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Abstract: In recent years, hyperspectral image (HSI) classification has become a hot research di-
rection in remote sensing image processing. Benefiting from the development of deep learning,
convolutional neural networks (CNNs) have shown extraordinary achievements in HSI classification.
Numerous methods combining CNNs and attention mechanisms (AMs) have been proposed for
HSI classification. However, to fully mine the features of HSI, some of the previous methods apply
dense connections to enhance the feature transfer between each convolution layer. Although dense
connections allow these methods to fully extract features in a few training samples, it decreases the
model efficiency and increases the computational cost. Furthermore, to balance model performance
against complexity, the AMs in these methods compress a large number of channels or spatial res-
olutions during the training process, which results in a large amount of useful information being
discarded. To tackle these issues, in this article, a novel one-shot dense network with polarized
attention, namely, OSDN, was proposed for HSI classification. More precisely, since HSI contains rich
spectral and spatial information, the OSDN has two independent branches to extract spectral and
spatial features, respectively. Similarly, the polarized AMs contain two components: channel-only
AMs and spatial-only AMs. Both polarized AMs can use a specially designed filtering method to
reduce the complexity of the model while maintaining high internal resolution in both the channel
and spatial dimensions. To verify the effectiveness and lightness of OSDN, extensive experiments
were carried out on five benchmark HSI datasets, namely, Pavia University (PU), Kennedy Space
Center (KSC), Botswana (BS), Houston 2013 (HS), and Salinas Valley (SV). Experimental results
consistently showed that the OSDN can greatly reduce computational cost and parameters while
maintaining high accuracy in a few training samples.

Keywords: hyperspectral image classification; convolutional neural network; one-shot dense networks;
polarized attention mechanisms

1. Introduction

Benefiting from the increased spectral resolution of remote sensing sensors, the hy-
perspectral imaging technique shows great potential for obtaining high-quality land-cover
information. Hyperspectral image (HSI) contains much spectral and spatial information,
and each pixel contains hundreds of continuous and narrow spectral bands ranging from
visible to near-infrared. Therefore, it has been widely used in many fields, such as urban
planning [1], precision agriculture [2], and mineral exploration [3]. Among these applica-
tions, HSI classification is an important technical tool that aims to assign a unique class
to each pixel [4]. However, due to the insufficient labeled samples and much redundant
information, HSI classification remains a challenging task [5].

In the last decade, various methods have been proposed for HSI classification. These
classification methods can be divided into two main categories: traditional machine-
learning-based (ML-based) and modern deep-learning-based (DL-based) methods [6].
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Generally, in ML-based methods, researchers first perform feature extraction on the raw HSI
and then use classifiers to classify the extracted features. According to the types of features,
they can be further divided into the spectral-based method and the spatial–spectral-based
method. Commonly, the spectral-based method directly classifies the spectral vector of
each pixel, such as random forest [7], k-nearest neighbors [8], and support vector machine
(SVM) [9]. Moreover, many methods focus on reducing redundant spectral dimensions,
which aim to map the high-dimensional spectral vector into a low-dimensional space, such
as principal component analysis (PCA) [10], linear discriminant analysis [11], and indepen-
dent component analysis [12]. However, it is difficult to identify the land-cover types using
spectral features alone. The classification results are often filled with much salt-and-pepper
noise. Alternatively, many researchers have discovered that spatial features can provide
additional useful information for classification tasks. On the basis of this consideration,
researchers have proposed a series of spatial–spectral-based methods for HSI classification,
such as Gabor wavelet transform [13], local binary patterns [14], and morphological pro-
files [15]. Although the above methods can improve the classification accuracy, the feature
extraction process relies on a priori knowledge and appropriate parameter settings. These
limitations may affect the robustness and discrimination of the extracted features, making
it difficult to achieve satisfactory results in complex scenarios [16].

In recent years, with the continuous improvement of computing power, the develop-
ment of deep learning techniques has been greatly promoted. Deep neural network models
can automatically extract highly robust and discriminative features from the raw data.
They have made significant breakthroughs in many computer vision tasks, including image
classification [17], semantic segmentation [18], and remote sensing image processing [19].
Naturally, in the field of HSI classification, research methods are gradually converging
to state-of-art deep learning techniques. Currently, many effective classification models
based on deep learning methods have been proposed. Chen et al. [20] proposed a stacked
autoencoder deep neural network for spatial–spectral classification. It is the first applica-
tion of DL-based methods to HSI classification. After that, many DL-based classification
methods were proposed, and especially convolutional neural networks have attracted
much attention.

Convolutional neural network (CNN) with multiple hidden layers has a powerful
feature learning capability. It can provide more discriminative features with fine quality
for HSI classification. Hu et al. [21] first used a one-dimensional (1-D) CNN to extract
deep spectral features from each pixel for HSI classification. In addition, Yu et al. [22]
proposed an improved 1-D CNN framework, which embeds pre-extracted hashing features
in the network. To fully utilize the spatial context information, some two-dimensional
(2-D) CNN has been applied to HSI classification and achieved desirable performance.
Chen et al. [23] extracted the first principal component from the HSI data by PCA along
the spectral dimension and then fed it into a 2-D CNN model to extract the spatial depth
features. Yu et al. [24] applied a multiple 2-D CNN layer with a 1 × 1 convolutional kernel
to extract deep spatial features for HSI classification. However, the high spectral dimension
in HSI may increase the number of learnable parameters of the 2-D CNN model, and
the correlation of local spectra may be neglected. Compared with the 2-D CNN model,
the three-dimensional (3-D) CNN model can simultaneously extract joint spatial–spectral
features. Mei et al. [25] proposed an unsupervised 3-D convolutional autoencoder to extract
the joint spatial-spectral feature. Roy et al. [26] proposed a hybrid 3-D and 2-D CNN
model for HSI classification (HYNN). This model first uses 3-D CNN to extract shallow
joint spatial-spectral features and then uses 2-D CNN to extract more abstract spatial
texture features. Moreover, to reduce the computational cost of 3-D CNN, Zhang et al. [27]
proposed a 3-D depth-wise separable CNN for HSI classification. Recently, inspired by
the residual network [28], Zhong et al. [29] proposed a spectral–spatial residual network
(SSRN), which uses spectral and spatial 3-D residual blocks to learn deep-level features
of HSI. Subsequently, inspired by SSRN and DenseNet [30], Wang et al. [31] proposed
an end-to-end fast densely connected spectral-spatial classification framework (FDSS),
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which can more effectively reuse features in a few training samples. Although these CNN-
based classification models can extract rich spatial and spectral features of HSI, since the
convolution kernel is localized, it needs to expand the field of perception by stacking
convolution layers, which may lead to a large number of useless features propagated to the
deeper convolutional layers. Those useless features will affect the learning efficiency of
the model and eventually lead to a decrease in classification accuracy. Thus, finding and
focusing on the discriminative features of HSI is an important problem.

Inspired by the human visual system, many researchers have introduced the attention
mechanism to computer vision tasks, such as object detection [32], image caption [33], and
image enhancement [34]. Since the attention mechanism can pay attention to valuable
features or regions in the feature map, some researchers have successfully introduced it to
HSI classification. Fang et al. [35] proposed a densely connected spectral-wise attention
mechanism network, in which the squeeze-and-excitation (SE) attention module [36] is
applied to recalibrate each spectral contribution. Later, many similar spectral attention
modules were introduced for HSI classification to highlight valuable spectral and suppress
unless ones. For example, Li et al. [37] proposed a spectral band attention module through
the adversarial learning method, in which the attention module can explore the contri-
bution of each band and avoid the spectral distortion. Roy et al. [38] proposed a fused
SE attention module, in which two different squeezing operations, global pooling and
max pooling, are used to generate the excitation weight. To make the network simultane-
ously boost and suppress features in both spectral and spatial dimensions, many networks
based on spectral–spatial attention modules have been proposed for HSI classification.
Inspired by SSRN and convolutional block attention module (CBAM) [39], Ma et al. [40]
proposed a double-branch multi-attention network (DBMA), in which the spectral and
spatial branches are equipped with spectral-wise attention and spatial-wise attention, re-
spectively. Subsequently, Li et al. [41] constructed a double-branch dual attention (DBDA)
network for HSI classification, in which the dual attention network (DANet) [42] is inserted
separately into two branches. Compared with CBAM, DANet can adaptively integrate
local features and global dependencies. In addition, to obtain the long-distance spatial
and spectral features, Shi et al. [43] proposed a 3-D coordination attention mechanism
network, and the 3-D attention module could be better adapted to the 3-D structure of the
HSI. Li et al. [44] proposed a spectral–spatial global context attention [45] network (SSGC)
with less time cost to capture more discriminative features. Moreover, in [46], Shi et al.
proposed a pyramidal convolution and iterative attention network (PCIA), in which each
branch can extract hierarchical features. Although the above three attention-based methods
can achieve good classification results, they compress a large spatial or spectral resolution
in obtaining the attention feature map. Meanwhile, the feature extraction process requires
a high computational cost due to their simple application dense connection modules.

To solve the above problems, inspired by the latest technology and predecessors, we
propose a one-shot dense network with polarized attention for HSI classification. Instead
of following the 3-D dense connection method used by predecessors to extract features
from HSI, we propose a one-shot dense connection block that maintains good classification
accuracy and consumes less computational cost. Meanwhile, we add residual connections
in this block, enhancing feature transfer and mitigating the gradient disappearance problem.
In addition, the latest proposed polarized attention mechanism (PAM) [47] is introduced
in the network to mine finer and higher quality features. Compared with other attention
mechanisms [36,39,42,45], it can maintain a relatively high resolution in spectral and spatial
dimensions and thus reduce the loss of features. Furthermore, the proposed network is
composed of two branches that can perform feature extraction in spectral and spatial realms,
respectively. The channel-only and spatial-only attention mechanisms are inserted into
each branch to recalibrate feature maps. After extracting the enhanced features from the
two branches, we fuse them with a concatenation operation to obtain the spectral–spatial
features. Finally, the fused features are fed into the fully connected layer to obtain the
classification results. The main contributions of this paper are summarized as follows:
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(1) We propose a novel spectral–spatial network based on one-shot dense block and
polarized attention for HSI classification. The proposed network has two independent
feature extraction branches: the spectral branch with channel-only polarized attention
applied to obtain spectral features, and the spatial branch with spatial-only polarized
attention used to capture spatial features.

(2) By one-shot dense block, the number of parameters and computational complex-
ity of the network are greatly reduced. Meanwhile, the residual connection is
added to the block, which can alleviate the performance saturation and gradient
disappearance problems.

(3) We apply both channel-only and spatial-only polarized attention in the proposed
network. The channel-only polarized attention emphasizes valuable channel fea-
tures and suppresses useless ones. The spatial-only attention is more focused on
areas with more discriminative features. In addition, the attention mechanism can
preserve more resolution in both channel and spatial dimensions and consume less
computational costs.

(4) Some advanced technologies, including cosine annealing learning rate, Mish acti-
vation function [48], Dropout, and early stopping, are employed in the proposed
network. For reproducibility, the code of the proposed network is available at
https://github.com/HaiZhu-Pan/OSDN (accessed on 5 May 2022).

To show the effectiveness of the proposed network, a large number of experiments
were carried out on five real-world HSI datasets, namely, PU, KSC, BS, HS, and SV. The
experimental results consistently demonstrate that the proposed network can achieve better
accuracy than several widely used ML- and DL-based methods in a few training samples
and computational resources.

The remainder of this article is structured as follows: Some close backgrounds are
reviewed in Section 2. In Section 3, our proposed network is presented with three parts in
detail. In Sections 4 and 5, comparative experiments and ablation analyses are performed
to demonstrate the effectiveness of the proposed network. Finally, Section 6 provides some
concluding remarks and suggestions for future work.

2. Background

In this section, we briefly introduce some important background techniques involved
in the proposed HSI classification model, including 3D convolutional operation, ResNet
and DenseNet, and attention mechanism.

2.1. 3-D Convolution Operation

Generally, convolutional operations are the core of CNNs. At present, there are three
types of convolution operations in the CNN-based HSI classification model, which are
1-D CNN, 2-D CNN, and 3-D CNN. There are some drawbacks of using 1-D CNN or 2-D
CNN, such as lack of spatial relationship features or very complex networks [26]. The main
reason is that HSI is a 3-D data cube enriched with a large amount of spatial and spectral
information. The 1-D CNN alone cannot extract good discriminative features from the
spatial dimension. Similarly, a deep 2-D CNN is more computationally complex and may
miss some spectral information between adjacent bands. This is our motivation for using
the 3-D convolution operation, which can make up for the shortcomings of the first two
convolution operations. The process of 3D convolution operation is shown in Figure 1.

As shown in Figure 1, the input data for the 3-D convolution operation is a 4-D
tensor hx ∈ hn × hn × sn × kn, where hn × hn × sn is the size of the input data,
and kn is the number of channels (feature maps). The 3-D convolution operation con-
tains kn+1 convolutional kernels of size αn+1 × αn+1 × dn+1, and the stride of subsam-
pling is (s, s, s1). The output size of the 3-D convolution operation is also a 4-D tensor
hx+1 ∈ hn+1 × hn+1 × sn+1 × kn+1. More specifically, the spatial size of the output data

https://github.com/HaiZhu-Pan/OSDN
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is hn+1 =
⌊
1 +

(
hn − αn+1)/s

⌋
, and the depth sn+1 =

⌊
1 +

(
sn − dn+1)/s1

⌋
. The 3-D

convolution operation is be defined as follows:

hx,y,z
l,i = M

(
∑
m

Hl−1

∑
h=0

Wl−1

∑
w=0

Dl−1

∑
d=0

kh,w,d
l,i,m × h(x+h),(y+w),(z+d)

(l−1),m + bl,i

)
(1)

where M is the Mish activation function. In addition, the height, the width, and the depth
of the convolution kernel are denoted by Hl , Wl , and Dl , respectively. Furthermore, kh,w,d

l,i,m
denotes the weight of the ith convolution kernel at position (h, w, d) on the mth feature
map in the lth convolution layer. Moreover, h(x+h),(y+w),(z+d)

(l−1),m denotes the neuron value at
position (x + h, y + w, z + d) on the mth feature map in the (l − 1)th layer.

Figure 1. Illustration of the 3-D convolution operation.

2.2. ResNet and DenseNet

Commonly, a trained deep neural network can extract features layer by layer to com-
plete the classification task. However, as the number of convolutional layers increases, two
main problems arise: gradient dispersion/explosion and network degradation. Numerous
studies have shown that ResNet [28] and DenseNet [30] can alleviate the above problems
and achieve feature reuse.

As illustrated in Figure 2, a shortcut connection is added to the base CNN structure in
the residual block. The shortcut connections, also known as identity mapping, enable input
features to be passed from a lower level to a higher level in a summative way. The output
features of the lth residual block are defined as follows:

xl = fl(xl−1) + xl−1 (2)

where fl(·) denotes hidden layers, including convolution, batch normalization (BN), and
Mish activation layers.

Figure 2. Illustration of the residual block in the ResNet.

To further promote the flow of features in the network, Huang et al. [30] proposed a
densely connected network, in which the shortcut connections are used to concatenate the
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input features and output features at each layer. This structure is shown in Figure 3. The
output features of the lth dense block are computed as follows:

xl = Dl [x0, x1, x2, . . . , xl−1, xl ] (3)

where Dl(·) includes BN, Mish activation function, and convolution operation. [·] is the
connected operation. In particular, DenseNet with layer l has l(l + 1)/2 connections, while
CNN with the same layer has only l connections.

Figure 3. Illustration of the dense block in the DenseNet.

2.3. Attention Mechanism

The attention mechanism is a common data processing method in deep learning. It
helps the model assign different weights to each part of the feature maps to extract more
critical and discriminative features, thereby enabling the model to make more accurate
judgments without imposing more overhead on the computation and storage of the model.
The existing attention mechanisms can be roughly divided into two types, i.e., soft attention
and hard attention. The former is more attention to the channel or spatial information of
the image, while the latter is more attention to the information of a certain position in the
image. Most importantly, the soft attention mechanism is differentiable, in which the weight
parameters can be updated by backpropagation during the training process. Therefore,
soft attention is widely used in the field of computer vision. For example, the SE attention
module [36] can recalibrate each channel’s contribution to the network. GCNet [45] not
only extracts global contextual information but is also lightweight like SENet. In addition,
CBAM [39] and DANet [42] can extract attention maps in both the channel and spatial
dimensions. However, these attention models have a low internal attention resolution,
which loses a great quantity of channels or spatial information. Moreover, these attention
models are computationally intensive when paying attention to the channel and spatial
dimensions. To alleviate these problems, the PAM [47] employs a distinctive filtering
method to reduce the complexity of the model while maintaining high internal attention
resolution in both the channel and spatial dimensions. The detailed implementation of the
channel-only PAM and spatial-only PAM is described in Sections 3.1 and 3.2

3. Methodology
3.1. Channel-Only Polarized Attention Mechanism

As shown in Figure 4, the channel-only PAM is constructed using the channel re-
lations of the feature map. We assume that the input feature maps Ac ∈ Rh × w × c are
independent, where h, w, and c denote height, width, and channel, respectively. First,
Ac is fed into a 2-D convolution layer with the kernel size of 1 × 1. Next, a new feature
map Bc ∈ Rh × w × c/2 is generated. After that, Bc is reshaped to Dc ∈ Rn × c/2, where
n = h × w. Simultaneously, Ac is also fed into a 2-D convolution layer with the kernel
size of 1 × 1. A new feature map Cc ∈ Rh × w × 1 is generated. Then, Cc is reshaped to
Ec ∈ R1 × 1 × n, and the SoftMax function is applied to enhance attention scope. Subse-
quently, the matrix multiplication operation is performed on matrices Dc and Ec, and the
generated feature map Fc ∈ R1 × 1 × c/2. After that, Fc is fed into a bottleneck feature
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transform layer, which consists of two 1 × 1 convolution layers, a layer normalization
operation, and a ReLU activation function to obtain the dependency of each channel and
raise the channel dimension from c/2 to c. Next, the Sigmoid function is used to keep the
channel weights Gc ∈ R1 × 1 × c between 0 and 1. Finally, a channel-wise multiplication
operation is performed between Hc and Ac to generate the final channel-only polarized
attention map Hc ∈ Rh × w × c. The overall channel-only PAM implementation process can
be defined as follows:

Gc = FSG[W3((ζ1(W1(Ac)) × FSM(ζ2(W2(Ac)))))] (4)

where W1, W2, and W3 are 1× 1 convolution layers; ζ1 and ζ2 are two tensor transformation
operations; FSG(·) is a Sigmoid activation function; and FSM(·) is a SoftMax activation
function. The internal channel resolution between W1|W2 and W3, is c/2. The final output
of the channel-only PAM is formulated as

Hc = Gc �c Ac ∈ Rh × w × c (5)

where �c is dot multiplication operation.

Figure 4. Details of the channel-only polarized attention mechanism in our network.

3.2. Spatial-Only Polarized Attention Mechanism

As is shown in Figure 5, the spatial-only PAM is constructed by the spatial contextual
position relationship of the feature map, given an input tensor As ∈ Rh × w × c. First, As
is fed into two 1 × 1 convolution layers to generate feature maps Bs ∈ Rh × w × c/2 and
Cs ∈ Rh × w × c/2, respectively. Next, Bs is reshaped to Ds ∈ Rc/2 × n, where n = h × w.
Second, the global average pooling operation is used in Cs to compress the global spatial
features into a feature vector Es ∈ R1 × 1 × c/2; meanwhile, since the spatial features of
Cs are compressed, we use the SoftMax function to perform feature enhancement on Es.
After that, a spatial-wise multiplication operation is conducted on attention maps Ds and
Es. The generated feature map Fc ∈ R1 × 1 × n. Through reshape and Sigmoid operations,
the spatial attention weight Gs ∈ Rh × w × 1 is generated. The overall spatial-only PAM
implementation process can be defined as follows:

Gs = FSG[ζ3(FSM(ζ1(FGP(W2(As)))) × ζ2(W1(As)))] (6)

where W1 and W2 are two standard 1 × 1 convolution layers, ζ1 and ζ2 are two tensor
transformation operations, FGP(·) is a global average pooling operation, FSM(·) is a SoftMax
active operation, and FSG(·) is a Sigmoid active operation. The final output of the spatial-
only PAM is formulated as

Hs = Gc �s As ∈ Rh × w × c (7)

where �c is dot multiplication operation.
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Figure 5. Details of the spatial-only polarized attention mechanism in our network.

3.3. One-Shot Dense Network with Polarized Attention

In this subsection, we describe in detail the proposed network, which consists of
spectral feature extraction, spatial feature extraction, and spectral–spatial feature fusion.
The structure of the proposed network is shown in Figure 6. In the following, we use the PU
dataset as an example to illustrate the three components of the proposed network in detail.

Figure 6. The structure of the proposed network.

3.3.1. Spectral and Spatial Feature Extraction of One-Shot Dense Block

As shown in Figure 6, this part contains two independent feature extraction processes,
including the spectral feature extraction process and the spatial feature extraction process.
In the process of feature extraction, inspired by ResNet and DenseNet, we propose a one-
shot dense block. Unlike the dense block, the feature maps produced by each convolution
(Conv) layer are concatenated only once, and each Conv layer has an equal number of
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input and output feature maps. Furthermore, we also insert the skip connection in the
one-shot dense block, which enables this block to extract deeper features of HSI. Instead
of an individual pixel vector, we first randomly select a 3-D patch cube 7 × 7 × 103
from the PU dataset as the network’s input. In this way, the network can consider both
spatial background information and spectral information around the central pixel of the
3-D patch cube during the classification process. Before passing through the spectral one-
shot dense block, we first use a 3-D Conv layer with BN and Mish to reduce the spectral
dimension of the input data. The kernel size is (1 × 1 × 7); the filters is 24; the stride is
(1, 1, 2); no padding operation. After that, the output size of the generated feature maps is
(7 × 7 × 49, 24). Next, they are fed into the spectral one-shot dense block, which consists
of a one-shot connected part and a residual connected part. The kernel size, filters, stride,
and padding of all 3-D Conv layers in the one-shot connected part is (1 × 1 × 7), 12,
(1, 1, 1), and (0, 0, 3), respectively. Then, we connect the generated feature maps through
the channel dimension, and thus the feature maps with the size of (7 × 7 × 49, 60) are
generated. Meanwhile, to implement the residual connected part, we use a 1 × 1 × 1 3-D
Conv layer to reduce the channel dimension from 60 to 24 and then add it to the last feature
maps of the one-shot connected part. Finally, after the last 3-D Conv layer with a kernel size
of (1 × 1 × 49), a (7 × 7 × 1, 24) feature map is generated.

Similar to the spectral feature extraction process, we only focus on the spatial features
of the input data in the spatial feature extraction process. The input data size of the spatial
one-shot dense block is (7 × 7 × 1, 24). All hyperparameters are the same as the spectral
one-shot dense block except that the kernel size of the spatial one-shot dense block is
(3 × 3 × 1). The detailed spectral and spatial feature extraction processes are listed in
Tables 1 and 2.

Table 1. Detailed steps of the spectral one-shot dense block.

Input Size Layer Operations Kernel Size Filters Output Size

(7 × 7 × 103, 1) BN-Mish-Conv3D (1 × 1 × 7) 24 (7 × 7 × 49, 24)
(7 × 7 × 49, 24) BN-Mish-Conv3D (1 × 1 × 7) 12 (7 × 7 × 49, 12)
(7 × 7 × 49, 12) BN-Mish-Conv3D (1 × 1 × 7) 12 (7 × 7 × 49, 12)
(7 × 7 × 49, 12) BN-Mish-Conv3D (1 × 1 × 7) 12 (7 × 7 × 49, 12)
(7 × 7 × 49, 12) BN-Mish-Conv3D (1 × 1 × 7) 12 (7 × 7 × 49, 12)
(7 × 7 × 49, 12) BN-Mish-Conv3D (1 × 1 × 7) 12 (7 × 7 × 49, 12)

(7 × 7 × 49, 12)/(7 × 7 × 49, 12)/(7 × 7 × 49, 12)
/(7 × 7 × 49, 12)/(7 × 7 × 49, 12) Concatenate / / (7 × 7 × 49, 60)

(7 × 7 × 49, 60) BN-Mish-Conv3D (1 × 1 × 1) 24 (7 × 7 × 49, 24)
(7 × 7 × 49, 24)/(7 × 7 × 49, 24) Element-wise Sum / / (7 × 7 × 49, 24)

(7 × 7 × 49, 24) BN-Mish-Conv3D (1 × 1 × 49) 24 (7 × 7 × 1, 24)

Table 2. Detailed steps of the spatial one-shot dense block.

Input Size Layer Operations Kernel Size Filters Output Size

(7 × 7 × 103, 1) BN-Mish-Conv3D (1 × 1 × 103) 24 (7 × 7 × 1, 24)
(7 × 7 × 1, 24) BN-Mish-Conv3D (3 × 3 × 1) 12 (7 × 7 × 1, 12)
(7 × 7 × 1, 12) BN-Mish-Conv3D (3 × 3 × 1) 12 (7 × 7 × 1, 12)
(7 × 7 × 1, 12) BN-Mish-Conv3D (3 × 3 × 1) 12 (3 × 3 × 1, 12)
(7 × 7 × 1, 12) BN-Mish-Conv3D (3 × 3 × 1) 12 (3 × 3 × 1, 12)
(7 × 7 × 1, 12) BN-Mish-Conv3D (3 × 3 × 1) 12 (3 × 3 × 1, 12)

(7 × 7 × 1, 12)/(7 × 7 × 1, 12)/(7 × 7 × 1, 12)
/(7 × 7 × 1, 12)/(7 × 7 × 1, 12) Concatenate / / (7 × 7 × 1, 60)

(7 × 7 × 1, 60) BN-Mish-Conv3D (1 × 1 × 1) 24 (7 × 7 × 1, 24)
(7 × 7 × 1, 24)/(7 × 7 × 1, 24) Element-wise Sum / / (7 × 7 × 1, 24)
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3.3.2. Spectral and Spatial Feature Enhancement of Polarized Attention Mechanism

After the spectral and spatial feature extraction process, the feature maps are enriched
with a large amount of spectral and spatial information. However, different channels
and positions in these feature maps may make different contributions to the classification
results. Therefore, as shown in Figure 6, to enhance valuable features and suppress non-
valuable features, the feature maps are fed into the channel-only polarized attention (COPA)
block and spatial-only polarized attention (SOPA) block. The input size of both the COPA
block and the SOPA block is (7 × 7 × 24). A detailed description of these two attention
mechanisms is given in Sections 3.1 and 3.2. In addition, the detailed implementation of
the feature enhancement process is listed in Tables 3 and 4.

Table 3. Detailed steps of the channel-only polarized attention block.

Input Size Layer Operations Kernel Size Filters Output Size

(7 × 7 × 24) Conv2D (1 × 1) 12 (7 × 7 × 12)
(7 × 7 × 12) Reshape / / (49 × 12)
(7 × 7 × 24) Conv2D (1 × 1) 1 (7 × 7 × 1)
(7 × 7 × 1) Reshape / / (1 × 1 × 49)
(1 × 1 × 49) SoftMax / / (1 × 1 × 49)

(1 × 1 × 49)/(49 × 12) Matrix Multiplication / / (1 × 1 × 12)
(1 × 1 × 12) Conv2D (1 × 1) 12/r (1 × 1× 12/r)
(1 × 1 × 12/r) LayerNorm and ReLu / / (1 × 1× 12/r)
(1 × 1 × 12/r) Conv2D (1 × 1) 24 (1 × 1 × 24)
(1 × 1 × 24) Sigmoid / / (1 × 1 × 24)

(1 × 1× 24)/(7 × 7× 24) Dot Multiplication / / (7 × 7 × 24)

Table 4. Detailed steps of the spatial-only polarized attention block.

Input Size Layer Operations Kernel Size Filters Output Size

(7 × 7 × 24) Conv2D (1 × 1) 12 (7 × 7 × 12)
(7 × 7 × 12) Reshape / / (12 × 49)
(7 × 7 × 24) Conv2D (1 × 1) 12 (7 × 7 × 12)
(7 × 7 × 12) AvgPooling / / (1 × 1 × 12)
(1 × 1 × 12) SoftMax / / (1 × 1 × 12)

(1 × 1 × 12)/(12 × 49) Matrix Multiplication / / (1 × 1 × 49)
(1 × 1 × 49) Reshape / / (7 × 7 × 1)
(7 × 7 × 1) Sigmoid / / (7 × 7 × 1)

(7 × 7 × 1)/(7 × 7 × 24) Dot Multiplication / / (7 × 7 × 24)

3.3.3. Spectral and Spatial Feature Fusion and Classification

After the spectral and spatial feature enhancement process, the resulting feature maps
are separately fed into an adaptive average pooling (AdaptiveAvgPool) layer with BN and
Mish. Compared to the fully connected layer, the AdaptiveAvgPool layer can reduce the
computation cost. The output size of this layer is (1 × 24). Finally, we fuse the two feature
maps along the channel dimension and then feed the fused feature maps into the linear
layer to obtain the classification results. Since we use the cross-entropy loss in PyTorch as
the loss function of the network, which automatically contains the probability distribution
of the labels, we no longer use the SoftMax layer to obtain the final classification results.
The detailed implementation of the feature fusion and classification process is listed in
Table 5.

Table 5. Detailed steps of the feature fusion and classification process.

Input Size Layer Operations Output Size

(7 × 7 × 24) AdaptiveAvgPool-BN-Mish and Squeeze (1 × 24)
(7 × 7 × 24) AdaptiveAvgPool-BN-Mish and Squeeze (1 × 24)
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Table 5. Cont.

Input Size Layer Operations Output Size

(1 × 24)/(1 × 24) Concatenate (1 × 48)
(1 × 48) Dropout-Linear (1 × 9)

4. Experiment
4.1. Hyperspectral Dataset Description

In this paper, we employed five well-known HSI datasets, namely, PU, KSC, BS, HS,
and SV, to validate the generality and effectiveness of our proposed method. A detailed
description of the above five datasets is presented as follows:

PU: The PU dataset was photographed by the Reflective Optics System Imaging Spec-
trometer (ROSIS) sensor over the University of Pavia. Its spatial dimensions and geometric
resolutions are 610 × 340 and 1.3 m, respectively. Every pixel includes 115 spectral bands
ranging from 430 nm to 860 nm. After dropping 12 noise-contaminated spectral bands, the
number of spectral bands used for the experiment was 103. The ground truth consists of
nine urban land-cover types with 42,776 labeled samples.

KSC: The KSC dataset was taken by the Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) sensor over the Kennedy Space Center, Florida, on 23 March 1996. The
spatial dimensions and resolutions are 512 × 614 and 18 m, respectively. Each pixel in-
cludes 176 spectral bands ranging from 400 to 2500 nm. In addition, this dataset includes
13 land-cover types with 5211 labeled pixels.

BS: The BS dataset was acquired by the NASA EO-1 satellite over the Okavango Delta,
Botswana, on 31 May 2001. The spatial size of this dataset is 1476 × 256, and the spatial
resolution is 30 m. Furthermore, the dataset contains 145 spectral bands ranging from
400 to 2500 nm. The dataset contains 3248 labeled pixels, which are divided into 14 classes.

HS: The HS dataset was captured over the University of Houston campus and the
neighboring urban area on 23 June 2012, through the NSF-funded Center for Airborne Laser
Mapping (NCALM). Its height and width are 349 and 1905, respectively, and its spatial
resolution is up to 2.5 m. This dataset consists of 144 spectral bands in the 380 to 1050 nm
region. This dataset has 664,845 pixels with 15,029 labeled samples, divided into 15 land-
cover types.

SV: The SV dataset was also gathered by the AVIRIS sensor, but it was collected
in the Salinas Valley region of California. Its spatial dimensions and resolutions are
512 × 217 and 3.7 m, respectively. The raw SV dataset has 224 spectral bands ranging from
400 to 2500 nm. Twenty water absorption bands are abandoned. Therefore, this article uses
204 bands for the experimental dataset. This dataset contains 16 land-cover types with
54,129 labeled samples.

4.2. Experimental Evaluation Indicators

In this work, three evaluation indicators, namely, overall accuracy (OA), average
accuracy (AA), and Kappa coefficient (Kappa), are used to assess the classification perfor-
mance of the proposed method [49]. OA refers to the percentage of correctly classified
labeled samples to the total labeled samples. AA is the average accuracy for each class,
which assigns the same importance to each category. Kappa is the consistency between
classification results and ground truth. It is calculated from −1 to 1, but usually, it falls
between 0 and 1. All in all, the closer the above three indicators are to 1, the better the
classification model will be.

To explain the above three evaluation indicators more intuitively, we first define the
confusion matrix. In the confusion matrix, each column represents the predicted label, and
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each row represents the actual label. The composition of the confusion matrix (An × n) is
defined as follows:

A =

 a11 · · · a1n
...

. . .
...

an1 · · · ann

 (8)

where element aij indicates the number of samples in class i classified as class j, and
n
∑
i

aij

and
n
∑
j

aij indicate the sum of samples in each row and column, respectively. Then, the

values of OA, AA, and Kappa can be defined as follows:

OA =
∑n

i=1 aii

∑n
i ∑n

j aij
(9)

AA =
1
n
×

n

∑
i=1

aii
aij

(10)

Kappa =
OA−∑n

i=1

(
∑n

i aij × ∑n
j aij

)
1−∑n

i=1

(
∑n

i aij × ∑n
j aij

) (11)

4.3. Experimental Setting

The experiments were implemented on a deep learning workstation with a 2× Intel
Xeon E5-2680 v4 processor, 35 M of L3 cache, a clock speed of 2.4 GHz, and 14 physical
cores/28 way multitask processing. Furthermore, it is equipped with 128 GB of DDR4 RAM
and 8× NVIDIA GeForce RTX 2080Ti super graphical processing unit (GPU) with 11 GB of
memory. The software environment is CUDA v11.2, PyTorch 1.1.0, and Python 3.7.

To validate the effectiveness of our proposed method, we selected seven representative
methods for comparison: one representative ML-based method and seven state-of-the-art
DL-based methods. All comparison methods are briefly described as follows:

(1) SVM: The SVM with radial basis function (RBF) kernel is employed as a representative
of the traditional method for HSI classification. It is implemented by scikit-learn [50].
Each labeled sample in the HSI has a continuous spectral vector. They are directly fed
into the SVM without feature extraction and dimensionality reduction. The penalty
parameter C and the RBF kernel width σ are selected by Grid SearchCV, both in the
range of (10−2, 102).

(2) HYSN [26]: The HYSN model has three 3-D convolution layers, one 2-D convolution
layer, and two fully connected layers. The sizes of the convolution kernels of the 3-D
convolution layers are 3 × 3 × 7, 3 × 3 × 5, and 3 × 3 × 3, respectively. The size of
the convolution kernel of the 2-D convolution layer is 3 × 3.

(3) SSRN [29]: The SSRN model consists of two residual convolutional blocks with
convolution kernel sizes of 1 × 1 × 7 and 3 × 3 × 1, respectively. They are connected
sequentially to extract deep-level spectral and spatial features, in which BN and ReLu
are added after each convolutional layer.

(4) FDSS [31]: The network structure of FDSS is connected by three convolutional parts,
including a densely connected spectral feature extraction part, a reducing dimension
part, and a densely connected spatial feature extraction part. The shapes of the three
partial convolution kernels are 1 × 1 × 7, 1 × 1 × b (b represents the spectral depth of
the generated feature map), and 3 × 3 × 1, respectively. Moreover, BN and ReLu are
added before each convolutional layer.

(5) DBMA [40]: The DBMA model is designed with a two-branch network structure.
Each branch has a dense block and an attention block. Its dense block is the same as
in FDSS. Moreover, the attention block is inspired by CBAM [39].
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(6) DBDA [41]: The DBDA model uses DANet [42] as the attention mechanism, and the
rest of the network structures are the same as DBMA. In particular, it adopts the Mish
as the activation function.

(7) PCIA [46]: The PCIA model uses an iterative approach to construct an attention
mechanism. This network structure also consists of two branches, but each branch
uses a pyramid convolution module to perform feature extraction.

(8) SSGC [44]: The GCNet [45] attention mechanism is introduced to the SSGC. The rest
of the network architecture is the same as DBMA.

To ensure the impartiality of the comparison experiments, we took the same hyperpa-
rameters on these methods. For the training set of the proposed method, we applied the
Adam optimizer [51] to update the parameters for 100 training epochs, where the initial
learning rate is 0.0005 for all datasets. The learning rate is dynamically adjusted every
25 epochs by the cosine annealing [52]. Furthermore, if the loss on the validation set does
not change within 10 epochs, the network will move to the test session. To balance efficiency
and effectiveness, the spatial size of the HSI patch cube was set to 7 × 7, and the batch size
was set to 32. Tables 6–10 provide the detailed distribution of the training, validation, and
testing samples of PU, KSC, BS, HS, and SA datasets. To seek reproducibility, the proposed
network code is available publicly at https://github.com/HaiZhu-Pan/OSDN (accessed
on 5 May 2022).

Table 6. The number of total samples, training samples, validation samples, and testing samples for
each category of the PU dataset.

Number Land Cover Type Total Train Val. Test

C1 Asphalt 6631 66 66 6499
C2 Meadows 18,649 186 186 18,277
C3 Gravel 2099 21 21 2057
C4 Trees 3064 31 31 3002
C5 Painted metal sheets 1345 13 13 1319
C6 Bare soil 5029 50 50 4929
C7 Bitumen 1330 13 13 1304
C8 Self-blocking bricks 3682 37 37 3608
C9 Shadows 947 9 9 929

Total 42,776 428 428 41,920

Table 7. The number of total samples, training samples, validation samples, and testing samples for
each category of the KSC dataset.

Number Land Cover Type Total Train Val. Test

C1 Scrub 761 15 15 731
C2 Willow swamp 243 5 5 233
C3 CP hammock 256 5 5 246
C4 Slash pine 252 5 5 242
C5 Oak/broadleaf 161 3 3 155
C6 Hardwood 229 5 5 219
C7 Swamp 105 2 2 101
C8 Graminoid marsh 431 9 9 413
C9 Spartina marsh 520 10 10 500

C10 Cattail marsh 404 8 8 388
C11 Salt marsh 419 8 8 403
C12 Mud flats 503 10 10 483
C13 Water 927 19 19 889

Total 5211 104 104 5003

https://github.com/HaiZhu-Pan/OSDN
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Table 8. The number of total samples, training samples, validation samples, and testing samples for
each category of the BS dataset.

Number Land Cover Type Total Train Val. Test

C1 Water 270 5 5 260
C2 Hippo grass 101 2 2 97
C3 Floodplain grasses1 251 5 5 241
C4 Floodplain grasses2 215 4 4 207
C5 Reeds1 269 5 5 259
C6 Riparian 269 5 5 259
C7 Fierscar2 259 5 5 249
C8 Island interior 203 4 4 195
C9 Acacia woodlands 314 6 6 302

C10 Acacia shrublands 248 5 5 238
C11 Acacia grasslands 305 6 6 293
C12 Short mopane 181 4 4 173
C13 Mixed mopane 268 5 5 258
C14 Exposed soils 95 2 2 91

Total 3248 65 65 3118

Table 9. The number of total samples, training samples, validation samples, and testing samples for
each category of the HS dataset.

Number Land Cover Type Total Train Val. Test

C1 Healthy grass 1251 25 25 1201
C2 Stressed grass 1254 25 25 1204
C3 Synthetic grass 697 14 14 669
C4 Trees 1244 25 25 1194
C5 Soil 1242 25 25 1192
C6 Water 325 7 7 311
C7 Residential 1268 25 25 1218
C8 Commercial 1244 25 25 1194
C9 Road 1252 25 25 1202

C10 Highway 1227 25 25 1177
C11 Railway 1235 25 25 1185
C12 Parking lot 1 1233 25 25 1183
C13 Parking lot 2 469 9 9 451
C14 Tennis court 428 9 9 410
C15 Running track 660 13 13 634

Total 15,029 301 301 14,427

Table 10. The number of total samples, training samples, validation samples, and testing samples for
each category of the SV dataset.

Number Land Cover Type Total Train Val. Test

C1 Brocoli-green-weeds_1 2009 40 40 1929
C2 Brocoli-green-weeds_2 3726 75 75 3576
C3 Fallow 1976 40 40 1896
C4 Fallow-rough-plow 1394 28 28 1338
C5 Fallow-smooth 2678 54 54 2570
C6 Stubble 3959 79 79 3801
C7 Celery 3597 72 72 3435
C8 Grapes-untrained 11,271 225 225 10,821
C9 Soil-vinyard-develop 6203 124 124 5955

C10 Corn-senesced-green-weeds 3278 66 66 3146
C11 Lettuce-romaine-4wk 1068 21 21 1026
C12 Lettuce-romaine-5wk 1927 39 39 1849
C13 Lettuce-romaine-6wk 916 18 18 880



Remote Sens. 2022, 14, 2265 15 of 27

Table 10. Cont.

Number Land Cover Type Total Train Val. Test

C14 Lettuce-romaine-7wk 1070 21 21 1028
C15 Vinyard-untrained 7268 145 145 6978
C16 Vinyard-vertical-trellis 1807 36 36 1735

Total 54,129 1083 1083 51,963

4.4. Experimental Results

Tables 11–15 report the classification accuracy of each category, OA, AA, and Kappa,
on five datasets. It is clear that the proposed OSDN produces the best OA, AA, and
Kappa and provides a significant improvement over the other methods on all datasets. For
example, when 1% of the samples are randomly chosen for training on the PU dataset
(Table 11), the improvement in OA compared to SVM, HYSN, SSRN, FDSS, DBMA, DBDA,
PCIA, and SSGC methods are 9.96%, 5.87%, 3.60%, 1.72%, 2.16%, 2.06%, 2.99%, and 1.45%,
respectively. Specifically, since SVM only uses spectral information to perform classification,
its accuracy on all datasets is much lower than other methods. Conversely, the other eight
DL-based methods (i.e., HYSN, SSRN, FDSS, DBMA, DBDA, SSGC, PCIA, and OSDN)
all achieved good classification results on five datasets because they could automatically
extract deep, high-level, and discriminative spatial–spectral information from the 3-D
patch cube. Furthermore, compared to SSRN and HYSN, the OA of FDSS was improved
approximately by 1–8% on all datasets, which indicates that the densely connected structure
can extract features more adequately in a few training samples. In addition, the network
structures of DBMA, DBDA, PCIA, and SSGC are very similar. Their classification models
are based on two main ideas: dual-branch 3-D dense convolution block and dual-branch
attention mechanism. Among these dual-branch attention models, SSGC achieved the
best classification results in most datasets due to its ability to focus on global contextual
information. In addition, the classification accuracy obtained by OSDN was higher than
that of FDSS and SSCG because the PAM module in OSDN not only retained a large amount
of spectral and spatial resolution but also dynamically enhanced the feature maps. Finally,
compared with the best comparison methods in the five datasets, the OA of OSDN was
improved by 1.45%, 1.86%, 1.46%, 1.62%, and 0.82%, respectively. At the same time, AA
and Kappa improved to different degrees on the five datasets.

Figures 7–11 show the ground truth, false-color image, and classification maps of all
methods on the five datasets. Generally, the outline of each category was smoother and
clearer in the proposed OSDN classification map on all datasets. Because the SVM method
cannot effectively extract the spatial feature, its classification map had a large amount of
salt-and-pepper noise on the five datasets (Figures 7b, 8b, 9b, 10b and 11b). In addition,
benefiting from the PAM module, our proposed OSDN was found to be significantly better
than other methods in predicting those unlabeled categories. Taking the PU dataset as
an example, looking carefully at Figure 7k, we can see that there may have been several
trees (C4) in the lower side area of the bare soil (C6). However, no method can predict
as many trees in this area as possible. On the contrary, it is clear from Figure 7j that our
proposed OSDN can predict eight trees in this area. Similarly, in the left area of these
eight trees, the proposed OSDN was able to visualize the area more completely than other
methods. All observations validate that our proposed OSDN can accurately predict labeled
categories and reasonably predict unlabeled categories on all datasets. Moreover, the above
results further verify that the proposed one-shot dense connection can also extract sufficient
features in a few training samples, while the PAM module can focus on extracting finer
features to perform classification.
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Table 11. Classification results of the PU dataset based on 1% training samples.

Number Color SVM HYSN SSRN FDSS DBMA DBDA PCIA SSGC OSDN
C1 87.65 97.57 97.03 99.61 97.35 95.13 93.55 98.30 98.65
C2 91.78 95.66 98.21 97.85 97.90 98.83 98.56 98.68 99.63
C3 76.13 94.02 71.88 93.58 93.78 90.38 78.62 98.99 98.07
C4 93.81 93.27 98.56 100.0 98.81 97.89 99.64 99.26 99.36
C5 98.14 98.94 99.70 99.92 100.0 99.55 99.92 99.92 99.47
C6 85.81 84.69 96.28 99.49 99.10 95.21 98.12 99.46 99.98
C7 68.39 89.65 99.91 81.94 93.89 100.0 99.79 100.0 100.0
C8 84.88 81.57 82.71 91.33 86.12 91.52 86.73 84.48 92.86
C9 99.89 99.56 99.44 99.04 99.01 99.78 97.37 97.27 100.0

OA (%) 88.87 92.96 95.23 97.11 96.67 96.77 95.84 97.38 98.83
AA (%) 87.39 92.77 93.75 95.86 96.22 96.48 94.70 97.37 98.67

Kappa × 100 85.11 90.69 93.67 96.16 95.57 95.71 94.47 96.52 98.44

Table 12. Classification results of the KSC dataset based on 2% training samples.

Number Color SVM HYSN SSRN FDSS DBMA DBDA PCIA SSGC OSDN
C1 86.49 99.86 87.58 88.83 90.72 97.22 96.58 87.68 97.96
C2 76.43 86.76 67.41 66.57 88.18 84.55 91.16 93.42 98.60
C3 64.14 86.18 53.19 56.54 80.88 77.32 91.62 80.48 82.09
C4 45.75 55.00 61.54 83.78 61.47 54.86 64.57 71.90 92.35
C5 31.76 26.80 100.0 97.96 69.23 33.33 82.85 70.07 95.60
C6 50.58 96.70 100.0 75.81 72.86 95.81 81.06 94.17 80.78
C7 48.20 67.61 100.0 100.0 84.40 76.80 94.35 83.67 96.12
C8 68.95 83.82 90.89 97.61 86.22 89.74 94.38 99.00 98.06
C9 72.31 82.33 98.24 99.79 86.89 98.81 97.59 100.0 100.0
C10 94.00 98.54 64.09 98.97 100.0 100.0 99.94 100.0 99.47
C11 86.35 87.82 98.53 99.75 100.0 100.0 100.0 99.48 100.0
C12 81.41 81.51 91.08 98.72 98.91 94.97 99.29 99.35 92.26
C13 100.0 97.41 100.0 98.54 100.0 100.0 100.0 100.0 99.78

OA (%) 77.25 82.72 84.99 90.24 90.62 91.85 94.23 93.81 96.09
AA (%) 69.72 80.80 85.58 89.45 86.14 84.88 91.80 90.70 94.85

Kappa × 100 74.68 80.79 83.22 89.10 89.53 90.92 93.57 93.10 95.64

Figure 7. Full-factor classification maps for the PU dataset. (a) Ground-truth. (b) SVM. (c) HYSN.
(d) SSRN. (e) FDSS. (f) DBMA. (g) DBDA. (h) PCIA. (i) SSGC. (j) OSDN. (k) False-color image.
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Table 13. Classification results of the BS dataset based on 2% training samples.

Number Color SVM HYSN SSRN FDSS DBMA DBDA PCIA SSGC OSDN
C1 100.0 78.71 98.86 96.98 97.01 95.57 98.31 98.48 100.0
C2 86.76 97.73 100.0 100.0 100.0 98.00 86.27 100.0 100.0
C3 86.70 88.03 100.0 87.78 100.0 99.58 88.70 100.0 99.17
C4 94.19 87.06 90.95 99.03 95.41 91.96 97.90 91.59 91.86
C5 77.05 90.37 90.28 77.41 87.31 91.96 97.69 92.06 86.75
C6 59.86 57.51 80.08 96.61 83.69 96.07 97.04 91.27 89.71
C7 100.0 88.46 96.48 99.2 100.0 100.0 100.0 100.0 100.0
C8 86.49 91.46 96.26 89.23 98.00 98.43 96.11 97.91 100.0
C9 64.10 69.02 94.89 81.18 96.69 96.74 81.57 90.96 98.67
C10 85.05 92.06 81.60 100.0 99.58 85.14 72.83 91.44 99.57
C11 44.00 89.51 93.31 91.3 100.0 100.0 100.0 94.83 100.0
C12 91.35 90.12 98.05 99.42 100.0 84.91 100.0 100.0 98.08
C13 76.79 98.13 79.50 100.0 83.01 91.05 96.35 92.28 92.13
C14 100.0 95.56 100.0 100.0 100.0 100.0 100.0 100.0 100.0

OA (%) 73.40 84.32 91.45 92.54 94.76 94.63 92.82 94.95 96.41
AA (%) 82.31 86.70 92.88 94.15 95.76 94.96 93.77 95.77 96.85

Kappa × 100 71.07 82.99 90.73 91.91 94.32 94.18 92.22 94.53 96.11

Table 14. Classification results of the HS dataset based on 2% training samples.

Number Color SVM HYSN SSRN FDSS DBMA DBDA PCIA SSGC OSDN
C1 96.69 91.27 97.81 97.46 91.18 96.47 99.80 96.83 99.91
C2 98.21 86.10 99.92 99.92 94.69 99.00 92.26 98.15 97.86
C3 98.81 94.63 100.0 99.55 100.0 100.0 100.0 100.0 100.0
C4 91.78 89.32 85.14 95.11 99.48 97.21 95.64 97.62 95.34
C5 89.80 92.09 92.39 93.90 93.04 98.66 96.70 94.61 99.66
C6 95.85 91.50 100.0 100.0 100.0 100.0 100.0 96.91 96.53
C7 70.96 81.38 94.68 85.11 95.00 92.80 80.88 95.52 94.64
C8 69.36 87.98 99.52 96.71 97.15 92.33 88.54 92.46 99.63
C9 71.47 80.53 81.45 82.37 95.81 95.48 88.15 96.17 91.96
C10 76.44 86.94 67.22 93.09 82.49 80.42 89.38 93.61 88.59
C11 80.71 86.33 94.26 89.55 92.77 97.58 89.07 92.95 97.92
C12 71.96 83.42 91.84 89.60 92.09 85.77 91.91 88.09 92.84
C13 29.25 94.00 95.51 87.12 71.40 85.81 97.62 77.99 96.16
C14 92.73 90.79 95.77 100.0 100.0 100.0 100.0 100.0 100.0
C15 99.53 90.75 98.15 98.76 94.17 99.68 94.43 99.21 100.0

OA (%) 82.82 87.52 90.30 92.81 92.85 93.99 92.18 94.66 96.28
AA (%) 82.24 88.47 92.91 93.88 93.29 94.75 93.62 94.67 96.74

Kappa × 100 81.41 86.51 89.51 92.23 92.27 93.50 91.55 94.23 95.98

Figure 8. Full-factor classification maps for the KSC dataset. (a) Ground-truth. (b) SVM. (c) HYSN.
(d) SSRN. (e) FDSS. (f) DBMA. (g) DBDA. (h) PCIA. (i) SSGC. (j) OSDN. (k) False-color image.
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Table 15. Classification results of the SA dataset based on 2% training samples.

Number Color SVM HYSN SSRN FDSS DBMA DBDA PCIA SSGC OSDN
C1 99.90 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
C2 98.62 99.94 100.0 100.0 99.97 100.0 100.0 100.0 99.92
C3 91.69 96.38 100.0 97.57 100.0 100.0 99.36 100.0 100.0
C4 97.32 99.15 99.93 99.78 99.33 99.32 100.0 95.61 97.39
C5 97.27 96.55 99.92 99.81 99.65 99.42 91.18 100.0 100.0
C6 99.97 99.95 100.0 100.0 99.92 100.0 100.0 99.97 100.0
C7 98.92 99.47 99.88 100.0 100.0 100.0 100.0 100.0 99.83
C8 76.15 85.39 88.47 96.93 95.44 96.55 95.14 90.45 98.78
C9 98.88 98.35 99.75 99.97 99.45 99.80 100.0 99.82 99.52
C10 92.24 95.68 98.27 99.48 96.41 99.20 99.77 99.46 98.39
C11 96.16 97.93 100.0 95.75 100.0 100.0 95.32 100.0 99.90
C12 95.97 96.39 99.84 99.04 99.89 99.51 99.30 99.68 99.84
C13 93.38 92.67 100.0 100.0 97.34 100.0 99.88 100.0 99.77
C14 97.03 99.49 99.70 99.22 93.29 98.56 99.41 99.03 98.55
C15 77.47 82.63 97.12 91.68 95.78 88.56 94.61 98.00 95.12
C16 99.19 100.0 99.89 99.94 100.0 98.86 100.0 100.0 100.0

OA (%) 90.23 93.53 96.86 97.94 97.98 97.46 97.62 97.39 98.80
AA (%) 94.39 96.25 98.92 98.70 98.53 98.74 98.37 98.88 99.19

Kappa × 100 89.09 92.79 96.49 97.70 97.75 97.18 97.34 97.09 98.66

Figure 9. Full-factor classification maps for the BS dataset. (a) Ground-truth. (b) SVM. (c) HYSN.
(d) SSRN. (e) FDSS. (f) DBMA. (g) DBDA. (h) PCIA. (i) SSGC. (j) OSDN. (k) False-color image.
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Figure 10. Full-factor classification maps for the HS dataset. (a) Ground-truth. (b) SVM. (c) HYSN.
(d) SSRN. (e) FDSS. (f) DBMA. (g) DBDA. (h) PCIA. (i) SSGC. (j) OSDN. (k) False-color image.

Figure 11. Full-factor classification maps for the SA dataset. (a) Ground-truth. (b) SVM. (c) HYSN.
(d) SSRN. (e) FDSS. (f) DBMA. (g) DBDA. (h) PCIA. (i) SSGC. (j) OSDN. (k) False-color image.
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5. Discussion
5.1. Comparison of Different Spatial Patch Size

In this subsection, we explore the effect between the spatial patch size and the classifi-
cation accuracy of the proposed network. In general, if the spatial patch size is too small,
it will not be enough to contain rich spatial features, and the classification performance
might be decreased. Conversely, if the spatial patch size is too large, it will contain more
mixed pixels and increase the computational cost. Therefore, an appropriate spatial patch
size should be determined by classification accuracy and computational cost. Figure 12
depicts the OA with different spatial patch sizes ranging from 3 to 13 with a 2-pixel interval.
According to Figure 12, with the increase in the spatial patch size, the classification accuracy
of the five datasets gradually increased, and the best OA was acquired when the patch size
was 7 × 7. This phenomenon indicates that more and more spatial features were included
in the data cubes as the spatial size increased. Thus, the classification results were improved
to some extent. However, if the space size increased, the OA of most datasets will show a
decreasing trend. In conclusion, to balance both the OA and computational costs, we used
7 × 7 as the spatial patch size on the five datasets.

Figure 12. Comparison of OA using different spatial window sizes for the five datasets.

5.2. Comparison of Different Training Sample Proportions

It is well known that deep learning is a data-driven approach. In this subsection, we
randomly chose 1%, 1.5%, 2%, 3%, 5%, 7%, 9%, and 60% of training samples from each
dataset to explore the classification performance of different models with different training
sample proportions. As shown in Figure 13, when the training samples were sufficient,
these models maintained classification results above 99% on all five datasets. However,
obtaining enough training samples is a time-consuming and labor-intensive task. Therefore,
one of the motivations of our proposed OSDN was to obtain a good classification result in
a few training samples. Compared with other methods, our proposed OSDN consistently
maintained the most significant OA in various proportions of training samples. Especially
with insufficient training samples, our proposed OSDN achieved the highest OA on the
five datasets.
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Figure 13. Comparison of OA using different training sample proportions for the five datasets: (a) PU,
(b) KSC, (c) BS, (d) HS, and (e) SA.

5.3. Comparison of Computational Cost and Complexity

One of the purposes of this article is to reduce the computational cost and complexity
of the proposed network. Therefore, Table 16 compares the number of parameters, floating-
point operations (FLOPs), training time, and testing time of different methods for five
datasets. The FLOPs is an indicator to evaluate the model’s complexity, which is used
to measure the computational cost of the model. All methods are counted in the state of
the best accuracy and are trained with the same samples. Generally, from Table 16, it can
be found that the proposed OSDN achieved good results on all four metrics. Specifically,
HYSN had the largest number of parameters and highest FLOPs compared with other
DL-based methods, owing to its deeper network structure. Compared with SSRN, although
FDSS achieved good classification results (see Figure 14), it had more parameters and
FLOPs than SSRN due to its dense connections. In addition, it is worth noting that the
DBMA, DBDA, PCIA, and SSGC had a similar feature extraction backbone. Among these
four methods, DBMA had the maximum number of parameters and the highest FLOPs
since its attention module contained fully connected operations. Furthermore, DBDA,
PCIA, and SSGC had roughly the same parameters. However, PCIA took lower FLOPs
because of its multiscale pyramidal feature extraction block and iterative attention module.
Our proposed OSDN required the least number of parameters and lowest FLOPs on the
five datasets due to its lightweight one-shot dense block and effective PAM module. In
addition, since SVM contained fewer parameters, it did not consume much time for training
and testing. As for the time efficiency of OSDN, it is very competitive with other similar
comparative models (i.e., DBMA, DBDA, PCIA, and SSGC). Finally, combining Table 16
and Figure 14 with the above analysis, we can conclude that the proposed OSDN presents
satisfying classification accuracy with less computational cost and complexity.
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Table 16. The number of parameters, FLOPs, training time, and testing time of different methods for
five datasets.

Model SVM HYSN SSRN FDSS DBMA DBDA PCIA SSGC OSDN

PU

Parameters (M) / 1.37 0.21 0.34 0.32 0.20 0.23 0.19 0.05
FLOPs (M) / 71.41 48.47 39.55 74.43 32.72 26.50 32.51 21.18

Training time (s) 5.19 15.14 40.47 43.62 39.41 37.00 35.25 37.21 30.19
Testing time (s) 0.96 5.38 8.79 12.97 10.41 11.56 11.89 10.97 7.53

KSC

Parameters (M) / 2.03 0.31 0.93 0.52 0.33 0.35 0.32 0.07
FLOPs (M) / 123.55 83.27 86.47 128.67 56.15 44.35 55.95 36.36

Training time (s) 0.67 12.97 21.49 29.03 22.76 17.10 27.70 17.02 15.80
Test time (s) 0.06 1.05 1.52 1.79 1.53 1.39 1.25 1.64 1.08

BS

Parameters (M) / 1.76 0.27 0.65 0.44 0.28 0.30 0.27 0.06
FLOPs (M) / 101.82 68.77 64.92 106.07 46.39 36.91 46.18 30.04

Training time (s) 0.51 4.50 9.32 15.01 11.72 10.06 13.22 9.53 5.64
Testing time (s) 0.04 1.01 1.33 1.64 1.99 1.78 1.81 1.66 1.15

HS

Parameters (M) / 1.74 0.27 0.63 0.43 0.27 0.29 0.26 0.06
FLOPs (M) / 100.38 67.81 63.80 104.56 45.74 36.42 45.53 29.62

Training time (s) 3.21 9.67 20.91 21.85 24.63 22.18 22.17 23.37 13.39
Testing time (s) 0.57 1.89 2.03 2.52 2.78 2.85 3.75 2.83 1.23

SA

Parameters (M) / 2.47 0.39 1.53 0.66 0.42 0.44 0.41 0.08
FLOPs (M) / 158.31 106.47 126.12 164.82 71.77 56.25 71.57 42.26

Training time (s) 41.46 59.77 222.32 424.52 298.42 272.88 326.39 264.63 120.11
Testing time (s) 6.36 10.77 12.47 16.34 20.15 28.21 27.61 26.23 15.81

Figure 14. Classification results at different methods on the five datasets. (a) OA. (b) AA. (c) Kappa.

5.4. Comparison of Different Dense Connections

To verify the effectiveness and lightness of the proposed one-shot dense block (OSDB),
we compared it with two other classical dense blocks, namely, the dense block (DB) and
the weak dense block (WDB) [53], as shown in Figure 15. Note that the overall structure
of the proposed OSDN remained unchanged; only the feature extraction blocks of OSDN
were replaced by DB and WDB, respectively. The number of parameters, FLOPs, and OA of
the three dense blocks is listed in Tables 17–21. The experimental results show that OSDB
had fewer parameters and FLOPs; meanwhile, the OA was acceptable on the five datasets.
From these five tables, although DB achieved the highest OA, it had a large number of
parameters and FLOPs, which increased the complexity of the model. In addition, since
WDB only retained the skip connection between the two Conv layers in DB, the parameters
and FLOPs were reduced to some extent. However, the OA was also reduced. Lastly,
our proposed OSDN not only connected the subsequent feature maps at once but also
incorporated the residual connections. It enabled the proposed OSDB to maintain accuracy
and reduce the amount of computation. In conclusion, although our proposed OSDB did
not achieve the best for all indicators, it is acceptable and reasonable from the motivation
of reducing computation cost and complexity.
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Figure 15. Different dense blocks. (a) Dense block. (b) Week dense block. (c) One-shot dense block.

Table 17. The number of parameters, FLOPs, and OA of different dense blocks on the PU dataset.

Dataset Block Parameters (M) FLOPs (M) OA (%)

PU
DB 0.29 49.49 98.99

WDB 0.05 25.13 98.02
OSDB 0.05 21.18 98.83

Table 18. The number of parameters, FLOPs, and OA of different dense blocks on the KSC dataset.

Dataset Block Parameters (M) FLOPs (M) OA (%)

KSC
DB 0.47 84.88 96.74

WDB 0.07 43.12 95.93
OSDB 0.07 36.36 96.09

Table 19. The number of parameters, FLOPs, and OA of different dense blocks on the BS dataset.

Dataset Block Parameters (M) FLOPs (M) OA (%)

BS
DB 0.41 70.14 96.89

WDB 0.07 35.63 96.28
OSDB 0.06 30.04 96.41

Table 20. The number of parameters, FLOPs, and OA of different dense blocks on the HS dataset.

Dataset Block Parameters (M) FLOPs (M) OA (%)

HS
DB 0.40 69.15 96.93

WDB 0.07 35.13 96.11
OSDB 0.06 29.62 96.28

Table 21. The number of parameters, FLOPs, and OA of different dense blocks on the SA dataset.

Dataset Block Parameters (M) FLOPs (M) OA (%)

SA
DB 0.60 108.48 99.01

WDB 0.09 55.12 98.75
OSDB 0.08 42.26 98.80

5.5. Ablation Analysis toward the Attention Module

This subsection describes an ablation analysis performed on the attention module
on five datasets. For a fair comparison, all the networks were trained with the same
hyperparameters and samples, as described in Section 4.3. As shown in Figure 16, “Model 0”
represents that the PAM was not used in the OSDN; “Model 1” and “Model 2” represent that
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spatial-only PAM and channel-only PAM were used in the proposed network, respectively;
and “Model 3” represents both spatial-only PAM and channel-only PAM being used in the
OSDN. According to the results, we can observe that both Model 1 and Model 2 effectively
improved the OA over Model 0 on the five datasets. It is worthwhile to note that even
though the OA of Model 0 was already very high on the SA dataset, Model 1, Model 2,
and Model 3 improved the OA by 0.38%, 0.57%, and 0.76%, respectively. The experimental
results consistently show that compared with using Module 1 alone or Module 2 alone,
Model 3 achieved the best OA on all datasets. Furthermore, we further analyzed the impact
of the attention module (Model 3) on the computational cost of the OSDN. After extensive
experiments, we observed that the computation times before and after incorporating
Model 3 into the OSDN were ≈0.0051 and ≈0.0064 s, respectively. In addition, the FLOPs
and parameters of Model 3 were 0.04 M and 0.001 M, respectively. Therefore, the introduced
attention mechanism did not degrade the computational cost and complexity of the OSDN.
At the same time, the introduced attention module can select the important channel and
spatial features to improve the classification performance of OSDN.

Figure 16. OA (%) of OSDN with different attention models on five datasets.

6. Conclusions

In this article, we aimed to construct an OSDN to solve the current problems of high
complexity and inadequate feature extraction of CNN-based HSI classification models in
the case of small training samples. By incorporating one-shot dense block, the number
of parameters and computational cost of the network were significantly reduced while
guaranteeing an excellent feature extraction ability. Moreover, to fully extract refined
and discriminative features, the polarized AMs were introduced in the proposed OSDN.
Compared to other previous AMs used in HSI classification models, the polarized AMs
can maintain high channel and spatial resolution during the training process. In addition,
some advanced techniques, including the BN layer, the Mish activation function, the cosine
annealing learning rate, the dropout layer, and early stop operation, were used in the
OSDN to prevent overfitting and accelerate network convergence.

The experiments demonstrated the effectiveness of two crucial parts in the OSDN,
namely, one-shot dense block and polarized AMs. Moreover, several state-of-the-art models,
such as HYSN, SSRN, FDSS, DBMA, DBDA, PCIA, and SSGC, were used for comparison
on five HSI datasets. In the case of a few training samples, the classification results
consistently demonstrated that the OSDN not only accurately predicted the labeled samples
but also reasonably predicted the unlabeled samples. At the same time, compared with
other comparison models, the proposed OSDN is an efficient lightweight model, which
can achieve good classification performance with less computational cost even under
limited training samples. In our future work, we will investigate more effective and
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lightweight models to extract discriminative features for HSI classification. Finally, the code
developed for OSDN is available at https://github.com/HaiZhu-Pan/OSDN (accessed on
5 May 2022).
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