4
(47.3–55.8)

68.7
(64.8–81.1)

68.7
(64.2–77.1)

70.9
(65.4–76.2)

The %MAE of tree and shrub heights (mean, min–max in sites)

Trees 26.9
(18.2–36.1)

14.4
(10.0–20.1)

13.9
(9.3–19.2)

18.1
(9.8–20.6)

10.9
(8.8–12.5)

10.7
(8.3–12.1)

Shrubs 46.2
(39.1–57.5)

27.8
(21.4–32.8)

27.2
(21.0–30.9)

25.1
(19.4–29.8)

17.6
(13.4–26.7)

10.0
(12.8–26.9)

Overall 31.5
(21.4–47.4)

17.5
(12.9–26.3)

17.0
(12.2–25.0)

19.5
(12.2–23.7)

11.9
(9.8–13.3)

11.5
(9.4–13.5)

4. Discussion
4.1. The Number of Detected Woody Plant Individuals

At first sight, the overall detection accuracies appeared to be very good. However,
our study demonstrates that reporting only those results would be problematic and that
it is necessary to perform a deeper analysis when evaluating the true agreement between
detection and reality (Table 4 and especially Table A1). After a closer look, the drop in
accuracies of the UAV-based detection of individual trees/shrubs (apart from ALSHD) to
64.8–81.1 may appear to be unsatisfactory. On the other hand, it is necessary to point
out that most studies on the automatic detection of shrubs/trees utilizing UAV/AImg
(see below) have investigated the usability of such data and methods in economically
exploited areas (forests, orchards, etc.)—not in highly heterogeneous, ecologically valuable,
nature-close environments similar to the military area evaluated in this study, where it was
even difficult to distinguish individual woody vegetation by visual interpretation. Figure 4
shows a graphic example of the detection success for individual models at Site 5. Other
studies utilizing UAV-based nDSMs have also reported variances in observed successes.
Mohan et al. [41] detected individual trees with an accuracy of 80% using UAV-borne data
combined with variable filtering and the moving window technique. A similar accuracy
was reported by Liu et al. [42], who achieved an 85% success in the detection of trees in
urban areas using ALS data. In contrast, Surový et al. [32] reported 43–80% success rates
and Nevalainen et al. [43] reported 40–95% success rates depending on the characteristics
of the study sites (in particular, on the plant species constituting the vegetation cover).
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Figure 4. Examples of the individual woody plant detections for seven created nDSMs and the
reference orthomosaic created by visual interpretation (top left corner) on the sample of Site 5. White
dots represent individual detected shrubs and trees. White frame represents a subset of the study
Site 5.

Table A1 describes detailed values of ITD accuracies. Besides the overall accuracy, the
numbers of omitted and committed shrub- and tree-tops are also important. The omission
of ITD is also associated with the height accuracy. As the height of low woody vegetation
(mainly shrubs) is very similar to that of noise generated during nDSM calculations (sub-
traction of DTM from DSM), they are often incorrectly eliminated during ITD processing.
The number of omitted tops decreases with the improving height accuracy of nDSMs; how-
ever, the improving accuracy also results in an increased number of commissions (mainly
in shrubland with sparse woody vegetation). The detection success probably depends on
both the input data and the chosen algorithm. In this study, we aimed to evaluate the
possibilities offered by various RS input data. For this reason, we did not attempt to search
for the best possible ITD algorithm but rather used the most widely used one with a fixed
local maxima search window. Therefore, there are ways that could likely lead to ITD result
improvements through (a) the use of adaptive local maxima search window or (b) the
involvement of spectral information.

4.2. Woody Vegetation Height Detection

The height differences between the UAV-borne/airborne data and the ALSHD reference
dataset represented by the MAE were small enough to be of value for practical applications
related to the woody vegetation structures, in particular when ALS data are used for
terrain characterization (Table 5 and Figure A2 in the Appendix B). The overall absolute
MAEs of 1.0 m were the same for both most accurate nDSMs, which is very promising and
comparable with the accuracy of in situ field measurements; for example, [16] reported an
RMSE of 1.0 m when using a Vertex clinometer. Their study, however, focused on typical
European forests, not on woody vegetation as heterogeneous as in our study area. In their
study, an RMSE of 1.1 m (mean error: −1.0 m) was reported for a UAV-based nDSM and
an RMSE of 2.9 m (mean error: −2.7) was reported for an AImg-based model. The total
height MAEs for the UAV-based nDSM and the AImg model in our study were 1.6 and
2.5 m, respectively.

Our research yielded satisfactory results, which are similar to those of other studies
focusing on the validation of the height accuracy of UAV-based nDSMs against field mea-
surements. For example, Tuominen et al. [44] reported a tree stand height %RMSE of approx.
10%, which differed among tree species. On the other hand, Puliti et al. [45] achieved a
%RMSE of approx. 13.3%; the RMSE difference was around 1.4 m. Wallace et al. [46] mea-
sured the tree height with an RMSE of 1.30 m for SfM input data in a eucalypt forest in Tas-
mania. Panagiotidis et al. [1] reported MAEs of 2.62 and 2.88 m (RMSEs of 3.00 and 3.08 m;
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%RMSEs of 11.42 and 12.62%) in the forests of the Czech Republic. Zarco-Tejada et al. [47]
reported an RMSE of 0.35 m (%RMSE: 11.50%) and Díaz-Varela et al. [48] reported RMSEs
ranging from 0.20 to 0.45 m (%RMSE: 6.55–19.24%) in (mainly) olive orchards in Spain.
Surový et al. [32] reported RMSEs of 0.6–1.1 m in Portuguese plantations with cork oak,
holm oak, and umbrella pine.

Unlike the work of Surový et al. [32], the MAEs in our study were higher at certain
sites (in particular, Sites 4 and 6) while the %MAE remained more or less unchanged.
In other words, although the relative accuracy remained the same across sites, the absolute
differences increased with tree/shrub height. It should be also noted that the variability in
the height of woody plant tops in Sites 4 and 6 was generally higher than in the remaining
sites (see Figure A1 in the Appendix B). This was not observed in the case of airborne
imagery. We assume that this was due to the coarser spatial resolution of airborne imagery
compared to that of UAVs (0.94 vs. 0.15 m, respectively). A coarser resolution can often
completely fail to identify shrubby vegetation due to its low height and relatively small
diameter or, if recognized, may not support the precise identification of the tree/shrub top
and calculate a mean height of the area instead.

4.3. Tree vs. Shrub Height Accuracy and Detection Success

A comparison of the detection success between trees (height over 5 m) and shrubs
(below 5 m) is an interesting and unique analysis that had not been performed previously.
When considering the accuracies of trees and shrubs separately, we could see that through-
out the models, the relative accuracy was better for trees than for shrubs (Table 6). The
relatively poorer detection of shrubs in the purely UAV- or AV-based models was likely
caused by the fact that it is highly difficult to distinguish a low shrub from the surrounding
terrain/herbaceous vegetation in such a model; additionally, the canopy in shrub thickets
tends to smoothen out minor terrain undulations, which made the individual shrub tops
more distinct after the correction for the ALS-based DTM. The tree height was detected
with better relative accuracy than shrub height in all cases (%MAE). Still, none of the
methods of individual tree detection yielded accuracies similar to ALSHD. For this reason,
we propose that for such heterogeneous, nature-close areas with dense tree stands and
thickets, it might be more reasonable to detect the total woody plant area rather than the
number of shrub/tree individuals.

4.4. UAV-Based DSM and ALS-Based DTM Fusion

Combining UAV-borne or airborne DSMs with ALS-based DTM represents a successful
solution for the problems of heterogeneous environments such as our study area. The fact
that there were no major differences between the use of the terrain model derived from
the expensive custom-ordered “high density” ALS (ALSHD) and of the DTM derived from
the nationwide freely available low-density ALS (ALSLD) is an important result of our
study; even more important is that the point cloud densities (20.61 vs. 2.00 pts/m2) and
acquisition dates (2016 vs. 2011) were different, with the ALSLD being more outdated. In
our study, ALSLD was sensed in the leaf-off period (March), which is typical of nationwide
ALS campaigns predominantly aimed at obtaining topographic information, while ALSHD
was acquired in the vegetation period (September), which was necessary for the acquisition
of suitable data for accurate vegetation models. In any case, our results indicated that
even in sites as heterogeneous as our study area with frequent disturbances, digital surface
models built from up-to-date UAV/airborne data can be successfully combined with
older ALS-based DTMs, even those with low density. The time of data acquisition is also
important for accurate DSM construction [49], with the vegetation period preferred for this
purpose. Therefore, the imagery was sensed in June (UAV) and September (ALSHD and
AImg, respectively).
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4.5. Landscape/Vegetation Patterns Classification

Standard approaches for the classification of landscape patterns (in terms of vegeta-
tion) use both spectral and vertical RS-based information. The most common landscape
pattern analyses typically use image interpretation/classification or field measurement
methods [20]. Bakx et al. [23] predominantly focused on the use of ALS for deriving the
characteristics of vegetation structures. ALS-based vegetation properties thus demonstrably
represent information beneficial for analyses of landscape patterns; however, based on
our results, we can propose that UAV-based characteristics of woody vegetation structures
could be a valuable addition for such analyses. The promising accuracy of calculated
UAV-based woody plant structure properties (see Table 6), particularly in combination
with (even outdated and low-resolution) ALS data, is indicative of their possible benefit for
further landscape spatial pattern analyses.

For illustration and a brief evaluation of the possible benefit of the combination of
UAV imagery and freely available nationwide ALS data, we calculated the percentage of
the woody plant area, which constitutes a common characteristic of vegetation structures.
From the results presented in Table 7, it is evident that the values of both parameters were
close enough to values obtained from a model solely derived from expensive high-density
ALS data.

Table 7. The application of UAV-ALSLD nDSM for the estimation of vegetation structure character-
istics compared to ALSHD as reference. The area of woody vegetation represents a percentage of
vegetation cover (trees and shrubs). Woody plants of 1–5 m were classified as shrubs, and those
above 5 m were classified as trees. Vegetation property calculations are presented in Tables 5 and 6.

Area of Woody Vegetation (%)

Trees Shrubs Overall

ALSHD 12.9 20.5 33.4
UAV-ALSLD 11.3 22.5 33.8

5. Conclusions

Our study was aimed to evaluate the potential of UAV- and AImg-based nDSMs for
the estimation of tree/shrub heights and the detection of individual woody vegetation. We
confirmed the usability of UAV-borne and airborne imagery outside economically exploited
areas (forests, orchards, etc.). Our results prove that UAV-borne imagery can provide
valuable vegetation structure data for analyses of local, dynamically changing, highly
heterogeneous, nature-close environments; thus, it can offer an alternative to expensive
high-tech solutions such as ALS on a suitable spatial scale. In addition, we combined
DSMs based on UAV-borne and airborne imagery with ALS-based DTMs. Their fusion
significantly increased the accuracy of (especially) woody plant height estimation (trees
and shrubs). It is also possible that the use of spectral information from UAVs could further
improve the success of woody plant detection, which is a potentially promising direction
for further research. The results also confirmed that even coarse and outdated ALS datasets
(ALSLD in the study) can be a valuable source of DTMs for UAV- or AImg-based nDSMs,
capable of improving height data detection to a degree comparable with laborious manual
measurement. Additionally, up-to-date UAV- and AImg-based DSMs can be also beneficial
for updating outdated ALS-based DSMs.
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acquisition, Michal Fogl for help with ALS data processing, and Petra Šímová for her help with ALS
data procurement and valuable comments. Many thanks also to Jarek Janošek for helpful comments.
The research was supported by the Action CA17134 SENSECO (Optical synergies for spatiotemporal
sensing of scalable ecophysiological traits) funded by COST (European Cooperation in Science and
Technology, www.cost.eu, accessed on 12 March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Summary of individual tree detection (ITD) results of woody vegetation in six study locations.

ALSHD AImg AImg-ALSLD AImg-ALSHD UAV UAV-ALSLD UAV-ALSHD

Si
te

01

Detected 1183 596 799 802 1164 1018 1138
Reference 1214 1214 1214 1214 1214 1214 1214

True 1128 499 612 610 840 790 833
Omission 86 715 602 604 374 424 381

Commission 55 97 187 192 324 228 305
Accuracy (%) 92.9 41.1 50.4 50.3 69.2 65.1 68.6

Si
te

02

Detected 976 508 653 636 815 849 828
Reference 946 946 946 946 946 946 946

True 898 444 468 447 617 656 661
Omission 48 502 478 499 329 290 285

Commission 78 64 185 189 198 193 167
Accuracy (%) 94.9 46.9 49.5 47.2 65.2 69.3 69.9

Si
te

03

Detected 1256 369 949 886 1096 1001 1224
Reference 1215 1215 1215 1215 1215 1215 1215

True 1200 301 653 628 787 780 914
Omission 15 914 562 587 428 435 301

Commission 56 68 296 258 309 221 310
Accuracy (%) 98.8 24.8 53.7 51.7 64.8 64.2 75.2

Si
te

04

Detected 1016 603 799 851 1133 1582 1304
Reference 1023 1023 1023 1023 1023 1023 1023

True 972 430 551 552 688 705 669
Omission 51 593 472 471 335 318 354

Commission 44 173 248 299 445 877 635
Accuracy (%) 95.0 42.0 53.9 54.0 67.3 68.9 65.4

Si
te

05

Detected 842 464 775 633 975 851 791
Reference 825 825 825 825 825 825 825

True 794 370 472 460 669 636 629
Omission 31 455 353 365 156 189 196

Commission 48 94 303 173 306 215 162
Accuracy (%) 96.2 44.8 57.2 55.76 81.1 77.1 76.2

Si
te

06

Detected 853 436 442 631 852 959 943
Reference 831 831 831 831 831 831 831

True 767 383 368 415 555 588 584
Omission 64 448 463 416 276 243 247

Commission 86 53 74 216 297 371 359
Accuracy (%) 92.3 46.1 44.2 49.9 66.8 70.8 70.3

O
ve

ra
ll

Detected 6126 2976 4237 4439 6035 6260 6228
Reference 6054 6054 6054 6054 6054 6054 6054

True 5759 2427 3124 3112 4156 4155 4209
Omission 295 3627 2988 2942 1898 1899 1764

Commission 367 549 1171 1327 1879 2105 1938
Accuracy (%) 95.1 40.1 51.6 51.4 68.7 68.6 70.9

www.cost.eu
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Figure A1. Box-plots displaying quartile characteristics (median, Q25, and Q75) of the absolute 
nDSM heights for each study location. For each location, 100 randomly selected woody plant tops 
were used. Black dots represent outliers. 
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nDSM heights for each study location. For each location, 100 randomly selected woody plant tops
were used. Black dots represent outliers.
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