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Abstract: Digital beam forming (DBF) and synthetic aperture interferometry (SAI) are signal process-
ing techniques that mix the signals collected by an antenna array to obtain high-resolution images
with the aid of a computer. This note aims at comparing these two approaches from an algebraic
perspective with the illustrations of simulations conducted at microwaves frequencies within the
frame of the Soil Moisture and Ocean Salinity (SMOS) mission. Although the two techniques are
using the same signals and sharing the same goal, there are several differences that deserve attention.
From the algebraic point of view, it is the case for the singular values distributions of the respective
modeling matrices which are both rank-deficient but do not have the same sensitivity to the diversity
of the array’s elementary antennas radiation patterns. As a consequence of this difference, the level
and the angular signature of the reconstruction floor error are significantly lower with the DBF
paradigm than with the SAI one.

Keywords: imaging radiometry; antenna array; aperture synthesis; beam forming

1. Introduction

The Soil Moisture and Ocean Salinity (SMOS) space mission [1,2] was launched in
November 2009 by ESA and CNES and, for more than a decade, this first-generation satel-
lite has provided accurate radiometric brightness temperature maps at L-band with a
spatial resolution of ∼40 km. These maps have been used for retrieving surface soil mois-
ture (SM), even under dense vegetation canopies, as well as ocean salinity (OS), even
for cold waters. In addition, these brightness temperatures are operationally assimilated
in numerical weather predictions at the European Centre for Medium-Range Weather
Forecasts (ECMWF) [3].

SMOS has been the first attempt to apply, for remote sensing the Earth surface, the
concept of imaging radiometry by aperture synthesis, initially developed for radio astron-
omy [4]. As an illustration of the inspiration drawn from the long experience of radio
astronomers in aperture synthesis, the interferometric array of SMOS is clearly the cross
between the Very Large Array (VLA) [5] and the Cosmic Background Imager (CBI) [6].
Nowadays, radio astronomy is undergoing a renaissance. In the last decade, a number of
new radio telescopes have been constructed, and the older ones have been upgraded. At
the end of the next decade, this will culminate in the Square Kilometer Array (SKA) [7] that
will combine the signals received from thousands of small antennas using digital beam
forming [8]. Keeping in mind this evolution, the words of Ho et al. resonate as another
invitation to be inspired: “. . . a combination of antenna arrays and electronic beam-forming
techniques that creates agile beams is a strong candidate for future radiometers” [9].

Digital beam forming (DBF) and synthetic aperture interferometry (SAI) are two signal
processing techniques that mix the signals collected by an array of connected elementary
antennas to produce high-resolution images. If aperture synthesis has been the vocable for
many years, since the idea was to synthesize a complete aperture from a diluted one with
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interferometric data, it is now supplanted by the alternative expression synthesis imaging,
as the idea is to synthesize high-resolution images using a computer from whatever data
are available.

An excellent comparison between these two approaches has already been performed
in imaging radiometry [10] and it was very well illustrated with the passive advanced
unit radiometer (PAU-RAD), which is “a digital radiometer with DBF capabilities” [11].
However, the properties of the modeling matrices and their impact on the algebraic inver-
sion of the measurements, as well as on the retrieved brightness temperatures, were not
addressed, as it was not the focus of this comparison. This note aims at completing this
study by confronting these two paradigms from that algebraic angle. Antenna arrays are
introduced in Section 2, where the modeling of imaging radiometers using SAI or DBF are
formalized with equations that make the comparison simpler. Emphasis is placed on the
differences between sparse arrays and dense arrays as well as on the necessity to invert
the data provided by the sparse arrays, whether they rely on SAI or DBF. The regularized
reconstruction procedure that will be implemented for data processing is summarized in
Section 3. To support the comparison, numerical simulations conducted at microwave
frequencies within the frame of the SMOS mission are presented in Section 4. Although
the two techniques are using the same signals and sharing the same goal, there are several
differences that deserve attention while performing the comparison. From the algebraic
point of view, the corresponding modeling matrices are both rank-deficient and are both
sharing the same effective rank. However, the distributions of their singular values do
not exhibit the same sensitivity to the diversity of the radiation patterns of the elementary
antennas of the array. As a consequence of this difference, it is shown that the spatial
distribution of the reconstruction floor error [12] varies from one approach to the other.
This results in a reduction of the global level of this error and on its directional signature in
the synthesized field of view with DBF when compared to SAI. Furthermore, with regard
to the angular resolution and to the radiometric sensitivity, the two paradigms do not show
any difference.

2. Antenna Arrays

An antenna array is a set of multiple connected elementary antennas operating together
as a single antenna [13]. We consider here an antenna array A =

{
Ap
}N

p=1 made from N
spatially separated elementary antennas Ap which have overlapping fields of view. The
signals collected by the elementary antennas are combined with the aim of retrieving the
brightness temperature distribution of the observed scene. Depending on the combination
of these signals, the antenna array falls into the SAI paradigm or into the DBF one. This
section aims at introducing the corresponding modeling matrices that will be studied and
compared in the remainder of this note.

2.1. Synthetic Aperture Interferometry

In imaging radiometers using SAI, the signals collected by the elementary antennas
are combined pairwise, as illustrated in Figure 1. In actuality, these sensors measure the
correlation between the signals collected by antenna pairs, yielding samples of the coher-
ence function, also termed complex visibilities, of the brightness temperature distribution
of the observed scene [4].

Without polarimetric considerations [14], and regardless of the decorrelation effects
that can be reduced with sub-band decomposition [15] when the narrow-band conditions
are not satisfied [16], the complex visibility Vpq ≡ V(bpq) for a pair of antennas Ap located
in rp and Aq in rq is given by:

V(bpq) =
1√

ΩpΩq

∫∫
‖ξ‖≤1

Fp(ξ)F ∗q (ξ) e
−2jπ

bpq ·ξ
λo T(ξ)dξ√

1− ‖ξ‖2
(1)
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where bpq ≡ rq − rp is the baseline vector associated with the two antennas Ap and Aq,
the components ξ1 = sin θ cos φ, ξ2 = sin θ sin φ, and ξ3 = cos θ of the angular posi-
tion variable ξ are direction cosines (θ and φ are the traditional spherical coordinates),
Fp(ξ) and Fq(ξ) are the normalized voltage patterns of the antennas Ap and Aq with
equivalent solid angles Ωp and Ωq, as defined by equations (2)–(24) in [17], T(ξ) is the
brightness temperature distribution of the observed scene, and λo is the central wavelength
of observation.

As the geometrical delay in the far-field approximation between the point from the
direction ξ at the brightness temperature T(ξ) and the two antennas Ap and Aq is nothing
but the scalar product (bpq · ξ)/c, relation (1) can be written with:

bpq ·ξ
λo

= νo[τp(ξ)− τq(ξ)] (2)

where νo ≡ c/λo is the central frequency of observation and τp(ξ)− τq(ξ) is the time delay
between the two elementary antennas and every point in the direction ξ.

According to a recent revisit of (1), accounting for the mutual coupling between
elementary antennas, the brightness temperature distribution T(ξ) has to be substituted
with the difference T(ξ)− Tr, where Tr is the physical temperature of the receivers [18].
In any case, this constant term does not affect the zero-spacing baselines and it can be
removed by measuring a flat target [19]. As a consequence, without any loss of generality,
after discretization of the integral found in (1) over an appropriate sampling grid in the
direction cosines domain [20], the relationship between the complex visibilities and the
brightness temperature distribution of the scene under observation can be written in the
algebraic form:

V = G
sai

T (3)

where G
sai

is the linear modeling matrix of the imaging radiometer using SAI.

2.2. Digital Beam Forming

For DBF imaging radiometers, the signals collected by the elementary antennas are
combined all together [8], as illustrated in Figure 1. In actuality, these sensors measure the
antenna temperature (see Equation (2-144) in [17], for example) seen by the entire array A,
so that all the elementary antennas A of the collection are simultaneously involved.

Without polarimetric considerations [10] here as well, and disregarding decorrelation
effects that can be again reduced with spectral sub-banding [21], the antenna temperature
TA(ξ

′) from the pointing direction ξ′ is given by:

TA(ξ
′) =

1
Ω(ξ′)

∫∫
‖ξ‖≤1

∣∣∣∣∣ N

∑
p=1
Fp(ξ) e

−2jπ
rp ·(ξ − ξ′)

λo

∣∣∣∣∣
2

T(ξ)dξ√
1− ‖ξ‖2

(4)

where ϕp(ξ′) ≡ +2π(rp · ξ′)/λo is the phase applied to the signal captured by antenna Ap
to steer the beam of A in the direction ξ′ (see equations (9) and (10) in [13], for example)
and Ω(ξ′) is the equivalent solid angle of the antenna array pattern thus formed when
pointing in that direction.

Here again, on introducing the propagation times from the points in the directions ξ
and ξ′ to the antenna Ap, relation (4) can be written with:

rp ·(ξ − ξ′)

λo
= νo[τp(ξ)− τp(ξ

′)]. (5)

Contrary to SAI imaging radiometers whose modeling Equation (1) using (2) reveals
a dependency on the time delay between two different antennas from any direction,
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Equations (4) and (5) show that imaging radiometers using DBF are sensitive to the time
delay between two different directions for any antenna.

Finally, here again, without any loss of generality relation (4) is written in the alge-
braic form:

TA = G
dbf

T (6)

where G
dbf

is the linear modeling matrix of the imaging radiometer using DBF.

/2

(a) SAI

Aq Ap
bpq

<e
{
V(bpq)

}
=m
{
V(bpq)

}

(b) DBF

A1

ϕ1

A2

ϕ2

A3

ϕ3

. . . . . .

Ap

ϕp. . . . . .

AN

ϕN

TA(ξ
′)

Figure 1. Illustration of the principle of the two paradigms. In both cases, all the elementary antennas
are pointing in the same direction, depicted here by the main beam of the elementary power patterns
(in blue). To make the illustration simpler without losing anything of the comparison, amplifiers, local
oscillators, and band-pass filters are omitted. (a) In SAI, for every pair of elementary antennasAp andAq,
the radio signals are transmitted to a complex correlation unit to be combined in-phase/in-quadrature
and integrated in order to provide the real and imaginary parts of the complex visibility sample V for
the baseline vector bpq. Referring to the integral in (1), the contribution from direction ξ (in red) to
V(bpq) depends on the delay between the time a wave train (dashed red) arrives on antennaAp and
its arrival on antennaAq. (b) In DBF, a phase control ϕp(ξ′) is applied to the radio signals so that the
beam of the antenna array A is steered to the direction ξ′, here illustrated by the main beam of the array
power pattern (in red). The signals thus obtained are combined all together and integrated to provide
the antenna temperature TA(ξ′) from this pointing direction. Although the elementary power patterns
have a wide beam, the phased combination leads to an array power pattern with a much narrower beam
so that, when referring to the integral in (4), the directions ξ bringing the most important contributions
to TA(ξ′) are those around ξ′. When the phase control is applied by computational mean, several beams
can be simultaneously steered in various directions, provided the processing capacity is appropriate to
apply the different sets of phase shifts corresponding to every direction.

2.3. Array Factor and Array Pattern

The array factor [22] of the array A is nothing but the exponential sum over the N
elementary antennas:

AF(ξ, ξ′) =
N

∑
p=1

e
−2jπ

rp ·(ξ − ξ′)

λo . (7)
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The reader may find definitions with weights wp in the discrete sum, such as in Equations (2.3)
and (2.4) in [23], which might be useful for making some trade-offs in the properties of
the antenna array. These weights are not included here, or they are all set to 1, so that the
maximum value of the array factor, which is at the peak of the main beam of AF(ξ, ξ′)
when ξ = ξ′ for all p in (7), is here equal to N, according to Equation (2.5) in [23]. According
to the wording of [8], Equations (4) and (7) refer to “classical beamforming” (also called
“uniform beamforming”) in contrast with “optimum beamforming” (also called “weighted
beamforming”), where appropriate weights are the result of an optimization process in the
design of the antenna array which aims, for some, at improving the signal-to-noise ratio,
and, for others, at reducing the level of the side-lobes. As stated in the introduction, the
aim of this contribution is not to make such an optimization, it is just to compare the two
paradigms under the same conditions from the algebraic point of view.

Before entering into the details of this comparison, it is necessary to stress the nature
of the antenna array, as the reader may be familiar with dense arrays but less with sparse
ones. An interesting study on the impact of dense versus sparse antenna arrays has already
been performed by radio astronomers [24]. To concretely illustrate this impact in Earth
remote sensing, we consider here the case of the antenna array of SMOS which falls into
the category of sparse antenna arrays with its 69 elementary antennas regularly spaced
every 0.875λo ' 18.56 cm on the three arms of a Y. Conversely, to study the case of a
dense array, let us consider a hexagonal array with the same dimensions but filled with
1387 elementary antennas and with the same spacing (such a dense antenna array can be
found in Figure 2.24a in [23]). These arrays are shown in Figure 2 together with their array
factor when they point into the direction ξ′ = (0, 0). As expected, in both cases, |AF(ξ, 0)|2
exhibits a main beam centered in ξ = (0, 0) and has 6 tails spreading out from it. As a
consequence of the sparsity of the antenna array, the main beam of |AF(ξ, 0)|2 is wider
for SMOS than for the dense hexagonal array: 0.0355 rad versus 0.0299 rad. Likewise, the
side-lobes of |AF(ξ, 0)|2 have a higher level for SMOS than for the dense hexagonal array:
−7.2 dB versus −19 dB with respect to the peak value.

When the patterns of every elementary antenna are identical, the array pattern of A
is simply the product of the array factor (7) with the element pattern (see Equation (14)
in [13]). This is not the case of the SMOS antenna array, as these patterns vary from one
elementary antenna to the other [25]. As a consequence, according to Equation (13) in [13],
the power pattern of the antenna array A when pointing in the direction ξ′ is given by:

|F(ξ, ξ′)|2 =

∣∣∣∣∣ N

∑
p=1
Fp(ξ) e

−2jπ
rp ·(ξ − ξ′)

λo

∣∣∣∣∣
2

. (8)

Referring back to the antenna array of SMOS, two examples of such power patterns are
compared to the average power pattern of the 69 elementary antennas in Figure 3 when the
antenna array points naturally into the boresight direction ξ′ = (0, 0) and when it points off-
boresight into the direction ξ′ = (0.5,−0.25), thanks to appropriate phases ϕp(ξ′) steering
the beam of the array in that direction. Despite the width of the elementary power patterns
(about 65◦), the array power pattern has quite a narrow beam (about 2◦). However, here
again, as illustrated in Figure 2, the sparsity of the Y-shaped antenna array is responsible
for the high level of the side-lobes. Finally, it is worth noting the attenuation caused by
the element power patterns, which varies from one pointing direction ξ′ to another. One
should also observe the field aliasing (or the grating lobes) due to the spacing between the
elementary antennas together with the geometry of the array. As the spacing between the
antennas is here equal to 0.875λo and the underlying sampling grid is an hexagonal one,
the synthesized field of view is an hexagon and its extension from side to side is equal to
2/
√

3/0.875 ' 1.32 rad, according to Equation (5) in [26].
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Figure 2. Impact of the sparsity of antenna arrays on the array factor with (a) the Y-shaped array of
SMOS populated with 69 elementary antennas (orange) and a dense hexagonal array with the same
dimensions but filled with 1387 elementary antennas (blue). As a consequence of the sparsity of the
antenna array of SMOS, the corresponding array factor (b) exhibits side-lobes as high as −7.2 dB in
the 6 tails of |AF(ξ, 0)|2) and it has a main beam as large as 0.0355 rad at half-power. On the contrary,
the array factor of the dense hexagonal array (c) exhibits side-lobes as low as −19 dB in the 6 tails of
|AF(ξ, 0)|2) and it has a main beam as narrow as 0.0299 rad at half-power. For ease of comparison,
array factors are here normalized and the same color scale is used.
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Figure 3. Comparison between (a) the average power pattern 〈|Fp(ξ)|2〉 of the SMOS 69 elementary
antennas and two examples of the array power pattern |F(ξ, ξ′)|2 of that Y-shaped array: (b) when the
antenna array points into the boresight direction ξ′ = (0, 0) and (c) when it points into the direction
ξ′ = (0.5,−0.25). The main beam of 〈|Fp(ξ)|2〉 is as wide as 1.135 rad (or 65◦), as emphasized by the
dashed circle, whereas that of |F(ξ, 0)|2 is as narrow as 0.0355 rad (or 2◦). As a consequence of the
attenuation caused by the element power patterns, the peak value in (c) is about −3.2 dB below that
in (b). The field of view of SMOS is subject to aliasing because of the spacing between the elementary
antennas: the hexagonal synthesized field of view and its six neighbors are drawn in red, and its
extension from side to side is equal to 1.32 rad, as illustrated in (c) by the angular Euclidian distance
between the main beam in (0.5,−0.25) and its alias in (−0.64, 0.41). For ease of comparison, power
patterns are here normalized and the same color scale is used.

2.4. On the Need for Inversion

Equations (3) and (6) are algebraically very similar, but they provide very different
products because the modeling Equations (1) and (4) are different. SAI products are
samples of the complex visibility function V(bpq) for a finite set of baselines bpq spanning
the so-called experimental frequency coverage [4]. With DBF, the situation is much simpler
because these products are antenna temperatures TA(ξ

′) as a function of the pointing
direction ξ′ of the synthetic beam. As outlined in section 1, in either case, the final goal is to
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synthesize a high-resolution brightness temperature map of the observed scene T(ξ). With
SAI concept, the only way to obtain such a map is to invert relation (3) with the aid of a
computer. Depending on the pointing directions, DBF products can already be organized
similar to a brightness temperature map of the observed scene. The question therefore
arises whether an inversion of (6) is necessary, or not.

The answer depends on the antenna array and on its array factor. Substituting for (8)
into (4) leads to

TA(ξ
′) =

1
Ω(ξ′)

∫∫
‖ξ‖≤1

|F(ξ, ξ′)|2 T(ξ)dξ√
1− ‖ξ‖2

(9)

which is nothing but the definition of the antenna temperature of Equation (1) in [10],
here when all the elementary antennas of A point in the direction ξ′. As a consequence,
inasmuch as the angular position variables ξ and ξ′ belong to the same sampling grid in the
direction cosines domain, the antenna temperature map TA(ξ

′) is exactly the convolution of
the modified brightness temperature distribution T(ξ)/

√
1− ‖ξ‖2 with the power pattern

of the antenna array |F(ξ, ξ′)|2. As long as a convolution relation is identified, it is natural
to question the deconvolution of such a map to improve the angular resolution and/or to
clean it from spurious effects such as those induced by side lobes, for example, and/or to
remove the attenuation caused by the element power patterns, as illustrated in Figure 3. Of
course, the question does not arise for any antenna array with thousands of elementary
antennas as is the case with the stations of SKA in radio astronomy [7] or with the dense
and regularly filled arrays used for mobile communications [27] or with radar systems [28].
However, as illustrated in Figure 2, the question is relevant for the sparse arrays, such
as the SMOS Y-shaped array, and therefore for the hexagonal array currently studied by
the European Space Agency (ESA) [29] or for the cross-shaped array investigated by the
French space agency (CNES) [30]. Finally, as exemplified in Figure 3, this convolution
kernel varies from one pointing direction ξ′ to another in the synthesized field of view,
making deconvolution more complicated [31]. Even if the attenuation by the element
power patterns from the center to the edge of the synthesized field of view was the only
issue, as soon as these patterns are not identical but vary from one elementary antenna to
the other (and depending on the final required accuracy), removing this effect cannot be
reduced to a simple division by an average power pattern; it requires an appropriate and
regularized inversion.

3. Regularized Inversion

As discussed in the previous section, whatever the paradigm, data provided by an
antenna array have to be inverted in order to synthesize an estimate of the brightness
temperature distribution of the observed scene. Although it is not the subject of this note,
referring back to the combination of the signals kept by the elementary antennas, pairwise
in SAI and all together with BDF, it could be mentioned that these are not the only ways to
combine those signals. In actuality, they can also be combined by triplets [32] and more
generally by any number over closed circuits of antennas [33]; however, in any case, the
need for an inversion is still present and an analysis similar to the one presented here can
be performed with the appropriate modeling operators.

3.1. Singular Values

Singular values of a matrix play an important role in numerical linear algebra because
they can be used to determine the effective rank of that matrix (singular values beyond
a significant gap being numerically equivalent to zero) [34]. Shown in Figure 4 are the
singular values of the modeling matrices for the SMOS Y-shaped antenna array when
the signals measured by the 69 elementary antennas are processed according to the SAI
concept or according to the DBF one. Owing to the choice made for the sampling grid
in the direction cosines domain, in both cases, the number of columns of the modeling
matrix is equal to 1282 = 16,384, which is the baseline for the SMOS L1 processor [35]. As
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detailed in [20], this number of pixels in the synthesized field of view is the minimum
power of 2 to guarantee the Shannon sampling conditions with regards to the extension
of the frequency coverage of the antenna array. Whatever the paradigm, using more
pixels makes the inversions more complicated from the numerical implementation point
of view without adding any information. Referring back to the modeling Equations (1)
and (4), the case shown in green in Figure 4 of a unique voltage pattern F (ξ) for every
elementary antenna Ap of the array A is an ideal situation that cannot be reached. Indeed,
manufacturing of elementary antennas and constraints associated with embedding into
an antenna array result in a disparity of the elementary patterns after accommodation, an
actual situation shown in red in Figure 4.

(a) SAI
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Figure 4. Distributions of the singular values of the modeling matrices G in X polarization for (a) the
SAI paradigm and for (b) the DBF one. Whatever the approach, two groups of singular values
separated by a well-determined gap are observed. In every case, the first group is composed of the
2791 largest singular values. However, in the SMOS case (red, 69 different antenna patterns), this gap
is narrower than in the ideal case (green, same voltage pattern for each antenna), except for the DBF,
which is less sensitive to the disparity of the elementary patterns. The same behavior is observed in
Y polarization.

With regards to SAI and to SMOS, the number of lines of the modeling matrix (3) is
equal to the number of visibilities in the so-called “all LICEF mode” [36]. With an array
populated with 69 antennas, this number is therefore equal to 69 + 69(69− 1) = 4761.
However, only few of these lines are independent as a consequence of redundant baselines.
For SMOS, when accounting for the redundant baselines along the three arms of the Y-
shaped array, this number of Fourier frequencies in the star-shaped frequency coverage is
equal to 2791. This property clearly appears in the distribution of the singular values of the
modeling matrix (3) because there is a first group of 2791 singular values well-separated
from the others, especially for an instrument equipped with identical elementary antennas.

With regards to DBF with SMOS, the number of lines of the modeling matrix (6) is
equal to the number of pointing directions in the synthesized field of view. For SMOS,
this number has been set to 1282 = 16,384. Surprisingly enough, here again, the number of
independent lines is equal to 2791. This property clearly appears in the distribution of the
singular values of the modeling matrix (6) as there is again a first group of 2791 singular
values well-separated from the others, whatever the diversity of the antennas.

As a consequence, in both paradigms, the effective rank of the modeling matrix is
equal to the number of Fourier frequencies in the star-shaped frequency coverage of the
antenna array of SMOS. Whatever the concept, these imaging radiometers are band-limiting
devices. This property is easily understood for SAI because the complex visibility function
is sampled only for baselines bpq spanning the frequency coverage of the antenna array [20].
However, it is not evidence for DBF, so it will be illustrated with numerical simulations in
the last section of this note. From the algebraic point of view, the modeling matrix (3) is very
sensitive to the disparity of the elementary antennas patterns which can jeopardize this
interesting property due to the loss of redundant baselines as, if the geometry is respected,
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the elements are too different to allow redundancy. On the contrary, the modeling matrix (6)
is far less sensitive to this disparity, thus strictly preserving the rank property.

3.2. Retrieved Maps

As a consequence of rank-deficient modeling matrices [37], the corresponding inverse
problems have to be regularized in order to provide unique solutions to the linear sys-
tems (3) and (6). For obvious reasons of comparison between the two paradigms, the
same regularization is implemented in either case. Otherwise, the differences that might
be observed could be attributed to the regularization itself and not to the modeling ma-
trix (and, finally, not to the observational principle which varies from one concept to the
other because the combination of the signals kept by the elementary antennas is not the
same). Among the many regularization methods that can be found in the literature, the
minimum-norm one is widely used in SAI [38]:

Tr = min
T
‖T‖2 s.t. G

sai
T = V. (10a)

Numerical implementations are available in many algorithmic libraries and with many
programming languages. The extension to DBF does not raise any problem and it is
straightforward:

Tr = min
T
‖T‖2 s.t. G

dbf
T = TA . (10b)

In both cases, the Tr map is obtained through the computation of the pseudo-inverse of the
modeling matrix:

Tr = G
sai

+V, (11a)

and
Tr = G

dbf
+TA . (11b)

Referring back to Figure 4, in either case, G+ is computed with the aid of a truncated
singular values decomposition of G, where only the 2791 largest singular values are kept
during the inversion [39]. As a consequence, G+G is no longer equal to the identity matrix
and a reconstruction floor error has to be expected [40]. However, referring back again
to Figure 4, there might be a difference between the two retrieved maps (11a) and (11b),
owing to the role played by the singular values discarded before the inversion of G. It
is necessary then to assess the impact of this difference. Only numerical simulations can
address this point, and this is the purpose of the next section.

Finally, in order to filter out the Gibbs effects observed in the direction cosines domain
caused by the sharp cut-off in the frequency domain due to the limited extent of the
frequency coverage of the antenna array, Tr has to be damped by an appropriate apodization
(or windowing) function W [26]:

Tr = W ? Tr, (12)

where ? is the convolution operator. This map has to be compared to

T = W ? T, (13)

which is the “ideal” temperature map to be reconstructed and apodized with the same
window W, and not to T, which is not at the same angular resolution. Although sometimes
it is interesting to compare Tr and T at different levels of resolution in order to emphasize
differences from this point of view, here it is clearly not the case, as the next section will
illustrate identical performances of SAI and DBF in terms of angular resolution. This is
why, as announced in the introduction, this note aims at comparing the two paradigms in
terms of the overall reconstruction error by comparing Tr to T , without being disturbed by
such resolution aspects that, moreover, do not have to be considered here.
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4. Numerical Simulations and Comparison

Currently, there is no sparse antenna array observing the Earth, except SMOS, which
is using SAI and not DBF. It is therefore unfortunately not possible to confront these two
paradigms with experimental results. However, this comparison can be achieved with the
aid of numerical simulations conducted with the most up-to-date instrument modeling of
the SMOS antenna array, including the diversity of the elementary patterns. This is exactly
what is presented in this section, where all the numerical simulations have been performed
for the SMOS Y-shaped antenna array with the 69 elementary patterns measured prior to
launch in an anechoic chamber [41]. For every scene observed by the instrument, complex
visibilities have been simulated according to (1), and antenna temperatures according to (4).
They have been inverted according to (11) and apodized according to (12) with a Blackman
window, which is the baseline of the SMOS L1 processor [35]. The impact of the difference
between the two distributions of singular values shown in Figure 4 is assessed here spatially
and angularly at the level of the reconstruction floor error. The comparison between the
two concepts is completed with numerical results showing no difference with regards to
the radiometric sensitivity of the reconstruction process and to the angular resolution of
the retrieved maps.

4.1. Fresnel Scene

Shown in Figure 5 are the brightness temperature distributions TH and TV of a typical
scene over the ocean in horizontal and vertical polarizations for a smooth sea surface
(Equation (5) in [42]) with the Klein and Swift model for the dielectric constant [43]. A
rotation angle is applied to TH , TV , and THV (here set to 0 K) for calculating the correspond-
ing brightness temperatures distributions TX , TY, and TXY at instrument level, according
to Equation (1) in [42]. As the contribution from the deep sky is removed in the SMOS
L1 processor [35], it is not shown in Figure 5 for practical reasons.
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Figure 5. Brightness temperature distributions of a typical scene over the ocean: (a) TH(ξ) and
(b) TV(ξ) at ground level, (c) TX(ξ) and (d) TY(ξ) at instrument level.

Shown in Figure 6 are the brightness temperature maps Tr retrieved at instrument
level in X and Y polarizations with the two paradigms. From a qualitative point of view,
there is no significant difference between those obtained with SAI from complex visibilities
and those retrieved from antenna temperatures with DBF, including in the aliases of the
hexagonal synthesized FOV (field of view).

The error maps ∆Tr ≡ Tr − T of the retrieved brightness temperature maps with the
two paradigms are shown in Figure 7 at instrument level in X and Y polarizations and
in Figure 8 at ground level in H and V polarizations. Whatever the polarization, one can
immediately observe a difference between the two paradigms on the spatial distribution
of this error in the synthesized FOV. Spatial bias and standard deviation are given on
these figures in the AF-FOV (alias-free field of view) as well as in the EAF-FOV (extended
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alias-free field of view). The corresponding RMSE (root mean square error) [44] are given
in Table 1. In the AF-FOV, the two concepts perform roughly similarly: in every case, the
differences are less than 0.1 K, but still always to the credit of DBF. On the contrary, in the
EAF-FOV, the two paradigms perform much differently: whatever the polarization, the
RMSEs with DBF are about 0.5 K below those obtained with SAI.

Finally, the variations of the retrieved temperatures T H
r and T V

r with the incidence
angle at ground level i in the EAF-FOV are shown in Figure 9 and compared to the
theoretical profiles at the same resolution in T H and T V. Oscillations and artifacts clearly
appear with SAI, especially at low incidence angles, but not only. On the contrary, they
are almost absent, or at least strongly reduced, with DBF. This is confirmed by the RMSE
shown in Figure 10, where DBF performs better than SAI in both polarizations, almost at
any incidence angle and notably at the lowest ones where the reduction can be as large as
2 K. Moreover, the directional signature of the floor error is less important with DBF than
with SAI, as emphasized by the corresponding RMSE profiles, which are flatter with the
former paradigm than with the latter one: in the ground incidence angles interval from 0◦

to 60◦, the overall variation range of RMSE is larger than 3 K with SAI, while it is about
1.5 K with DBF.
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Figure 6. Retrieved brightness temperature maps Tr at instrument level in X and Y polarizations
corresponding to (a,b) the inversion of complex visibilities with the SAI paradigm and to (c,d) the
inversion of antenna temperatures with the DBF one. Color scale is the same for the four maps.

SAI(a) ∆T X
r (ξ)

-1 0 1
-1

0

1

-4 -2 0K 2 4

+0.26 K ± 1.14 K

-0.75 K ± 1.93 K

ξ1 = sin θ cos φ

ξ 2
=

si
n

θ
si

n
φ

∆T Y
r (ξ) (b)

-4 -2 0K 2 4

+0.00 K ± 0.87 K

+0.42 K ± 1.52 K

DBF(c) ∆T X
r (ξ)

-1 0 1
-1

0

1

-4 -2 0K 2 4

+0.20 K ± 1.14 K

-0.34 K ± 1.50 K

ξ1 = sin θ cos φ

ξ 2
=

si
n

θ
si

n
φ

∆T Y
r (ξ) (d)

-4 -2 0K 2 4

-0.27 K ± 0.71 K

+0.17 K ± 1.07 K

Figure 7. Floor error maps ∆Tr at instrument level in X and Y polarizations corresponding to
(a,b) the inversion of complex visibilities with the SAI paradigm and to (c,d) the inversion of antenna
temperatures with the DBF one. Biases and standard deviations are given in the AF-FOV (dashed
blue) and in the EAF-FOV (dashed brown). Color scale is the same for the four maps.
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Figure 8. Floor error maps ∆Tr at ground level in H and V polarizations corresponding to (a,b) the
inversion of complex visibilities with the SAI paradigm and to (c,d) the inversion of antenna temper-
atures with the DBF one. Biases and standard deviations are given in the AF-FOV (dashed blue) and
in the EAF-FOV (dashed brown). Color scale is the same for the four maps.
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Figure 9. Variations of the retrieved temperatures T H
r (red dots) and T V

r (blue dots) as well as those
of the temperatures T H (red line) and T V (blue line) of the scene with the ground incidence angle i
(a) for the SAI paradigm and (b) for the DBF one. Biases and standard deviations are those in the
EAF-FOV of Figure 8.
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Figure 10. Variations of the RMSE in the floor error maps ∆T H
r (red) and ∆T V

r (blue) with the ground
incidence angle i (a) for the SAI paradigm and (b) for the DBF one. Dashed lines indicate the level of
the RMSE over the EAF-FOV taken from Table 1. Scaling is the same for both graphs.
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Table 1. Root mean square errors in the retrieved brightness temperature maps at instrument level in
X and Y polarizations and at ground level in H and V polarizations.

X Polarization Y Polarization

AF-FOV EAF-FOV AF-FOV EAF-FOV

SAI 1.17 K 2.07 K 0.87 K 1.58 K
DBF 1.15 K 1.54 K 0.76 K 1.08 K

H Polarization V Polarization

AF-FOV EAF-FOV AF-FOV EAF-FOV

SAI 1.12 K 1.51 K 0.82 K 1.59 K
DBF 1.09 K 1.16 K 0.74 K 1.14 K

4.2. Radiometric Sensitivity

The complex visibilities Vpq have been blurred by an additive Gaussian noise ∆Vpq
with standard deviation set to 0.1 K on both the real and the imaginary parts. This value
is a typical one for SMOS over the ocean and it corresponds to TA = 150 K, TR = 200 K,
B = 19 MHz, and τe f f = 1.2/1.81 ' 0.66 sec in Equation (12) in [45]. According to SMOS
mission requirements [1], the radiometric sensitivity should be about 2.5 K over the ocean
at boresight. This is what is observed in Figure 11, where the estimation of the radiometric
sensitivity in the boresight direction ξ = (0, 0) is equal to 2.55 K after 1000 random trials of
the additive Gaussian noise. Away from this direction, errors are amplified by the inverse
of the antenna radiation pattern times

√
1− ‖ξ‖2 [46].
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Figure 11. Examples of random Gaussian noise added (a) to the complex visibilities Vpq or (b) to
the antenna temperatures TA(ξ′) in X polarization and (c) the corresponding standard deviation
map σX

r (ξ) of 1000 error maps ∆T X
r (ξ) thus obtained in the synthesized field of view with either

paradigm (the average map is almost equal to 0 as the Gaussian noises are zero-centered and the
modeling operators are linear). Here, the standard deviation of ∆Vpq is set to 0.1 K, that of ∆TA(ξ′) is
equal to 0.14 K, and the radiometric sensitivity in the boresight direction ξ = (0, 0) of σX

r (ξ) is equal
to 2.55 K. The same behavior is observed in Y polarization.

Thanks to Equation (14) in [10], the same random trials have been used for blurring
the antenna temperatures TA(ξ

′) with an additive Gaussian noise ∆TA(ξ
′), so that the

comparison from this point of view will not suffer any computational bias. As this equation
does preserve the norm, and because ∆Vpq samples are complex-valued with independent
real and imaginary parts, whereas ∆TA(ξ

′) are real-valued, according to Equation (5.29)
in [47], the standard deviation of ∆TA(ξ

′) is here equal to 0.1
√

2 ' 0.14 K, as illustrated
in Figure 11. Consequently, the radiometric sensitivity map is identical to that obtained
previously in the SAI mode.
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4.3. Angular Resolution

The angular resolution of an imaging system is usually defined as its ability to separate
two closely spaced identical point sources. The full-width at half-maximum (FWHM) value
of the response of the antenna array to a point source [26] is widely used to estimate this
angular separation. Referring back to the arguments about the need for the inversion of (6),
complex visibilities (1) and antenna temperatures (4) have been simulated and inverted for
an observed scene made of a single hot-spot in the very center of the field of view ξ = (0, 0),
so that the two paradigms can be confronted from the angular resolution point of view by
comparing the FWHM of the two retrieved brightness temperature maps Tr as well as that
of the antenna temperature map TA.

Shown in Figure 12 is the antenna temperature map TA(ξ′) normalized to its maximum
in ξ′ = (0, 0) and the amplitude of its Fourier transform |T̂A(u)| calculated over the dual
grid of the hexagonal grid sampling the direction cosines domain [26]. The six tails observed
in TA(ξ′) with values as high as 0.2 are caused by the same tails in the power pattern of the
antenna array |F(ξ, ξ′)|2 shown in Figure 3, because according to (9), they collect energy
from the hot-spot even when the antenna array does not point in its direction. With regards
to |T̂A(u)|, it is worth noting that the energy is limited to the star-shaped frequency coverage
of the antenna array. This band-limited property and the associated physical concept of
limited resolution of the imaging instrument which has been selected by ESA for being
implemented in the SMOS ground segment processor [20] are evident for an interferometer
because the complex visibility function is sampled only for baselines bpq spanning the
frequency coverage. However, it is not evidence for the DBF paradigm illustrated here.
As a consequence of the six-pointed star response to a hot-spot observed in the direction
cosines domain at TA(ξ′) level, a six-pointed star is also observed in the Fourier domain
at |T̂A(u)| level (with a 90◦ rotation because the two grids are dual one from the other, as
detailed in [26]). Also shown in Figure 12 is the normalized brightness temperature map
Tr(ξ) retrieved from that antenna temperature map when inverting (4) according to (11b),
as well as the amplitude of its Fourier transform |T̂r(u)|. The previous six tails are still
present but their impact has been strongly reduced thanks to the regularized inversion. As
a consequence, the six-pointed star is no longer observed in the Fourier domain which now
exhibits an almost constant energy in the star-shaped experimental frequency coverage. As
expected, the same behavior is observed on the brightness temperature map retrieved from
the complex visibilities corresponding to the same hot-spot when inverting (1) according
to (11a).

Shown in Figure 13 are cuts along the ξ2 axis of the brightness temperature maps Tr(ξ)
retrieved with the two concepts according to (11). It should be kept in mind that at this
level of the inversion there is no apodization window, so that the maps are at the highest
resolution possible for the instrument. As the two maps are identical, in both cases the
FWHM of the normalized response is about 0.0278 rad which is consistent with the value
obtained from the factors of merit listed in Table II of [26]. In order to illustrate again the
need for an inversion of the brightness temperature map, the same cut of TA(ξ′), which is
also not apodized, is reported in the same figure for comparison. As expected, the angular
resolution is larger than that obtained with the retrieved maps, since the FWHM of the
main beam is here about 0.0355 rad. Referring back to the maps TA(ξ′) and Tr(ξ) shown
in Figure 12, now in the light of the cuts of Figure 13, another effect of the inversion has
been to improve the beam efficiency at half-maximum (BEHM) from 25% to 62% [26] by
reducing the level of the tails.
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Figure 12. Close views of (a) the antenna temperature map TA(ξ′) and (c) the retrieved brightness
temperature map Tr(ξ) when the observed scene T(ξ) is reduced to a single hot-spot in the boresight
direction ξ = (0, 0) (for comparison purpose with the same color scale, both maps are normalized
so that their peak value is equal to 1) with the amplitude of their Fourier transforms (b) |T̂A(u)| and
(d) |T̂r(u)| (also compared with the same logarithmic color scale).
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Figure 13. Cuts along the ξ2 axis of the retrieved brightness temperature maps Tr(ξ) (dashed lines)
with the SAI (green) and DBF (purple) paradigms when the scene under observation T(ξ) is reduced
to a single hot-spot in the boresight direction ξ = (0, 0). In both cases, the FWHM of the normalized
response is about 0.0278 rad. Also shown on the graph is the same cut of the antenna temperature
map TA(ξ′) (solid line), the FWHM of the main beam is here about 0.0355 rad.

As a consequence, with sparse antenna arrays using DBF, it would be necessary to
invert the antenna temperature maps according to (11b) in the same way that there is
no alternative but to invert the complex visibilities in SAI according to (11a). As soon
as it is the case, it has been clearly shown here that from the angular resolution point
of view, there is no difference between the two paradigms. Finally, referring back again
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to the arguments about the need for inverting the antenna temperature maps, a very
last illustration is shown in Figure 14 with a typical scene T(ξ) over Spain. It shows the
comparison between the antenna temperature map TA(ξ′) simulated according to (4) for the
SMOS Y-shaped array using DBF with 69 elementary antennas; the brightness temperature
distribution Tr(ξ) retrieved from the inversion of this TA(ξ′), map according to (11b); and
another antenna temperature map simulated for the hexagonal array of Figure 2 using DBF
with 1387 elementary antennas. With regards to the angular resolution of these maps, the
situation is as clear as the numbers given in Figures 2 and 13. For the SMOS array with
only 69 elementary antennas regularly spaced along the three arms of a Y, the angular
resolution of the antenna temperature map is about 0.0355 rad, while it is about 0.0278 rad
for the brightness temperature distribution retrieved from the inversion of this antenna
temperature map: the effect of the inversion with (11b) cannot be clearer. Moreover, for
those who would still be hesitant to invert the antenna temperature map with the aid of a
computer and would prefer to rely on the instrument only, the angular resolution of the
antenna temperature map obtained with the dense hexagonal array populated with 1387
elementary antennas is about 0.0299 rad: it does not even reach the level of resolution
of the brightness temperature distribution retrieved from the inversion of the antenna
temperature map obtained with SMOS’s sparse array and its 69 elementary antennas. To
be complete and honest, it should be mentioned that this comparison does not take into
account the radiometric sensitivity that would be, of course, much better with a large
number of elementary antennas. However, if the number of elementary antennas for an
array observing the deep sky from the Earth’s surface has almost no limit, this is not the
case for Earth remote sensing from space, which has strong limits in terms of mass, size,
and power consumption, for example, so that one day or another inversion of temperature
maps with DBF will have to be taken into account in the scientific and technical trade-offs,
as it is with SAI. This is all the more true as the computational cost is not a bottleneck.
Indeed, referring back to Figure 4 and to the dimensions of the modeling matrices, the
computational cost of (11b) is 1282/4761 ' 3.5 longer than that of (11a). However, after
12 years of experience with SMOS, it should be kept in mind that such a basic operation
of numerical linear algebra is performed with any algorithmic library in a much shorter
time than the integration time of a snapshot (nowadays, a few microseconds on a 10 Gflops
floating-point unit compared to a second).
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Figure 14. Comparison between (a) a typical scene over Spain in X polarization at a resolution better
than 0.01 rad, (b) the corresponding antenna temperature map simulated for the Y-shaped array
of SMOS using DBF with 69 elementary antennas at the resolution of 0.0355 rad, (c) the brightness
temperature distribution retrieved from the inversion of (b) at the resolution of 0.0278 rad, and (d) an-
other antenna temperature map simulated for an hexagonal array using DBF with 1387 elementary
antennas at the resolution of 0.0299 rad. The same behavior is observed in Y polarization.
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5. Conclusions

Synthetic aperture interferometry (SAI) and digital beam forming (DBF) are two signal
processing techniques that are using the same elementary signals collected by an antenna
array and are sharing the same goal to produce from them high-resolution images with
the aid of the computer. On one hand, SAI is mixing the elementary signals pairwise to
estimate the corresponding complex visibilities from the correlation of the two signals. On
the other hand, DBF is combining all the elementary signals with a digital beam former
to steer the synthesized beam of the array in a given direction and estimate the antenna
temperature from that direction.

These two paradigms have been compared from the algebraic point of view with
the aid of numerical simulations based upon the SMOS instrument characteristics. The
properties of the modeling matrices of these two approaches have been examined. Both are
rank-deficient and they have the same effective rank: the number of Fourier frequencies in
the star-shaped frequency coverage of the Y-shaped antenna array. This is clearly evidenced
with a singular value decomposition where two groups of well-separated singular values
are observed. However, in the SAI case, the modeling matrix is very sensitive to the
disparity of the elementary antennas patterns which can reduce the gap between these two
groups, making the pseudo-inversion more delicate. On the contrary, in the DBF case, the
modeling matrix is far less sensitive to this disparity and the gap between the two groups
of singular values is preserved, making the pseudo-inversion more robust.

As a consequence of this first difference at modeling matrix level, few differences
have been observed and reported at the level of the retrieved brightness temperature maps.
From a qualitative point of view, whatever the polarization, the spatial distribution of the
reconstruction floor error in the synthesized field of view exhibits interesting differences
from one paradigm to the other. From a qualitative point of view, global metrics have
shown a significant reduction of the level of this error in every polarization with DBF
compared to SAI, especially in the so-called extended alias-free field of view where it could
be as large as 0.5 K. Moreover, with respect to the directional signature of this floor error, it
turns out that DBF performs better than SAI at any incidence angle, notably at the lowest
ones where the reduction can be as large as 2 K, leading to an almost constant level of floor
error over a wide range of incidence angles. Finally, propagation of random Gaussian noise
through the reconstruction process of both paradigms has not shown any difference with
regards to the final radiometric sensitivity in the synthesized field of view. Likewise, with
regards to the angular resolution, the synthesized impulse responses are strictly identical.

It is unfortunate that these conclusions are derived only from simulated data and not
from experimental results. The fact remains that currently there is no sparse antenna array
observing the Earth except SMOS, which is using only SAI to image the Earth’s surface at
L band. On the other hand, there are a few antenna arrays observing the sky with DBF
capabilities, but these arrays do not fall into the sparse category. Radio astronomy and Earth
remote sensing synthesize different fields of view at different angular resolutions. Moreover,
while there is almost no limit to the number of elementary antennas in an antenna array
in radio astronomy, Earth remote sensing from space has strong limits (mass, size, power
consumption, etc.) that are not compatible with dense and regularly filled arrays with
plenty of elementary antennas. This is why, at the time that agencies and industries are
conducting preliminary studies for an SMOS follow-on mission, only numerical simulations
carried on within the framework of the SMOS mission have been performed to compare
these two concepts and to illustrate what the results could have been if the signals kept
by the elementary antennas of SMOS had been combined all together for DBF instead
of pairwise for SAI. This work has no other claim than that. Calibration and hardware
considerations are out of the field of competence of the authors and are left to specialists.
Nevertheless, referring back to the introduction and to the place devoted to DBF in radio
astronomy, as soon as no major issue is found or encountered in the spatialization of this
paradigm, DBF should deserve attention in the studies of future imaging radiometers as an
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interesting option. This does not mean that DBF is preferable to SAI. This simply means
that DBF should be studied as much as SAI, neither more, nor less.
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