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Abstract: Data acquisition systems and methods to capture high-resolution images or reconstruct 3D
point clouds of existing structures are an effective way to document their as-is condition. These meth-
ods enable a detailed analysis of building surfaces, providing precise 3D representations. However,
for the condition assessment and documentation, damages are mainly annotated in 2D representa-
tions, such as images, orthophotos, or technical drawings, which do not allow for the application
of a 3D workflow or automated comparisons of multitemporal datasets. In the available software
for building heritage data management and analysis, a wide range of annotation and evaluation
functions are available, but they also lack integrated post-processing methods and systematic work-
flows. The article presents novel methods developed to facilitate such automated 3D workflows and
validates them on a small historic church building in Thuringia, Germany. Post-processing steps
using photogrammetric 3D reconstruction data along with imagery were implemented, which show
the possibilities of integrating 2D annotations into 3D documentations. Further, the application of
voxel-based methods on the dataset enables the evaluation of geometrical changes of multitemporal
annotations in different states and the assignment to elements of scans or building models. The
proposed workflow also highlights the potential of these methods for condition assessment and
planning of restoration work, as well as the possibility to represent the analysis results in standardised
building model formats.

Keywords: photogrammetry; cultural heritage; multitemporal data; damage comparison

1. Introduction

The conservation of historic buildings is an essential part of the preservation of
cultural heritage. Therefore, ageing structures need to be inspected are regular intervals
to counteract deterioration with a well-planned preservation strategy. As an outcome of
a visual inspection that covers the entire interior and exterior building surface, damages
and anomalies are documented by annotations in plans or in captured images. For a
comprehensive dataset, this includes, on the one hand, the actual state and condition of a
building and, on the other hand, the history of acquired data and performed evaluations in
order to compare them to extract information on deformation or damage progression.

The field of data acquisition is increasingly supported by digital technology, such as
image-based photogrammetric 3D reconstruction [1] or laser scanning, to obtain a highly
detailed 3D dataset as a basis for condition assessment or planning of restoration works
supported by automated processes. While Unmanned Aircraft Systems (UASs) are used to
acquire images of façades of high and hard to reach building regions [2,3], this approach
is rather used to capture indoor or outdoor areas of low building heights, where the
UAS flight has technical limitations. Unlike laser scanning data, the photogrammetric
reconstruction process estimates a camera position and orientation, the so-called extrinsic
parameters, for each image along with the point cloud that is georeferenced by Ground
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Control Points (GCPs). This registration enables a location-based filtering of the image
dataset and the mapping of information from the image plane onto a 3D surface [4–6].
Additionally, by triangulating such point clouds, surface meshes are derived [3,7]. The
colour information stored for the point cloud as a defined colour value is stored as a texture
from the image data on the mesh. The general result of this process is a detailed geometrical
3D representation of the captured building.

However, the essence of 3D methods in the field of data acquisition is usually not trans-
ferred to methods of damage assessment. There, due to a more familiar manual labelling
of 2D information [8,9], the focus is on 2D data, such as drawings from Computer-Aided
Design (CAD) systems, rectified images, orthophotos, or the raw image data. Furthermore,
the automated labelling of image datasets by image segmentation employing deep learning
techniques produces 2D information in the first place [10–12].

A transformation of 2D annotations to 3D geometries is thus necessary for 3D methods
to be applied on the annotation data, such as integration in Geographic Information
Systems (GISs), the extraction of damage dimensions through accurate measurements, or
the evaluation of affected building elements [13]. In Grilli et al. (2018) [5] and Adamopoulos
and Rinaudo (2021) [14], a workflow for the mapping of image segmentation labels onto
3D point clouds was proposed to transfer annotations from images and orthophotos to
a semantically enriched point cloud. A forward- and back-projection of annotations to
registered images from a photogrammetric reconstruction process that allows for the
inclusion of additional imagery was described in Manuel et al. (2014) [4]. In there, the
estimated camera positions were used to project an image-based annotation onto a building
surface and to identify images that contain the same 3D annotation. Other inspection
systems support direct 3D annotations along with high-performing web-based visualisation
and an underlying database for the inspection of the data [6,9]. Furthermore, in Malinverni
et al. (2019) [15], a building information model edited in a CAD system was used to apply
a 3D annotation workflow with the goal of quantity determination and further planning.

The re-modelling of acquired 3D point clouds or meshes to achieve simplified building
geometries is an important step towards the semantic enrichment of the dataset, and it
is widely applied in the field of Historic (or Heritage) Building Information Modelling
(HBIM) [15–19]. Depending on the targeted level of detail, the re-modelling process
includes geometries from the definition of rough building sections as bounding boxes up
to detailed volumetric building element models. A previous segmentation of the point
cloud according to derived spatial criteria to identify building elements could support
this process, as shown in Croce et al. (2021) [20]. Furthermore, a segmentation using
deep learning techniques [21] or voxel-based methods [22,23], as well as the derivation
of building geometries [24] enables the automated transformation of point clouds into
semantically enriched and simplified models.

Inspection data that are acquired periodically from the same object in addition allow for
the comparison of different states. Chiabrando et al. (2017) [25] applied such multitemporal
comparative processing to identify post-earthquake damages of a church building in point
cloud datasets of different states. Another example can be found from the identification
of significant structural deformation of bridge piers due to temperature effects presented
in Hallermann et al. (2018) [26]. In Vetrivel et al. (2016) [27], a voxel-based method
for the comparison of pre- and post-earthquake point clouds led to the identification of
damaged areas. The application of voxel-based methods enables the development of
algorithms that are not based on a specific type of geometry, as also shown for typology
analysis in Borrmann and Rank (2009) [28]. However, these studies investigated the
identification of damages or deformation in multitemporal datasets, but did not compare
the damage entities themselves. Three-dimensional annotations, as shown in the literature,
independent of the identification method (e.g., manual, image, or point cloud segmentation)
from different states, geometrically serve as a basis to identify localised changes of decays
and possibly a derivation of damage progression.
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This article proposes a methodological workflow for the integration of image-based
2D annotations into semantically enriched 3D models. Additionally, the obtained 3D
annotations are assigned to the building elements to create a linked 3D dataset that serves
as a basis for condition state evaluations. Finally, this process is repeated for three different
annotated states, where the annotations of each state are assigned to each other to obtain a
state history. The assigned annotation states are then compared, and a localised geometric
change is extracted to evaluate the dimension of their increase over the compared states.

The article is structured as follows: Section 2.1 describes the background of the
building, data acquisition, and first processing steps to reconstruct the 3D data, as well as the
workflow. In Section 2.3, important data characteristics used in the workflow and additional
modelling tasks, such as the definition of building sections, are explained. Methods of the
integration of 2D annotations into 3D models and the application of assignment methods for
the linking of 3D annotations, building elements, and different states are explained in detail
in Section 2.4. Finally, the resulting linked dataset and the computed state comparisons for
the extraction of local damage increases are presented in Section 3.

2. Materials and Methods
2.1. Case Study

The observed structure, the early Gothic church building of the Wehrkirche Döblitz, is
located in Germany, in the federal state Thuringia, in a region called Vogtland. The Wehrkirche
Döblitz is a so-called fortified church constructed in the 13th Century. As part of a research
project, where several cultural heritage buildings in the region Vogtland were conserved as
digital models, the church was captured with RGB images (exterior surface by UAS, main
hall and sanctuary manually) and laser scanning (attic). Besides the thick historic brick
walls and the wooden roof, a wall painting is placed at the inside of the main hall. The wall
painting was uncovered during restoration works in 1965. The interior surfaces of the walls
have a highly decayed plaster layer, which was locally patched.

In this case study, solely the main hall was examined by the automated generation
and evaluation of an image-based 3D damage mapping from manual 2D annotations. It
is the goal to build a linked dataset to identify, quantify, and locate damages and damage
increases for further planning of restoration works. Figure 1 shows the reconstructed
point cloud of the exterior surface, the interior (main hall and sanctuary including the wall
painting), along with the corresponding orthophoto of the wall painting.

Figure 1. The captured point clouds of the Wehrkirche Döblitz (a) from outside and (b) of the main
hall and the sanctuary at the ground level and (c) the reconstructed orthophoto of the wall painting.

As the dataset contains only a single state of the building, which is not sufficient
to apply a state comparison, the 2D annotations for two previous states were generated
synthetically on the captured images. Nevertheless, the characteristics and formats of the
annotations are comparable to those of a multitemporal dataset. The investigations are
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intended to propose automated processing methods for questions of building maintenance,
such as:

• Which point cloud section belongs to a specific building element?
• Which images contain parts of a specific building element?
• How are 2D annotations transferred to 3D geometries?
• Is a specific building element affected by annotations and by which?
• Which annotation was already part of a previously processed dataset?
• Where and of what dimension are the geometrical changes of the annotations com-

pared to previous datasets?
• What amount of deterioration from this comparison was detected on a specific building

element?

2.2. Methodological Approach

The workflow presented in this case study aims to process the acquired data into a
linked 3D dataset. For this purpose, image-based 2D annotations of each data acquisition
campaign were mapped to the reconstructed building surface. This enables the resulting
3D geometries to be assigned to the corresponding building elements and the images
containing the damage. In a next step, the multitemporal annotations were assigned to those
annotations that represent the same damage in a previous state. Based on the assignment,
the local damage differences between the states were evaluated. The information from all
these steps were integrated into a linked inspection dataset that allows queries and serves
as a basis for further analyses or documentation. Figure 2 shows the processing workflow
for the actual dataset for each state, including the comparison to previous inspections. The
steps of data acquisition and segmentation are explained in Section 2.3 and the processes of
annotation and comparison in Section 2.4.

Figure 2. Flowchart of the proposed process pipeline to integrate 2D annotations in 3D models and
to perform an automated damage comparison (data entities in the white boxes, processing steps
without frame).

2.3. Dataset

The dataset used consists of three parts, which will be acquired for each inspection:
(1) the captured georeferenced image dataset and the corresponding 3D reconstructions
and orthophotos, (2) the manually defined building elements of the main hall, and (3) the
annotations of the visible damages on the images. For the georeferencing of the image
data, GCPs were distributed on the building surface and in the surroundings (10 outside,
6 inside), which were considered in the photogrammetric 3D reconstruction process using
Structure from Motion (SfM) [1] in the software Agisoft Metashape.
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2.3.1. Images and Point Cloud

In total, the dataset of the main hall from the image acquisition and reconstruction
process includes:

• A collection of 1881 images (9504× 6336 pixel) captured with a mean distance of 1.5 m
(1.0 m for the wall painting);

• A sparse point cloud with 6.3× 106 points from the photogrammetric reconstruction
(approximately 27.4× 103 points/m2);

• The estimated extrinsic parameters of the camera for each image (see Figure 3);
• A computed orthophoto of the wall painting with a size of approximately 36 m2 and a

resolution of 117.33 pixel/mm2 (see Figure 1).

Figure 3. Segmented building parts of the main hall with manually modelled building elements:
(a) initial point cloud of the interior, (b) modelled facets for floor, walls, and ceiling, (c) explosion
drawing of the point cloud segments including the numbering of the walls, and (d) subset of Wall 01
with the extracted image set as camera orientations from the inside.

Besides the camera orientations, the reconstruction process also results in the corre-
spondences between the 3D position of each point of the sparse point cloud and the pixel
position in the respective images. Consequently, it is known which subset of the sparse
point cloud is contained in which specific images. These correspondences are stored in a
so-called bundler file [29].

2.3.2. Structured Segmentation

The dataset of the images and point cloud is unstructured at this point and, thus,
needs a semantic segmentation to arrange the data for more effective processing, as also
presented in Apollonio et al. (2018) [9]. Therefore, a simplified model of the main hall,
representing the floor, walls, and roof as facets, was manually modelled. As shown in
Figure 3, the facets were used to apply a segmentation of the point cloud to solely include:

• Points within a user-defined distance threshold of 20 cm;
• Images with a corresponding camera direction of view with an angle of no greater

than 20° to the facet normal.

The resulting segments contain a point and image subset related to each of the manu-
ally defined facets. The definition of the angle parameter favours the mapping of image-
based annotations, as described in Section 2.4.1.

In Poux and Billen (2019) [23], a method for the detection of planar clusters and the
segmentation of point clouds using voxel grids was proposed. This method removes the
necessity of manual facet modelling to an automated extraction of simplified building
element geometries. As this case study is not focused on the geometry extraction from
point clouds, but on the comparison of annotations, this part of the process is kept as simple
manual modelling. However, the actual segmentation of the point cloud and image dataset
based on pre-defined building element geometries was implemented as an automated
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process. Consequently, the proposed segmentation allows for an application to other
captured states of the same structure, as long as the reconstruction is georeferenced.

2.3.3. Annotations

The image dataset was annotated in the open-source software labelme [30] to create a
collection of damage annotations. Due to the previous segmentation, the images (JPG file
format) were already grouped by building element and filtered by view direction in order
to obtain an optimised basis for an effective annotation. For Wall 03 (with wall painting),
the computed orthophoto in the commonly used file format TIFF was used. To separate the
high-resolution orthophoto into manageable partitions, a raster segmentation into equally
sized patches was applied. Figure 4 shows three examples of annotated images from labelme
with cracks, craqueles, and missing plaster and the annotations for different states.

Figure 4. Examples of annotated damages: (a) areas of missing plaster (red) and craquele (purple),
(b) a crack polyline (light blue) and a small missing plaster detail as a polygon (red), and (c) the
synthetic multitemporal labels for the case study in t1 (blue), t2 (yellow), and t3 (red) for a missing
plaster area.

In total, 65 damages in three different states, assigned to four categories, were anno-
tated as a polyline along the crack centreline or as a polygon around the affected area for
craqueles, discolourations, and missing plaster.

For the multitemporal datasets, this annotation process was repeated for each state.
To synthetically generate three different states of deterioration in this case study (with only
a single state being captured), smaller polygons or polylines in a typical position were
created on top of the original annotations. Thus, a dataset for two additional synthetic
states with increasing decay was simulated. In the case of the wall painting, areas of
missing plaster were already repaired. In order to consider restoration, these annotations
were not assigned to the latest state t3 and should be identified as repaired damages in the
automated analysis process.

2.4. Methods

For the case study, the segmentation, mapping, assignment, and comparison processes
presented in the workflow in Section 2.2 were implemented by the authors in the program-
ming language JAVA. All 3D data entities were kept in simple and open formats to use a
broad range of visualisation software and processing libraries. Compared to proprietary
data formats, which are deployed in or part of specialised software, the data are not de-
pendent on software updates or feature deprecation and, thus, appropriate for a long-time
interpretable digital documentation. A more detailed description of the data management
in this case study is provided in Section 2.4.5.

2.4.1. Mapping of 2D Annotations

As a first step towards a 3D comparison of multitemporal damage annotations, the
image-based 2D annotations need to be transferred to 3D geometries. In this case study, the
mapping process is composed of the following steps:

1. Triangulation of the segmented part of the sparse point cloud to generate a target for
the ray casting;
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2. Mapping of vertices of a polygon or polyline on the surface in the view direction (and
in the case of the polygons, triangulation to a surface);

3. Storage of the resulting 3D information including characteristic dimensions (e.g., crack
length, discoloured area, or spalling volume), the bounding box, and the annotation
semantic.

The triangulation of the sparse point cloud is performed as a precondition for the
following ray casting. Therefore, a Poisson surface reconstruction [31] was applied with
a depthoctree = 8, producing a triangle mesh over the reconstructed building element
surface. In the following, this mesh is used as target geometry for the ray casting of 2D
image information.

The ray casting itself uses the extrinsic and intrinsic camera parameters from the
photogrammetric reconstruction for the mapping from 2D image information to global
3D coordinates. At this point, it is important to distinguish between the original camera
images and computed orthophotos. For the original images, a pinhole camera model was
assumed. Additionally, two coefficients for radial lens distortion, k1 and k2 (part of the
bundler file [29], as well as the focal length f ) were considered. The farther a pixel is from
the centre of an image in the acquired dataset, the higher the influence of this distortion on
the ray casting is. Figure 5 shows an exemplary mapping of an image-based annotation in
the case study.

In contrast to the aforementioned image-based central projection, an orthogonal projec-
tion from the image plane was conducted for the mapping of annotations from orthophotos.
Effects such as distortions are already compensated by the photogrammetric reconstruction
and do not need to be considered. The global coordinate of the image origin and the global
direction vectors for ordinate and abscissa vectors of the image coordinate system are
the necessary information. This allows registering the orthophoto on the 3D scene and
mapping the annotations to the building element surfaces.

Figure 5. Exemplary mappings of 2D annotations of missing plaster (red) and craqueles (green) from
the case study dataset on the triangle mesh surface; (a) an image-based central projection showing
the estimated position of the camera p, the focal length f as a vector to the image centre, and the
orientation of the local coordinate system and (b) an orthogonal projection from an orthophoto patch,
which was registered to the 3D scene.

It is possible to replace the mapping or the generation of 3D annotation geometries
in this workflow by alternative methods. One other solution could be the mapping of
image pixels based on their relative positions to the known salient points of the sparse
point cloud, as proposed in Hamdan et al. (2021) [32]. This method uses the pixel-to-
point correspondences from the bundler file instead of a ray casting. A similar method
was proposed by Manuel et al. (2014) [4], which utilises correspondences from image-
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based depth maps to segment a damage point cloud from annotated polygons. For visual
issues, a model of an already performed photogrammetric reconstruction could also be
retextured with a set of pseudo-coloured images according to annotations to consequently
keep the labelled damage categories as colours on its surface, as shown in Adamopoulos
and Rinaudo (2021) [14]. However, the most direct approach to produce 3D damage
geometries is the annotation on 3D models [9,13,15]. Figure 6 presents the results of the
mapping process applied to the case study dataset for the main hall, where the 3D damage
annotations of the three different states are shown separately. In addition to the increase
of damaged regions, it can be seen that some annotations from t2 disappear in t3 due to
restoration works on Wall 03.

Figure 6. Three-dimensional view of (a) the segmented walls with assigned numbering 01–04 and
(b,c) the mapped 3D annotations as coloured decay mapping in the states (b) t1, (c) t2, and (d) t3.

2.4.2. Assignment of Damages to Building Elements

Once the 3D annotations have been computed or generated, processes to assign the
geometries of building elements and damages according to their spatial relationships
are applicable. In this section, the assignment of non-sorted 3D annotations to building
elements or building sections will be discussed first. Through the workflow in the case
study, this assignment may already be derived from the previously described segmentation
of the point cloud and image data based on modelled building element surfaces before
the annotation (see Section 2.3.2). However, if other methods are used to create the 3D
geometries (e.g., by mapped image segmentation [12]) or if annotations are relevant for
adjacent elements due to their proximity, the assignments of damages need to be determined
from the case study dataset. A linked dataset storing damages, building elements, and
their relations is expected as a result.

The most basic methods for an assignment are to check overlapping Axis-Aligned
Bounding Boxes (AABBs), bounding boxes with edges parallel to the coordinate axes, which
is fast to compute and enables fast collision detection, or the shortest distance between a
3D damage annotation a(ti) and the building element b of a dataset from an inspection
with the timestamp ti. However, these methods can also lead to erroneous assignments, as
described by the authors in Taraben and Morgenthal (2021) [33]. On the one hand, this can
be caused by the high inaccuracy of AABBs, which usually include a much larger volume
than represented by the actual geometry and overestimate concave geometries. On the
other hand, the evaluation of the shortest distance does not give any indication of how
affected a building element is by a damage or how much area of the damage actually lies
on a building element.

To compensate these issues, each damage geometry was partitioned into equally sized
cubic voxels where the distance of each voxel to the building element was evaluated against
a distance threshold (dmin). The voxel size (dv) for this and the following operations can be
determined by:

• The definition of an octree depth, which is applied to each object and, thus, changes
dv according to the object dimension;

• The target accuracy, which needs to consider the registration error, as a global dv, valid
for all geometries of the dataset;
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• A combined approach, where the octree depth is defined along with a maximum dv to
avoid too large voxels for big objects.

The voxelisation allows for the weighting of the assignment result for the damage
annotation a(ti). The percentage of voxels that are considered to be associated with the
building element b or considered intersecting with b is indicated by the value of p(a(ti), b)
(see Figure 7). An assignment is now valid, if p(a(ti), b) > 0 or, in the case of a defined
intersection percentage threshold (pmin), if p(a(ti), b) > pmin. In addition to the link
between damage and building element, the percentage of assigned voxels and pmin must
be stored in the data model in order to be able to reproduce the results at a later time or to
filter the assignments.

Figure 7. Three-dimensional views with wall elements and two exemplary 3D annotations from the case
study dataset showing the voxel percentage to non-corresponding building elements: (green) assigned
voxels and (red) not assigned voxels for octree based or defined voxel sizes with dmin = 10 cm.

With a fixed global value for dv, a small damage object could be represented by only
a single voxel under specific circumstances. Thus, it is impossible to derive a weighted
distance from a voxelisation with this parameter. Considering dynamic dv, this effect
does not appear, but also influences the p(a(ti), b). By the coloured areas in Figure 7,
which indicate the voxel evaluation, it is evident that geometries in room corners would be
assigned to both adjacent walls using a pure distance-based assignment.

As a result, all damages are assigned to one or more building elements, or vice versa, a
building element to the corresponding damages. The amount, type, dimensions and ratings
of the damages are thus directly retrievable from the dataset and available for further
analyses, such as mechanical simulations or planning of restorations.

2.4.3. Assignment of Damages to Images

From the transformation of the 2D annotations to the 3D building surface, the assign-
ment of damage annotations to images is also derived from the mapping process. Yet,
only a 1:n relationship is created between images and damages. However, a damage can
usually be contained in several images of an acquired dataset and consequently has an
m:n relationship. To assign the remaining images to the damage annotations, for each 3D
geometry of a damage, a back-projection into the image plane is reviewed. If this results
in a successful representation of the damage in the image, the image is assigned to the
damage.

This method was also applied in Manuel et al. (2014) [4] to merge annotations from
different images and to include new registered images in the dataset. Additionally, in
further image-based condition surveys, the back-projection enables querying images that
show detected damages from the last inspection dataset.
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2.4.4. Damage Comparison and Evaluation

The presented methods for determining damage assignments referred to data from
different domains within a single state. However, the linking of multitemporal data
from 3D damage annotations will now be discussed as a first step towards a damage
comparison. For this purpose, the elements of a dataset of 3D damage geometries were
spatially compared with each other and their proximity was evaluated. An intersection of
the geometries, as possible for example in Constructive Solid Geometry (CSG), cannot be
applied to the acquired inspection data to detect overlapping areas. The reason for this is
that the reconstructions of different states are not congruent due to systematic errors and
especially the deformations of the structure itself [34]. Therefore, the reconstructed building
surfaces always have a distance to each other, which is also transferred as inaccuracy to the
annotations. On a massive church building as in the presented case study, the structural
deformation is less than on slender structures, such as bridges or beams, or on severely
damaged buildings after earthquakes.

The algorithm for assigning multitemporal 3D damage annotations a(ti) and a(ti+1)
of the states ti and ti+1 is based on the voxelisation of the geometries [33]. To accelerate
the detection of the overlapping AABBs,the geometries arechecked first. Subsequently, a
common voxel grid with a defined dv is applied on both geometries and the occupancy of
the individual voxels is evaluated. This results in the percentage overlaps p(a(ti), a(ti+1))
and p(a(ti+1), a(ti)) for the percentage of intersection of damage geometry a(ti) and a(ti+1),
respectively. If one of the values is above a defined pmin, the assignment is valid. To
compensate the mentioned offset among datasets of different states, an integer voxel radius
(rv) is additionally applied, which co-occupies a defined number of neighbouring voxels of
a geometry. Figure 8 illustrates the steps of the algorithm with the exemplary damage from
the case study dataset.

Figure 8. Voxel-based assignment and comparison of the exemplary damage from t1 (green) and t2

(red) in the dataset of Wall 02 using the parameters dv = 0.5 cm and rv = 1, resulting in an identified
overlap (yellow) and a damage growth of 72.3%.
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Due to different styles of annotation, different data characteristics, or changes in the
damage structure (e.g., the fusion of decayed regions to one contiguous area), a damage
a(ti+1) can possibly be assigned to more than one damage from the previous state ti. Thus,
the relationship of the damage assignment is of cardinality 1:n. The assignment already
allows for a collection of queries, e.g., to identify:

• Damages that did not occur in a previous inspection and therefore are new to the dataset;
• Damages that no longer occur in the current inspection and therefore need to be

surveyed in detail or were repaired during restoration works;
• Damages that in previous inspections were in separate regions and in the current

survey fused into one connected damage.

In order to obtain the differential areas, rather than the commonly occupied voxels,
only voxels occupied by geometries from ti or from ti+1 are extracted and subtracted.
Furthermore, rv is applied to compensate the offset, which leads to a maximum deviation:

umax = dv ·
√

3 · (1 + rv) (1)

On the one hand, this deviation prevents the process results from becoming more
accurate, except for a recalculation with a decreased dv, but on the other hand, this is also
caused by the uncertainty of the building surface registration, which usually would not
allow becoming more accurate than the registration itself.

The result of the voxel-based comparison for an assigned set of damages is shown in
Figure 8 along with the identification of the localised damage progression. The growth of
the same damage among two compared states is expressed as the percentage of detected
difference voxels. Thereby, p+ stands for a growth since the previous inspection, since p−
for a shrinkage and p0 for the overlap of the compared damage geometries. Here, due
to a better discretisation of the geometry, the accuracy of the percentage value increases
with smaller dv, but the computational effort increases at the same time. The percentages
of growth p+ and shrinkage p− enable an automated categorisation or evaluation of the
damages. This could also lead to a rating of the damages based on the type of damage,
the identified affected building elements, the location on the building element, and the
computed damage progression.

2.4.5. Integration with Building Information Models

The data model describing such linked inspection data needs to be able to handle the
wide range of heterogeneous geometries or refer to them. Among others, this includes
point clouds, meshes, camera positions, images, and 2D annotations. In the presented case
study, an individual metamodel was specified in the data format JSON, which semantically
describes the project hierarchy and properties of the individual data (as a so-called resource),
but only refers to them similarly to the multimodel containers proposed by Fuchs and
Scherer (2017) [35]. In addition, the determined assignments are stored as links provided
with semantics, in order to use them for later analysis processes. This results in an easy-to-
interpret dataset of inspection data having the actual geometries and images in specialised
data formats according to its application. In the resulting data structure, each resource can
be considered as a node of a graph, with the links being the edges of the graph. Direct
and indirect links are thus possible to be queried for each resource. Figure 9 presents the
possible links for a graph, centred on a particular building element. Furthermore, the links
include also multitemporal data, which allows representing the complete status history for
each surveyed component.

The linking semantics can also be inverted, e.g., a damage affects a building element
and a building element is affected by a damage or a damage Di is the ancestor of a damage
Dj and a damage Dj is the descendant of a damage Di.

The modelling concept is applicable to other standardised data formats commonly
used in the context of Building Information Modelling (BIM), such as the Industry Founda-
tion Classes (IFC) [36] for single buildings or CityJSON [37] for building ensembles. In both
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cases, this would require conventions or schema extensions to enable the representation
of semantics and relationships. However, the data structure provides the basis for such
an implementation.

Figure 9. Schema of the linking between the different data entities in the case study to achieve a
comprehensive condition history on the inspection timeline.

3. Results

In this section, the results of the application of the implemented methods (see Section 2)
on the dataset of the Wehrkirche Döblitz are described. For this purpose, the images and
point clouds of the main hall were evaluated and annotated and a simplified CAD model of
the church building with the walls, floor, and ceiling was created (see Figure 3). Besides the
point cloud segmentation and the annotation mapping, the main focus is the application of
the voxel-based methods for the assignment and comparison of multitemporal damage
geometries (see Section 2.4.4).

3.1. Enriched Building Elements

By voxelising the damage geometries, a weighted assignment between damages
and building elements could be determined. The 3D annotations were used as damage
geometries, and the surfaces modelled in CAD served as building element geometries. This
led to corresponding assignments of damages to each building element (see Table 1).

The dimensions of the 3D annotations are distributed quite heterogeneously depend-
ing on the type of damage, which complicates the definition of a common voxel size dv.
For the analysis of the dataset, a voxel size of 5 cm was defined in order to obtain a limited
number of voxels for relatively large geometries. Alternatively, an adaptive voxel size
could be chosen, which is based on the size of the individual damage geometries, e.g.,
by specifying an octree depth before voxelisation or by considering a percentage of the
largest dimension. This would also prevent from one-voxel discretisation of relatively
small geometries, which does not lead to the desired weighted distance and, thus, produce
instable assignment results. However, dv should then be considered when analysing the
results. The distance threshold dmin = 20 cm was defined dependent on the distance of the
components to the reconstructed point cloud, which served as the target for ray casting.
The number of assigned damages at each inspection applying the discussed parameters is
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provided for the walls in Table 1. The corresponding voxel evaluation results are presented
in Figure 10.

Figure 10. Voxelised (dv = 5 cm) and assigned damages of each annotated state for the wall elements
(dmin = 20 cm, pmin = 25%) in the case study dataset: Wall 01 (yellow), Wall 02 (blue), Wall 03 (green),
and Wall 04 (orange).

Even without considering the time-varying aspect, this already shows that the method
allows for an automated evaluation of the building elements based on the number of
assigned damages and their individual characteristics.

Table 1. Result of the damage assignment to the 3D model elements for each inspection.

Building Element # of Damages t1 # of Damages t2 # of Damages t3

Wall 01 5 10 21
Wall 02 5 14 14
Wall 03 6 7 17
Wall 04 7 7 8

3.2. Damage Assignments

After assigning the damage annotations to the corresponding building elements, the
assignment of the corresponding images was conducted. This was carried out by back-
projecting the damage geometries into the respective cameras and image planes. As an
initial filter, the general visibility of the geometries in the image was verified, in order to
exclude images that do not contain the required region. The selected images were then
filtered by distance to the damage, angle to the centre plane of the damage geometry, or
the distance of the 2D annotation to the centre of the image. Figure 11 shows the stepwise
filtering process for the described criteria. This process was repeated for each annotation to
create the assignments among images and damages.

Figure 11. Back-projection of a crack annotation on Wall 01 to images containing the damage.
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As mentioned in Section 2.4.3, the process can also be applied to filter images by
annotations of previous inspections to perform a targeted inspection of vulnerable areas.
The number of images assigned for each damage is listed in Table 2.

Table 2. Results of the assignment and comparison workflow for Wall 02, showing the amount of
assigned images and the computed percentage damage growth.

ID Type # of
Images

# of
Ancestors

from t1

Growth
t2 [%]

# of
Ancestors

t2

Growth
t3 [%]

tnMdPf discolouration 80 - - 5 23.5
b8e3vm missing plaster 39 - - 1 50.5
FXy3KV missing plaster 37 - - - -
kk70r3 missing plaster 42 - - 1 147.6

kZuwv6 missing plaster 49 - - 1 419.5
lDGeVw missing plaster 36 1 259.1 1 33.7
Mgg7YP missing plaster 57 1 227.9 2 143.8
N7ZS4g missing plaster 40 1 51.8 1 72.8
Q6RCFX missing plaster 74 - - 1 116.2
whq94c missing plaster 104 2 168.1 1 152.7

yRCMdN missing plaster 36 - - - -
0H1SWJ missing plaster 73 - - - -
1fKgjk missing plaster 40 - - - -

3AeWJN missing plaster 42 - - - -

In order to evaluate the multitemporal aspects of the dataset, corresponding damage
geometries of two states must first be assigned. As already shown for the assignment
of components and damages, a voxel-based process (see Section 2.4.4) is applied for this
purpose. The voxel size is once again defined as a global value depending on the dimensions
of the damage geometries and the accuracy of the registration (in this case, from the point
cloud of ti to the point cloud of ti+1). In contrast to the assignment of building elements, a
smaller dv compensated with a defined voxel radius rv is applied. In Figure 12, a sensitivity
study of dv and rv for the comparison of t1 to t2 and t2 to t3 of an exemplary damage is
presented. The goal of the study was to identify parameters settings, where the comparison
results in reasonable values and those settings that lead to erroneous voxel evaluations.
These erroneous evaluations mainly are forced by a too small radius rv.

As previously explained, the case study used a dataset of a single data acquisition
and additional synthetic data. Therefore, a random shift of maximum ±2.0 cm was applied
on each vertex of the triangle meshes to simulate the inaccuracies and deformation in
multitemporal inspection data. The dataset was further processed with dv = 0.5 cm and
rv = 4 and a threshold pmin = 60 %. In Figure 12, the effect of a too small rv can be observed
as a detection of damage shrinkage in regions with a larger offset due to deformation or
a less accurate registration. It also strongly affects the determined percentage of damage
growth from the voxel evaluation. Thus, the product of dv and rv from the chosen parameter
settings should exceed the absolute value of the expected offset. For the presented case
study, dv · rv ≥ 2.0 cm needs to be considered.

Compared to simpler assignment methods such as AABBs or a distance threshold, the
advantageous effect of the voxelisation method is in avoiding erroneous assignments of
near or partly overlapping damage geometries (see Figure 13). There, the evaluation of the
percentage of commonly occupied voxels does not lead to an assignment. Additionally, the
procedure after the voxelisation is independent of the geometry class of the damage. For
example, missing plaster could be documented as a triangulated surface in one inspection
and as a dense point cloud in another inspection. The proposed algorithm could handle
both types of data without modifications.
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Figure 12. Results for a missing plaster annotation applying the voxel-based assignment and compar-
ison of (left of each pair) t1 and t2 and (right of each pair) t2 and t3 showing the effects of a too small
definition of rv and the percentage growth p+ computed from different dv.

Figure 13. Percentage of overlapping voxels (yellow, dv = 0.5 cm, rv = 1) for two near damage
annotations (blue) that are not assigned, whereas a bounding box or distance check would result in a
valid assignment.
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The results of the assignment of images and the comparison explained in the following
are listed in Table 2 for Wall 02 of the case study dataset.

3.3. Derivation of Damage Progression

The last step of the automated analysis workflow (see Figure 2) is the comparison of
the previously assigned damage groups and the identification of local geometrical changes
of damages to derive damage progression indicators.

For this purpose, a voxel grid was generated around the assigned damages and
evaluated according to the respective timestamps of the surveys. The accuracy of the results
depends directly on the accuracy of the registration of the point clouds (or meshes). Since a
radius rv must be determined to compensate for the offset, as described in Section 2.4.4,
it influences also umax. The voxel radius rv also helps to shift the discrete geometry more
towards a centred position inside the generated voxel representation [33]. This effect does
not occur with a rough voxelisation without an applied radius, as shown in Figure 14.

Figure 14. Different combinations of dv and rv (all lead to umax = 17.3 cm) for annotated (a) missing
plaster surface and (b) crack polyline.

Furthermore, with a smaller voxel size dv, the accuracy of the percentage difference
approximation is increased. Figure 15b shows the visual comparison of the dataset of
the case study with applied parameters dv = 0.5 cm and rv = 4 for all damages. The
results of the percentage difference for Wall 02 additionally are listed in Table 2. From the
determination of the discrete changes of the damage geometries, the damage increment
also allows for a localisation and evaluation depending on its position.

All assignments and computed values presented in Table 2 were stored in the metadata
of the corresponding damages in the designed data model (see Section 2.4.5), and their
links were stored. Furthermore, the entries in Table 2 show that some damages were first
detected in t2 or t3 and that multiple assigned ancestors are also possible. The resulting
dataset enables the application of subsequent processes that evaluate the results of the au-
tomated workflow, such as condition assessment and rating of the building elements or the
derivation of a damage prognosis. In addition to the results produced with the mentioned
parameter setting, Figure 15a shows the comparison using a larger dv to visually compare
the effects on the entire dataset. A classical damage mapping based on orthophotos, as
common in the field of restoration and preservation of cultural heritage, is also possible
from these results.
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Figure 15. Three-dimensional view of the voxelised and compared full annotation dataset (compari-
son of t2 and t3) in two variants with (a) a rough computation using dv = 5 cm and rv = 1 and (b) a
more detailed computation using dv = 0.5 cm and rv = 4 (red: new damaged regions, yellow: regions
already identified in t2, and green: repaired or not re-identified regions).

4. Discussion

The digital inspection data collected in the main hall of the Wehrkirche Döblitz was
used to perform the integration of image-based 2D annotations into 3D models and to
apply automated procedures for the computation of localised geometric changes of dam-
ages. For the transfer of the 2D annotations, the triangulated sparse point cloud from
photogrammetric 3D reconstruction was used as the ray casting target. Thus, the accuracy
of the resulting 3D annotations was strictly related to the accuracy of the photogrammetric
reconstruction, leading to different offsets between multitemporal data. The offset could be
reduced by a more accurate local registration using methods such as ICP or a compensation
of structural deformations by simulated displacement fields. Another way to avoid such
offsets would be the projection of the 2D annotations onto a common surface, e.g., of a
manually created CAD model, but then, the actual 3D geometries may differ significantly
from the projected ones.

The applied voxel-based methods used to assign damages to building elements, images
to damages, and damages to damages from previous inspections produced reasonable
results. In particular, compared to coarser methods using AABBs or the shortest distance,
the voxel-based methods are beneficial in terms of the avoidance of erroneous assignments.

The extraction of localised geometrical changes of multitemporal damage geometries
was also carried out using a voxel-based approach. There, the accuracy of the smallest
detectable change was again related to the registration of the two photogrammetric recon-
structions on which the annotations were based. With increasing offset, the accuracy of the
detection of the changes decreased. For damage geometries of a wide range, numerous
voxels needed to be generated with the presented method, which significantly increased
the computation time.

In summary, a high degree of automation of the comparison of time-varying inspection
data and annotations could be achieved. This leads to a sorted and linked data collection
that allows for an effective further processing.

5. Conclusions

This article presented a methodological workflow for damage documentation of his-
toric buildings alongside a validation study of a church building in the German region of
Vogtland. For this purpose, high-resolution images of the building surface were acquired
and the sparse point cloud, as well as the camera orientations were computed by a pho-
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togrammetric reconstruction. In addition, the walls, the ceiling, and the floor of the main
hall of the church building were manually modelled as simplified CAD geometries. On
the captured images, the 2D annotation of visual damages on these building elements
was conducted.

In the automated process, presented for the evaluation of these data, the point cloud
and the corresponding image data were first segmented on the basis of the modelled
building elements. For each segment, the 2D annotations of the damage were transferred
into corresponding 3D geometries and linked to the dataset in order to store the relationship
between images, components, and damage in a data model. In addition, voxel-based
methods were used to automatically identify and localise the geometrical changes over
three different states from the generated 3D geometries of the damages.

The choice of the voxel size for the discretisation of the damage geometries was found
to be critical for the accuracy of the annotation assignments and comparisons. Therefore, the
voxel size should preferably be adapted to the dimensions of the damage and determined
adaptively for different elements of a data set in a further development of the method.
To overcome the decrease of performance processing large objects, the algorithm could
analyse the geometries in fixed grids, which could be evaluated in a parallel process, in
order to save computational resources.

The paper highlighted the potential that digital image processing, 3D reconstruction,
and systematic condition information modelling have for digital documentation and as-
sessment workflows in the context of heritage preservation. Besides this, the presented
methods are also applicable to the field of infrastructure inspections, such as bridges or
tunnels, which are surveyed in defined intervals, or the condition assessment after natural
disasters to plan rebuilding processes and evaluate the degree of damages. For a subse-
quent categorisation of the condition assessment of a structure, it is necessary to take into
account indicators of changes in damage geometries over different states. Condition scores
or assessment criteria should include damage progression and the condition history. In the
case of the continuous data acquisition of a structure, the values of identified geometrical
changes could possibly also serve as a prognosis of damage progression.
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