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Abstract: The complexity and diversity of buildings make it challenging to extract low-level and
high-level features with strong feature representation by using deep neural networks in building
extraction tasks. Meanwhile, deep neural network-based methods have many network parameters,
which take up a lot of memory and time in training and testing. We propose a novel fully con-
volutional neural network called the Context Feature Enhancement Network (CFENet) to address
these issues. CFENet comprises three modules: the spatial fusion module, the focus enhancement
module, and the feature decoder module. First, the spatial fusion module aggregates the spatial
information of low-level features to obtain buildings’ outline and edge information. Secondly, the
focus enhancement module fully aggregates the semantic information of high-level features to filter
the information of building-related attribute categories. Finally, the feature decoder module decodes
the output of the above two modules to segment the buildings more accurately. In a series of ex-
periments on the WHU Building Dataset and the Massachusetts Building Dataset, our CFENet
balances efficiency and accuracy compared to the other four methods we compared, and achieves
optimality on all five evaluation metrics: PA, PC, F1, IoU, and FWIoU. This indicates that CFENet
can effectively enhance and fuse buildings’ low-level and high-level features, improving building
extraction accuracy.

Keywords: CFENet; fully convolutional neural network; remote sensing images; building extraction

1. Introduction

With the advancement of earth observation technology, the quality and quantity of
high-resolution remote sensing data are constantly improving. The generation of high-
resolution remote sensing images has made more convenient and detailed data sources
available for its applications. Building extraction from high-resolution remote sensing
images is a conversion process from data to information. In urban remote sensing, building
extraction can be applied to urban and rural planning [1,2]. In surveying and mapping engi-
neering, building extraction is widely used as a means of acquiring data [3,4]. At the same
time, it is also an important part of the fields of precision agriculture and environmental
monitoring [5–7]. However, the buildings in high-resolution remote sensing images have
variable shapes, rich details, and inconsistent texture colors. The complexity of imaging
conditions and spatial environment poses severe challenges to the automatic extraction of
buildings [8,9].

The automated extraction of buildings from high-resolution images has been a chal-
lenging topic in the field of remote sensing image processing [10]. The ground object
environment in high-resolution remote sensing images is far more complex than the target
environment in general images. The proportion of targets to be segmented in remote
sensing images is far less than that in general images. For the segmentation task of remote
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sensing images, the main difficulty lies in the changeable environment of the objects and
the small and dense characteristics of the objects to be segmented. At present, building
extraction methods can be broadly divided into two categories: the traditional building
extraction method and the learning-based building extraction method.

The traditional building extraction methods mainly use hand-designed features such as
texture features, geometric features, and spatial information features of buildings in remote
sensing images to solve the problem of building extraction. Li et al. [11] utilized integrating
saliency cues to extract buildings from remote sensing images in two steps. First, classical
features (color, shadow, shape, etc.) were used to identify the initial candidate buildings,
and then a significance estimation algorithm was used to filter out the final buildings.
Chen et al. [12] first segmented the images to generate candidate buildings by an algorithm
combining threshold watershed transformation and hierarchical merging, and then used
their proposed edge regularity index and shadow line index to capture the characteristics
of buildings, and finally they employed three classifiers to recognize the buildings in
the images. Inglada et al. [13] used a machine learning method to perform pixel-level
classification of high-resolution remote sensing images with different geometric features
to distinguish buildings. Ding et al. [14] presented a building extraction model based on
an image segmentation algorithm and geometric feature constraints combined with the
Morphological Building Index (MBI). Katartzis et al. [15] used a semantic segmentation
algorithm combined with the Markov model and edge corner detection to extract buildings.
Awrangjeb et al. [16] proposed a threshold-based automatic evaluation system to segment
buildings according to the correspondence between buildings.

The main drawback of the traditional building extraction method is that they heavily
rely on the design and implementation of hand-crafted features and require some com-
plex strategies to overcome noise and outlier variations, which increase computational
costs and have poor generalization capabilities. Moreover, high-resolution remote sensing
images have complex ground object information. It is difficult to accurately describe build-
ing information based only on manual-designed features, which results in low building
extraction accuracy.

As a widely used deep learning architecture [17–19], combining remote sensing tech-
nology and deep learning has become a prevalent method in building extraction from high-
resolution remote sensing images. The mainstream CNNs are VGGNet [20], ResNet [21],
InceptionNet [22], DenseNet [23], AlexNet [24], etc. They have also become the com-
monly used baseline networks for many newly proposed segmentation models. Jonathan
Long et al. [25] proposed the Fully Convolutional Network (FCN) for image pixel-level
classification to overcome the limitations of CNN in fine image segmentation. The core
difference between FCN and CNN is that FCN replaces the fully connected layer at the
end of the CNN-based classification network with the convolution layer. After FCN was
proposed, many researchers also proposed some improved image semantic segmentation
models based on FCN, such as SegNet [26], DeconvNet [27], U-Net [28], DeepLab [29],
PSPNet [30], HRNet [31], etc. Guo et al. [32] added an attention layer to U-Net and used
multiple losses to extract complete buildings. Chen et al. [33] proposed a new neural
network by combining DeepLabv3+Net with a densely connected convolutional neural
network and residual structure. Shao et al. [34] introduced atrous convolution in U-Net to
extract buildings and proposed a new residual refinement module to refine the extraction
results further. Xu et al. [35] applied the guided filter to a deep neural network to improve
the extraction accuracy of diverse objects in urban areas. Zhu et al. [36] proposed a multiple
attending path network (MAP-NET) to extract building footprints by learning multi-scale
features through multiple parallel paths, followed by applying an attention module and
a pyramidal space pool module to obtain global dependencies. Liao et al. [37] combined
building contour information and multi-scale semantic information to enhance the robust-
ness of building extraction. Yang et al. [38] presented a novel encoder-decoder structure
combining attention mechanism and DenseNets, which fuses features of buildings from
different levels through a spatial attention module. Wen et al. [39] proposed an improved
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method based on the Mask Region Convolutional Neural Network (Mask R-CNN) to detect
the boundaries of buildings in complex backgrounds. Zheng et al. [40] added a self-created
symmetric information collection module in Deeplabv3+ to reduce noise in images for
accurate segmentation of side-scan sonar remote sensing images. Yu et al. [41] proposed
a method based on Transformer and YOLOv5 for real-time object detection on side-scan
sonar remote sensing images.

Although these FCN-based methods have made considerable progress in the extraction
accuracy of buildings, there are still some problems. First, high-resolution remote sensing
images contain complex ground object information; different buildings have different
shapes, inconsistent colors, and textures, making FCN-based networks fail to extract strong
feature representations of buildings. Secondly, FCN-based networks often contain a large
number of parameters, which causes the network model to occupy a large memory space
during training and testing.

To sum up, the traditional building extraction methods rely excessively on manual-
designed features, which are deficient in robustness and accuracy. The learning-based
building extraction methods cannot effectively enhance and fuse low-level and high-level
features from neural networks and often contain a large number of network structure
parameters. In this paper, to better address the above issues, we design a Context Feature
Enhancement Network (CFENet) that can learn more contextual information to achieve
accurate localization segmentation of buildings. The contributions of this paper can be
summarized as follows:

• An end-to-end context feature enhancement network, namely CFENet, is proposed
to address the challenges of complexity and diversity of buildings encountered in
building extraction from remote sensing images.

• CFENet achieves more accurate building extraction results on the WHU Building
Dataset [42] and the Massachusetts Building Dataset [43] by explicitly establishing
rich contextual relationships on low-level and high-level features.

• CFENet balances efficiency and accuracy by employing dilated convolution in the
spatial fusion module and asymmetric convolution in the focus enhancement module.

The following sections are arranged as follows. Our CFENet is introduced in detail in
Section 2. The experiments results of CFENet and the other four methods are analyzed in
detail in Section 3, including comparative experiments and ablation experiments. Section 4
discusses the efficiency of different methods and the heatmaps verifying the effectiveness
of our proposed modules. Finally, a summary of the entire text is presented in Section 5.

2. The Proposed Context Feature Enhancement Network
2.1. Model Description

Automated extraction of buildings from high-resolution remote sensing images poses
serious challenges. The observation mentioned above motivates us to introduce an efficient
end-to-end Context Feature Enhancement Network (CFENet), to learn more contextual
information to achieve accurate localization segmentation of buildings. The pipeline of
CFENet is shown in Figure 1.

CFENet adopts ResNet-101 as the backbone, and the input image size is 512 × 512 pixels.
After performing feature extraction through ResNet-101, four different size feature maps
are obtained, denoted as Feature 1, Feature 2, Feature 3, and Feature 4. Feature 1 and
Feature 2 are low-level features, while Feature 3 and Feature 4 are high-level features. The
low-level features contain larger spatial resolution and more detailed information (color,
outline, texture, etc.) by employing fewer convolution layers and downsampling operations.
However, the low-level features are not rich in semantic information and contain much
noisy information. On the contrary, the high-level features have more abstract and rich
semantic information (attributes, categories, etc.) by employing more convolution layers
and downsampling operations. However, the spatial resolution of the high-level features is
small, and spatial information loss is serious.
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(a) An overall structure of CFENet.

(b) Structure diagram of SFM, FEM, and FDM .

Figure 1. Our network Context Feature Enhancement Network (CFENet) adopts a ResNet-101 as
the backbone. It consists of three novel modules: Spatial Fusion Module (SFM), Focus Enhance-
ment Module (FEM), and Feature Decoder Module (FDM). The input image size of our network is
512 × 512 pixels, and the outputs of the four stages of ResNet-101 are used as Feature 1, Feature 2,
Feature 3, and Feature 4, respectively. Then Feature 1 and Feature 2 are fed into the SFM, and Feature
3 and Feature 4 are fed into the FEM. Finally, we input the FDM to obtain the final segmentation
result. (a) An overall structure of CFENet. (b) Structure diagram of SFM, FEM, and FDM.

Our CFENet aggregates the spatial information of low-level features through the
spatial fusion module to obtain buildings’ outline and edge information. The focus en-
hancement module fully integrates the semantic information of the last two high-level
features extracted from ResNet-101 to obtain the attribute category information of the build-
ing. After the feature encoding of Feature 1 and Feature 2 by the spatial fusion module and
the feature encoding of Feature 3 and Feature 4 by the focus enhancement module, CFENet
applies the feature decoder module to the outputs of the two modules and performs final
decoding to segment accurate buildings.

2.2. Spatial Fusion Module

The proposed dilated convolution [44] significantly reduces the drawbacks associated
with CNNs. Aiming at the problem of image resolution reduction and information loss
caused by downsampling in the task of image semantic segmentation, dilated convolution



Remote Sens. 2022, 14, 2276 5 of 19

proposes a new convolution idea. This idea expands the receptive field and reduces the
number of network parameters. In this module, we superimpose dilated convolutions with
different dilated rates to simulate different receptive fields according to the characteristics
of dilated convolution and enhance the representational ability of features by concatenating
the features of different receptive fields.

Because the low-level features are applied with fewer convolution layers and down-
sampling operations, they usually contain greater spatial resolution and richer spatial
information (color, outline, texture, etc.). To better extract the spatial information of build-
ings from low-level features, we increase the receptive field by using dilated convolutions
with different dilation rates. The details of the spatial fusion module are illustrated in
Figure 1b.

In our work, {Fi|i = {1, 2, 3, 4}} are the features of different stages extracted by the
backbone network. F1 and F2 are respectively fed into the two branches, and then fed into
the Location Block after concatenation to obtain enhanced low-level features flow:

flow = Φ(C{δθ(F1), ϕθ(F2)}) (1)

where δθ represents the first branch of the spatial fusion module, ϕθ represents the second
branch of the spatial fusion module. C represents concatenation operation, and Φ represents
the Location Block.

The design of the spatial fusion module is based on multi-branch dilated convolution.
The input of this module is Feature 1 (number of channels: 256, feature map size: 128 × 128)
and Feature 2 (number of channels: 512, feature map size: 64 × 64). First, by using a
3 × 3 convolution layer with a step size of 2 to keep Feature 1 the same size as Feature
2, and then through a parallel branch, which has four branches {branchk, k = 1, 2, 3, 4}.
A 1 × 1 convolution layer is used in each branch to reduce the number of channels in
the feature map. When k > 1, a 3 × 3 dilated convolution layer is added after the 1 × 1
convolution layer in each branch, and the dilation ratio is set to 2k. Subsequently, the output
features of the four branches are aggregated through a concatenation operation, and then
the dimensionality is reduced by a 1 × 1 convolution layer. Finally, the dimensionality
reduction features are added element-by-element with the features before entering the
branch. Like Feature 1, Feature 2 also needs to go through the same parallel branch. The
difference is that Feature 2 does not need to perform any operations before entering the
parallel branch. Finally, Feature 1 and Feature 2 are concatenated together, and then the
concatenated features are fed into the Location Block for feature enhancement. The Location
Block is described in detail in Section 2.3.

2.3. Location Block

In this paper, we propose a unit named Location Block (LB) based on the idea of
the Dual Attention Network [45] combined with the channels Squeeze-Extraction [46]
operation, which improves the performance of the network by enabling it to execute feature
recalibration adaptively. The main function of Location Block is to enhance the essential
features and weaken the non-essential features, so as to make the extracted features more
powerfully representational. In addition, a parallel module enables the network to learn
the mapping relationship between interdependent channels and the correlation degree
between each pixel in the feature map. The architecture of the Location Block is shown
in Figure 2.

The Location Block first performs a global pooling operation on the input features,
followed by the first 1 × 1 convolution layer to squeeze the C channels into C/r channels
to reduce the amount of computation, and the second 1 × 1 convolution layer is restored
back to C channels, where r refers to the compression ratio, which is set to 16 in this paper.
The next step is the reweight operation. The weight output by the sigmoid function is
considered to the feature channels’ importance after feature reselection. The weight is then
multiplied channel-by-channel to the previous features, thus completing the recalibration
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of the original features in the channel dimension. We perform the above operations to
model the feature channel-wise dependencies as completely as possible.

Figure 2. The architecture of Location Block.

After completing the above steps, we design two parallel branches to capture rich
long-range contextual relationships in spatial and channel dimensions, in order to obtain
better intra-class consistent feature representation. We first introduce the first branch.
A ∈ RC×H×W is the feature map of the input parallel module. First, feature A is converted
into new features B, C, and D by the 1 × 1 convolution layer, where {B, C, D} ∈ RC×H×W .
Then both feature maps B and C are reshaped to RC×N , where N = H×W. The transposed
B is then multiplied by C and a softmax activation function is applied to obtain a spatial
attention map S ∈ RN×N :

sji =
exp

(
BT

i · Cj
)

∑N
i=1 exp

(
BT

i · Cj
) (2)

where the impact of the jth pixel on the ith pixel denotes the value of sji. The more similar
the feature representations of the two positions are, the greater their correlation; that is, the
greater the value of sji.

At the same time, feature D is reshaped to RC×N , multiplied by the transpose of S, and
then reshaped back to RC×H×W . Finally, it is multiplied by a scale parameter γ and then
employs element-wise summation with A to obtain the feature matrix map E ∈ RC×H×W :

E = γ
N

∑
i=1

(
ST · Di

)
+ Aj (3)

where γ is a gradual learning scale parameter with an initial value of 0. The weighted
summation of the features at all locations and the original features yields the feature matrix
map E for each location. Therefore, the above branch can cluster rich contextual information
on local features. It helps to facilitate semantic consistency and intra-class compactness
of features.

For high-resolution remote sensing images, fully mining the interdependencies be-
tween channels can improve the representation ability of specific semantic information of
features. Therefore, this branch aims to model the interdependencies between different
channels by using a module capable of aggregating channel attention. Unlike the previous
branch, no convolution layer is applied to the feature map A, but the associated operation
is performed directly on the feature map A. Similarly, feature A is reshaped to RC×N . Then
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the reshaped A is multiplied by the transpose of A, and a softmax activation function is
applied to get the channel attention map X ∈ RC×C:

xji =
exp

(
AT

i · Aj
)

∑C
i=1 exp

(
AT

i · Aj
) (4)

where the impact of the jth pixel on the ith pixel denotes the value of xji. The transpose of
X is multiplied by A and the result is reshaped to RC×H×W . After multiplying by a scale
parameter β, it is summed with A element-by-element to obtain the feature matrix map E
that fuses the channel information. β is a gradual learning scale parameter with an initial
value of 0.

E = β
C

∑
i=1

(
XT · Ai

)
+ Aj. (5)

After the input features are processed separately by the two branches, element-wise
summation is used to fuse the two feature maps, and a 1 × 1 convolution layer is used for
dimensionality reduction to finally complete the enhancement of the input features.

2.4. Focus Enhancement Module

Asymmetric convolution is a means of compressing and accelerating networks. Pre-
vious works [22,47,48] have proved that 1 × n convolution plus n × 1 convolution can be
used to replace n × n convolution to greatly reduce the amount of network parameters
while ensuring accuracy. 1 × n convolution and n × 1 convolution can also explore more
valuable information in the horizontal and vertical directions of features. In this module,
asymmetric convolutions are used to reduce computational complexity and enable features
to learn more valuable information in both horizontal and vertical directions.

In the focus enhancement module, F3 and F4 are respectively fed into the two branches
of the focus enhancement module, and then fed into the Location Block respectively, and
then concatenated to get the enhanced high-level feature fhigh:

fhigh = C{Φ(ψθ(F3)), Φ(ξθ(F4))} (6)

where ψθ represents the first branch of the focus enhancement module, ξθ represents the
second branch of the focus enhancement module, C represents concatenation operation,
and Φ represents the Location Block.

The structure diagram of the focus enhancement module is shown in Figure 1b. The
input of this module is Feature 3 (number of channels: 1024, feature map size: 32 × 32) and
Feature 4 (number of channels: 2048, feature map size: 16 × 16) extracted by ResNet-101.
We replace the original n x n convolution layer with a 1 × n convolution layer plus an
n × 1 convolution layer to reduce the number of parameters and achieve deeper nonlinearity.
Finally, we use the shortcut operation adopted by ResNet [21]. Feature 3 is first fed into a
parallel branch. In each branch of the parallel branch, a 1 × 1 convolution layer is used first,
followed by a 1 × n convolution layer, an n × 1 convolution layer, a 1 × 1 convolution layer,
and an n × n dilated convolution layer, respectively. The dilation rate of dilated convolution
in each branch is set to 3, 5, and 7, respectively. These hyperparameters are adjusted in the
experiments according to the validation set.

After concatenating the outputs of the four branches, the number of feature channels
is reduced to 48 by using a 1 × 1 convolution layer. Then the shortcut design from ResNet
is applied, and the ReLU function is applied to obtain a new feature. The obtained new
features are then input into the Location Block for feature enhancement. Meanwhile,
Feature 4 is first applied with a convolution layer (followed by a BN layer and a ReLU
activation function layer) for dimension reduction. Then the output is fed to the Location
Block to obtain the enhanced feature. Finally, a 2-fold upsampling operation is performed
to obtain the same size as Feature 3, and a concatenated operation is performed with the
enhanced Feature 3 to obtain the final enhanced high-level feature.
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We design multi-branch convolution layers with different kernels to simulate multi-
scale receptive fields. The design principle of the focus enhancement module lies in that the
high-level features have rich semantic information and larger receptive fields. Therefore,
we only enhance Feature 3 and do not expand the receptive field for Feature 4. Meanwhile,
we design the parallel branches with low dilation rates to prevent the gridding effect.

2.5. Feature Decoder Module

The structure of the feature decoder module is illustrated in Figure 1b. This module
reduces the number of channels of low-level fusion features to 48, whereas the number
of channels of high-level fusion features remains at 96. The goal is to keep the high-level
features dominant while the low-level features play an auxiliary role. The reason is that
the high-level features have abundant semantic information, which can better provide
the category attribute information of buildings. Then the two features are concatenated
together and passed sequentially through two 3 × 3 convolution layers (followed by a
BN layer and a ReLU activation function layer). Ultimately, a 1 × 1 convolution layer is
employed to reduce the number of feature map channels to 1, and it is upsampled four
times to the same size as the input image and then fed into the sigmoid function to obtain
the final building extraction result.

2.6. Loss Function

Cross-Entropy Loss is a frequently applied loss function in two-dimensional semantic
segmentation tasks. The learning-based remote sensing building extraction task aims to
train a binary classifier. The positive samples are pixels containing the building, whereas
the negative samples are pixels containing the background. Because the building extraction
task belongs to the two-class semantic segmentation task, we also employ Binary Cross-
Entropy Loss (BCELoss) [49] in the training process. The calculation formula of BCELoss is
defined as:

Lbceloss = −
1

Npixels

Npixels

∑
i=1

(yilogpi + (1− yi)log(1− pi)) (7)

where Npixels denotes the total number of pixels in the remote sensing image, yi denotes
the expected value of the ith pixel, and pi denotes the predicted value of the ith pixel.

3. Experiments and Results
3.1. Evaluation Metrics

For our experiments, we adopted pixel accuracy (PA), precision (PC), F1 score (F1),
intersection over union (IoU), and frequency weighted intersection over union (FWIoU) as
evaluation metrics to evaluate the effectiveness of CFENet. The calculation formulas of
these five evaluation metrics are defined as follows:

PA =
TP + TN

TP + FP + TN + FN
(8)

PC =
TP

TP + FP
(9)

F1 = 2× PC× Recall
PC + Recall

(10)

IoU =
TP

TP + FN + FP
(11)

FWIoU =
TP + TN

TP + FP + TN + FN
× TP

TP + FP + FN
. (12)

For the remote sensing building extraction task, the positive sample is the building
and the negative sample is the background. Where TP refers to the number of cases in
which the true case is positive and the predicted case is also positive, and TN refers to the
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number of cases in which the true case is negative and the predicted case is also negative.
FP refers to the number of cases in which the true case is the negative case and the predicted
case is the positive case. FN refers to the number of cases in which the true case is the
positive case and the predicted case is the negative case. The larger the value of these five
evaluation indicators, the better the experimental effect.

3.2. Dataset and Implementation Details

WHU Building Dataset [42]: The dataset adopted for our experiments is the aerial im-
age dataset of the WHU Building Dataset. The dataset covers a 450 km2 area in Christchurch,
New Zealand, which includes residential, industrial, cultural, and rural areas, and contains
187,000 buildings with different textures, shapes, and colors. This area is evenly divided
into 8189 images of 512 × 512 pixels in tif format. The dataset for our experiment is divided
randomly, and the training set, validation set, and test set contain 4736, 1036, and 2416 im-
ages, respectively. The original images and ground-truth values in the WHU Building
Dataset are shown in Figure 3.

Figure 3. Some examples of the WHU Building Dataset. The first row is the original image and the
second row is the ground truth.

Massachusetts Building Dataset [43]: The dataset contains 151 high-resolution aerial
images of downtown and suburban Boston. The size of each image in the dataset is
1500 × 1500 pixels covering an area of 2250 × 2250 m2. The dataset has 137 images in the
training set, 10 images in the test set, and 4 images in the validation set. It is worth noting
that the ground resolution of the images in this dataset is 1 m, which increases the difficulty
of building extraction. When using the original images in this dataset, each image is evenly
divided into several patches with a size of 256 × 256 pixels. The original images and
ground-truth values in the Massachusetts Building Dataset are shown in Figure 4.

Implementation details: Our proposed method is implemented based on pytorch
1.7.0 and cuda 11.0, and the corresponding code is available from our community site
(https://github.com/djzgroup/CFENet, accessed on 30 March 2022). An Adam optimizer
is applied to train our network with a learning rate initialized to 0.0001, and then decayed
to 0.1 of the current learning rate every 50 epochs. Our network is trained on the GPU for a
number of 200 epochs.

https://github.com/djzgroup/CFENet
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(a) (b)

Figure 4. An example of the Massachusetts Building Dataset. (a) Original image; (b) Ground truth.

3.3. Comparative Experiments
3.3.1. Results on WHU Building Dataset

CFENet is compared with four methods, U-Net [28], Deeplabv3+ [50], PSPNet [30],
and HRNet [31]. All these methods have good results in the semantic segmentation task.
U-Net started as a semantic segmentation network applied to medical images, and due to
its elegant network structure is widely used in semantic segmentation tasks of images in
various fields. Deeplabv3+ is based on Deeplabv3, adding a simple and efficient decoder
to refine the segmentation results. PSPNet reduces error segmentation by introducing
more contextual and multi-scale information. HRNet is used for the representation of high-
resolution images, which preserves the high-resolution representation by fusing features
from different branches. HRNet has achieved great success in tasks such as semantic
segmentation, image-level classification, and object detection. The performance of different
methods on the WHU Building Dataset is shown in Table 1. Our method outperforms other
methods on all five evaluation metrics. In particular, our method improves 0.0158 on PA,
0.1004 on PC, 0.0827 on F1, 0.0266 on FWIoU and even more on IoU by 0.1303 over U-Net
which is currently used mainly for building extraction tasks. The experimental results of
CFENet also show some improvement over HRNet which excels in semantic segmentation,
especially the PC improvement of 0.0261.

We qualitatively assess the building extraction results of different methods on the
WHU Building Dataset. In the visualization, green areas represent building pixels that are
correctly predicted, red areas represent pixels that are actually background but incorrectly
predicted as buildings, and blue areas represent pixels that are actually buildings but
incorrectly predicted as background. As shown in Figure 5, our method shows better
performance in dealing with small-sized and complex-shaped buildings, whereas the other
four methods show more or less prediction bias. The buildings in the first row of Figure 6 are
large buildings with rich textures and colors. Our method can extract buildings with richer
details. The other four methods have the problem that the details of the extraction results are
not prominent when extracting such buildings. The cistern shown in Figure 7a has a ground
texture that is highly similar to the building footprint. Figure 7b,c are some containers
where the surface texture is highly confused with the building. Our method can effectively
identify accurate building footprints when dealing with such ground facilities that are
easily confused with buildings, while the other four methods suffer from misidentification.
Therefore, our method effectively solves the problems of inaccurate extraction results and
insufficient detail of extracted buildings when extracting complex buildings.
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(a) Image 1 (b) Image 2

(c) Ground Truth (d) Ours (e) U-Net (f) Deeplabv3+ (g) PSPNet (h) HRNet

Figure 5. Results of different methods on buildings of small size and complex shapes. (a,b) are
the original images; (c) ground truth; (d) the results of CFENet; (e–h) show the results of U-Net,
Deeplabv3+, PSPNet and HRNet, respectively. Green, red, and blue pixels on the map represent
predictions of true positives, false positives, and false negatives, respectively. The experimental
results in the red box show the areas where the contrast effect is more obvious.

(a) Image 1

(b) Ground Truth (c) Ours (d) U-Net (e) Deeplabv3+ (f) PSPNet (g) HRNet

Figure 6. Results of different methods on large buildings with complex textures and colors. (a) Orig-
inal image; (b) ground truth; (c) the results of our CFENet; (d–g) show the results of U-Net,
Deeplabv3+, PSPNet, and HRNet, respectively. Green, red, and blue pixels on the map repre-
sent predictions of true positives, false positives, and false negatives, respectively. The experimental
results in the red box show the areas where the contrast effect is more obvious.
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(a) Image 1 (b) Image 2 (c) Image 3

(d) Ground Truth (e) Ours (f) U-Net (g) Deeplabv3+ (h) PSPNet (i) HRNet

Figure 7. Results of different methods on easily confused buildings. (a–c) Original input images;
(d) ground truth; (e–i) the results of our method and the other four methods, respectively. Green,
red, and blue pixels on the map represent predictions of true positives, false positives, and false
negatives, respectively. The experimental results in the red box show the areas where the contrast
effect is more obvious.

Table 1. Performance of different methods on the WHU Building Dataset.

Method PA PC F1 IoU FWIoU

U-Net [28] 0.9713 0.8366 0.8435 0.7419 0.9485
Deeplabv3+ [50] 0.9816 0.9001 0.9010 0.8296 0.9651

PSPNet [30] 0.9586 0.8215 0.7734 0.6434 0.9247
HRNet [31] 0.9864 0.9109 0.9201 0.8647 0.9742

CFENet (Ours) 0.9871 0.9370 0.9262 0.8722 0.9751

3.3.2. Results on Massachusetts Building Dataset

We conduct experiments on the Massachusetts Buildings Dataset to further validate
the effectiveness of CFENet. The experimental results of different methods on the Mas-
sachusetts Building Dataset are shown in Table 2. Our method also shows impressive
performance on all five evaluation metrics. Among them, on IoU, CFENet improves the
performance to 0.7486. On PA, our method achieves 0.9626, significantly outperforming
the other methods we compared.
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Table 2. Performance of different methods on the Massachusetts Building Dataset.

Method PA PC F1 IoU FWIoU

U-Net 0.9517 0.8635 0.7701 0.6626 0.9099
Deeplabv3+ 0.9163 0.7153 0.6506 0.5266 0.8559

PSPNet 0.9116 0.7375 0.6084 0.4704 0.8455
HRNet 0.9581 0.8292 0.7910 0.6968 0.9225

CFENet (Ours) 0.9626 0.8277 0.8304 0.7486 0.9317

The qualitative assessment results on the Massachusetts Building Dataset are shown
in Figure 8. The visualization result shows that CFENet has high extraction accuracy, and
most of the buildings are predicted as true positives (green). Row 1, 2, and 4 are large,
irregularly shaped buildings that other methods misjudge (red and blue) in predicting such
buildings. Row 3 is of complex textured buildings, and Row 5 of buildings is small and
dense. CFENet is basically accurate in predicting such buildings, whereas other methods
predict some false positives (red) and false negatives (blue).

(a) Original images (b) Ours (c) U-Net (d) Deeplabv3+ (e) PSPNet (f) HRNet

Figure 8. Extraction results of different methods for different types of buildings on the Massachusetts
Building Dataset. (a) Original input image; (b–f) the results of our method and the other four methods,
respectively. Green, red, and blue pixels on the map represent predictions of true positives, false
positives, and false negatives, respectively.
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3.4. Ablation Experiments

As shown in Table 3, our proposed three modules significantly improve the perfor-
mance. Compared with the baseline FCN (ResNet-101), we improve PA/PC/F1/IoU/
FWIoU by 0.0168/0.1376/0.05/0.0839/0.0275 by using only the spatial fusion module. The
effect of using both the spatial fusion module and the focus enhance module improved over
baseline on all five evaluation metrics. When three modules are integrated together, the
PA/PC/F1/IoU/FWIoU of CFENet is further improved to 0.9871/0.9370/0.9262/0.8722/
0.9751. The experimental results are significantly improved when the three modules we
designed are gradually added, proving that our proposed modules are effective. Therefore,
our proposed three modules are of great help for building extraction from high-resolution
remote sensing images.

Table 3. Ablation study on WHU Building Dataset.

Method BaseNet
Component

PA PC F1 IoU FWIoU
SFM FEM FDM

FCN ResNet-101 0.9638 0.7578 0.8387 0.7309 0.9365
CFENet ResNet-101 X 0.9806 0.8954 0.8887 0.8148 0.9640
CFENet ResNet-101 X X 0.9864 0.9182 0.9161 0.8608 0.9744
CFENet ResNet-101 X X X 0.9871 0.9370 0.9262 0.8722 0.9751

The effect of each module is shown in Figure 9. After adding the spatial fusion module
to the base network, the boundary of the building is clearer, indicating that the spatial
fusion module aggregates the spatial information of low-level features to a great extent.
After adding the focus enhancement module on this basis, the details of the building are
more prominent, indicating that the focus enhancement module integrates the rich semantic
information in the high-level features. The completeness and accuracy of the building are
further improved when the three modules are integrated together.

(a) (b) (c) (d) (e) (f)

Figure 9. Visualization results of ablation experiments. (a) Original image; (b) the output of BaseNet
(ResNet-101); (c) the output of BaseNet + SFM; (d) the output of BaseNet + SFM + FEM; (e) the output
of CFENet (BaseNet + SFM + FEM + FDM); (f) ground truth. The experimental results in the box
show areas where the contrast effect is more obvious.
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4. Discussion
4.1. Comparison of the Efficiency of Different Methods

In addition to the five evaluation metrics mentioned in Section 3.1, we analyze the
efficiency of different methods from several aspects under the same batch size. The column
“Model Size” represents the total model size for each method. The larger the model, the
more memory it takes up during training and testing, and the smaller the model, the faster
the model runs. As shown in the column “Model Size” in Table 4, the model size of CFENet
is only larger than that of PSPNet. Figure 10 shows the model size and the experimental
results of different methods on the WHU Building Dataset. Although the model size of
CFENet is larger than that of PSPNet, our experimental results are the best among the five
methods, and the experimental results of PSPNet are the worst. This indicates that other
methods require more memory during training and testing. The reason why CFENet has
fewer total parameters is that we use a lot of dilated convolution layers in our network,
and use 1 × n convolution layers plus n × 1 convolution layers instead of n × n convolution
layers, and use 1 × 1 convolution layers for dimensionality reduction when appropriate.
The advantage is that the model size can be reduced, and the performance can also be
improved. Therefore, CFENet has a relatively small model to ensure good results.

Figure 10. Comparison of experimental results and model sizes of different methods. Line graphs
with different colors represent the results of different evaluation metrics. The histogram represents
the model sizes of different methods.

Table 4. Comparison of the efficiency of different methods. Different methods are trained on the
WHU Building Dataset for 200 epochs, and the batch size is set to 8. The column “Model Size”
represents the total model size of each method. The column “Time” represents the time required to
train an epoch.

Method Batch Size Model Size
(million) Time (min/epoch)

U-Net (ResNet-101) 8 226 20.050
Deeplabv3+ (ResNet-101) 8 222 10.417

PSPNet (ResNet-101) 8 128 20.383
HRNet 8 252 20.450

CFENet (ResNet-101) 8 171 13.250

The column “Time” of Table 4 represents the time required to train an epoch. CFENet
takes 13.250 min to train an epoch, which is only slower than Deeplabv3+, and much lower
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than U-Net, Deeplabv3+, and PSPNet. It is worth mentioning that although the model of
PSPNet is smaller than CFENet, PSPNet takes 20.383 min to train an epoch, which is much
slower than our method.

4.2. Heatmaps for Validating the Effectiveness of CFENet’s Modules

To further validate the effectiveness of our proposed modules, we perform a heatmap
analysis of the features on the test images. The heatmap visualization of the features is
shown in Figure 11. For the low-level features Feature 1 and Feature 2 extracted by ResNet-
101, their spatial information is more abundant and leads to information redundancy
because they are applied with fewer convolution layers. Therefore, many background
pixels in the heatmap appear as highlighted cases. These highlighted background pixels
are significantly improved after being processed by the spatial fusion module. The high-
level features Feature 3 and Feature 4 extracted by ResNet-101 have more abstract feature
information and rich semantic information (categories, attributes, etc.) due to the large
number of convolutions. It can be observed from Figure 11 that the features processed by
the focus enhancement module are significantly more similar to the ground truth, which
proves the effectiveness of the focus enhancement module. The enhanced low-level and
high-level features are fed into the feature decoder module for fusion and decoding. The
output of the feature decoder module is very close to the ground truth.

Figure 11. Heatmaps of CFENet’s feature maps. SFM Output represents the feature maps output by
the spatial fusion module. FEM Output represents the feature maps output by the focus enhancement
module. FDM Output represents the feature maps output by the feature decoder module.

5. Conclusions

This paper proposes an end-to-end neural network (CFENet) that can effectively
enhance low-level and high-level features and fuse them to obtain strong feature represen-
tations for building extraction tasks. Specifically, we introduce the spatial fusion and focus
enhancement modules to efficiently enhance the low-level features and high-level features
extracted by ResNet-101, respectively. Then the feature decoder module further fuses and
enhances the features generated by the spatial fusion module and the focus enhancement
module to obtain the final probability map. CFENet achieves superior performance over
other methods we have compared on the WHU Building Dataset and the Massachusetts
Building Dataset, and significantly improves the extraction accuracy while controlling the
computational cost. Moreover, ablation experiments show that our proposed three modules
can improve the accuracy of building extraction from remote sensing images.

In future work, our method could be further explored and improved in the following
aspects. The generalization ability of each module of CFENet could be further improved.
The structure of the loss function could be modified to improve the ability to discriminate
difficult samples. The remote sensing images could be preprocessed before being input
into our network to further improve the performance of CFENet. Meanwhile, our method



Remote Sens. 2022, 14, 2276 17 of 19

would be explored in more application areas, such as side scan sonar remote sensing
images, etc.
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