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Abstract: Synthetic aperture radar (SAR) is an active coherent microwave remote sensing system.
SAR systems working in different bands have different imaging results for the same area, resulting
in different advantages and limitations for SAR image classification. Therefore, to synthesize the
classification information of SAR images into different bands, an SAR image fusion classification
method based on the decision-level combination of multi-band information is proposed in this paper.
Within the proposed method, the idea of Dempster–Shafer evidence theory is introduced to model
the uncertainty of the classification result of each pixel and used to combine the classification results
of multiple band SAR images. The convolutional neural network is used to classify single-band
SAR images. Calculate the belief entropy of each pixel to measure the uncertainty of single-band
classification, and generate the basic probability assignment function. The idea of the term frequency-
inverse document frequency in natural language processing is combined with the conflict coefficient
to obtain the weight of different bands. Meanwhile, the neighborhood classification of each pixel
in different band sensors is considered to obtain the total weight of each band sensor, generate
weighted average BPA, and obtain the final ground object classification result after fusion. The
validity of the proposed method is verified in two groups of multi-band SAR image classification
experiments, and the proposed method has effectively improved the accuracy compared to the
modified average approach.

Keywords: multi-band SAR; fusion classification method; convolutional neural network

1. Introduction

Remote sensing image processing has been a hot research issue recently [1–3]. A
synthetic aperture radar (SAR) is a high-resolution imaging radar that is not affected by
climate and day and night. It has great application value. SAR image classification is
used to classify each pixel of the SAR image into its corresponding category [4–8]. Single-
band SAR images can obtain limited target information, while multi-band SAR systems
can simultaneously perform high-resolution imaging in multiple bands [9,10], which can
describe the characteristics of the surface more comprehensively. By fusing the classification
results of multi-band SAR images, a more accurate and reliable classification result can be
obtained than using only single-band image information.

In recent decades, the classification of SAR images has flourished [11–15]. According to
whether the labeled data participates in the training process, the existing algorithms can be
roughly divided into three categories: unsupervised learning-based, supervised learning-
based and semi-supervised learning-based. Zhao et al. [16] proposed a discriminative deep
belief network, which is used to build multiple weak classifiers to make decisions and input
the decision features into the deep belief network to learn deep features for high-resolution
SAR image classification. Hou et al. [17] proposed an algorithm combining a superpixel
segmentation algorithm with stacked autoencoders for the classification of polarimetric
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SAR image features. The data processing uses a multilayer autoencoder to extract deep
features and uses a superpixel segmentation method to optimize image classification results.
Among them, a superpixel is a small area composed of a series of adjacent pixels with
similar color, brightness, texture, and other characteristics. Most of these small areas retain
effective information for further image segmentation and generally do not destroy the
boundary information of objects in the image. Zhang et al. [18] proposed a deep ensemble
model combining the gradient boosting method and convolutional neural network (CNN).
This method performs well in optical remote sensing images. Zhou et al. [19] proposed a
deep convolutional neural network that can automatically learn hierarchical polarization
spatial features from the data, which can classify SAR images. Shang et al. [20] proposed
a densely connected and deeply separable convolutional neural network, using depth
separable convolution to replace standard convolution, and independently extracting
features on each channel of the polarization image so as to achieve SAR image classification.
Ni et al. [21] use long short-term memory networks for recurrent learning, random adjacent
pixel blocks for data augmentation, and conditional random fields for post-processing,
which performs well.

In general, the development of SAR image classification technology has become more
and more mature, but how to comprehensively consider the features of multiple band
images and accurately realize the classification of SAR images is still an unsolved problem.
In this paper, in order to fully exploit the complementarity of multi-band classification
information to complete the SAR classification of the same scene, a new decision fusion
method called the SAR image classification method based on the decision-level combination
of multi-band information is proposed. Within the proposed method, the Dempster–
Shafer theory [22–24] is employed to model the uncertainty of the classification result of
each pixel and used to combine the classification results of multiple band SAR images.
Firstly, multi-band SAR image data are collected by sensors that are input to the CNN
to obtain single band classification results. Secondly, the belief entropy [25] of each pixel
classification is calculated to measure the uncertainty of the classification, and a basic
probability assignment (BPA) is generated after the normalization for each band. Then,
in terms of the idea of term frequency-inverse document frequency (TF-IDF) [26,27] and
the neighborhood influence, the total weight for every band of each pixel is calculated
to implement the weighted average combination of BPAs coming from multiple band
images. Finally, the final classification result can be obtained according to the combined
BPA. Our method uses decision fusion under the framework of evidence theory to measure
the uncertainty of classification results of different bands. The evidence combination is
used to fuse the classification results of different bands, which can reduce the uncertainty
of the classification results of different bands and improve the classification accuracy. The
difficulty of the decision fusion method is how to better measure the complementarity
between the evidence. By introducing the idea of TF-IDF text mining into the conflict
coefficient, we propose a new method to measure the similarity of evidence. Using this new
method combined with neighborhood information can well measure the complementarity
between pixels and, thus, obtain more accurate decision fusion results.

The rest of the paper is organized as follows: Section 2 introduces a single-band
SAR image classification based on convolutional neural networks. Section 3 proposes a
SAR image classification method based on the decision-level combination of multi-band
information. In Section 4, two sets of multi-band SAR images are used to verify the
effectiveness of the proposed method. In Section 5, a summary of the work in this paper
is made.

2. Single-Band SAR Image Classification Based on Convolutional Neural Networks
2.1. Convolutional Neural Networks (CNN)

CNN adopts a weight-sharing network structure to reduce the number of weights and
the connections between various layers of the network, which has been widely used in
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image processing [28], facial recognition [29,30], natural language processing [31,32], and
other fields [33–40].

2.1.1. Convolutional Layers

Convolutional layers of CNN mainly conduct convolution operations, where image
features can be extracted through convolution operations. The convolution operation is to
slide the convolution kernels on the input matrix to find the dot product of the current area.
After repeating the operation, the convolutional results can be obtained.

2.1.2. Pooling Layers

Pooling layers are connected after the convolutional layers to compress the extracted
features, which can highlight the effective information. Maximum pooling and average
pooling are generally applied on the pooling layers. Maximum pooling takes the maximum
value of the current scan area, and the average pooling takes the average value of the
current scan area.

2.1.3. Fully Connected Layer

The fully connected layer is used to integrate features extracted from the previous
layer, which can be adopted for classification. The number of outputs is equal to the
category number for classification, and all nodes of the fully connected layer are connected
with the previous layer.

2.2. Single-Band SAR Image Classification

In our work, the CNN structure for single-band SAR image classification can be shown
in Figure 1. The network is composed of three convolutional modules and three fully
connected layers (FC layer).
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Figure 1. The network structure for single-band SAR classification.

Each convolutional module includes a convolutional layer with a convolution kernel
of 3× 3, a BatchNorm layer, and a ReLU layer. The output of the convolution module is:

Out1 = ReLU(BN( f1(x))) (1)

Out2 = ReLU(BN( f2(Out1))) (2)

Out3 = ReLU(BN( f3(Out2))) (3)

where, x is the input, Outk is the output of the k convolutional module, k = 1, 2, 3,
fk represents convolutional operation, BN is a BatchNorm function, and ReLU is an
activation function.

Fully connected layers are used for classification. The number of input and output
nodes of the first FC layer is 3872 and 4096. The number of input and output nodes of the
second FC layer is 4096 and 1024. The number of input and output nodes of the third FC
layer is 1024 and the number of categories. The output of three FC layers is:

Out = FC3(FC2(FC1(Out3))) (4)
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where FCk is fully connected layer, k = 1, 2, 3.
Patches of the single-band SAR image are imported to the network, and pixel-level

classification results are output from the last fully connected layer.

3. SAR Image Classification Method Based on the Decision-Level Combination of
Multi-Band Information

Assuming there are types of sensors with different wavebands, denoted as:
X = {x1, x2, · · · , xn}. Once the image data obtained by the sensors are classified, h types
of categories for each pixel uij will be generated, denoted as: Θ = {θ1, θ2, . . . , θh}. The
flowchart of an SAR image classification method based on the decision-level combination
of multi-band information is shown in Figure 2.
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tion of multi-band information.

As can be seen from Figure 2, the classification results of each pixel in a single-band
SAR image obtained in Section 2.2 are expressed as a probability matrix. The belief entropy
uses Shannon entropy to measure the reliability between different pieces of evidence. The
belief entropy of each pixel classification in the probability matrix is calculated to measure
the uncertainty of the classification, and a BPA is generated for each band. In terms of
the idea of TF-IDF, the weight of different sensors is calculated. Then, considering the
influence of the classification results on the neighborhood of SAR images in each band,
the neighborhood influence weight is calculated. The two weights are multiplied, and
the total weight is obtained after normalization. The weighted average of the BPAs of
different bands is used to obtain the average BPA, which is combined to obtain the final
classification result.
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3.1. Construction of Basic Probability Assignment (BPA) Functions of the Sensors’ Classification
3.1.1. Construct the Probability Matrix

By using the method in Section 2.2 to classify each pixel uij in the image, a prob-

ability matrix Q can be obtained: Q =



q11 · · · q1b · · · q1n
...

. . .
...

. . .
...

qa1 · · · qab · · · qan
...

. . .
...

. . .
...

qh1 · · · qhb · · · qhn

, where, qab repre-

sents the probability that the sensor xb recognizes the pixel ui j as the feature category
θa, a = 1, 2, · · · , h, b = 1, 2, · · · , n, i, j are the x and y coordinates of the pixel point.

3.1.2. Construct the BPAs

Suppose Θ = {θ1, θ2, . . . , θh} is a frame of discernment, the cardinality of Θ is h, then
the number of elements in the power set 2Θ of Θ is 2h, and a basic probability assignment
(BPA) function m should satisfy: m(∅) = 0 and ∑

A⊆Θ
m(A) = 1 , where ∅ is the empty set,

and A is a subset of Θ, m(A) is the basic probability number of proposition A. For the
probabilities of pixel ui j’s classification result generated by each sensor xb, an unnormalized
BPA can be generated as: m̂b({θa}) = qab. Then, the belief entropy is used to calculate
the uncertainty of m̂b and assign it to the mass of Θ: m̂b({Θ}) = − ∑

θ⊆Θ
m({θ}) ln m({θ})

2|θ|−1
,

where, |θ| represents the cardinality of proposition θ. At last, we normalize m̂b to obtain
mb({ θa}) = m̂b({ θa})

h
∑

a=1
m̂b({ θa})+m̂b({Θ})

, for any θa ∈ Θ and mb({Θ}) = m̂b({Θ})
h
∑

a=1
m̂b({ θa})+m̂b({Θ})

. Calcu-

lating the belief entropy [41–43] of the classification results of each pixel can measure the
uncertainty of the classification results of SAR images. Since evidence theory is a method
that can effectively fuse uncertainty information, the evidence fusion can achieve more
accurate classification while reducing uncertainty.

3.2. Calculate the Weights of Sensors in Different Bands

Here, we calculate the conflict coefficient between the sensors’ classification results
of each band to obtain the degree of conflict between different sensors. If the sum of
the conflict coefficients between a certain sensor and the remaining sensors is larger, it
means that the result obtained by this sensor is more inconsistent with the judgment of
other sensors. By combining the conflict coefficient and the idea of TF-IDF, the weights of
different sensors are obtained.

3.2.1. Calculate the Conflict Coefficient between the BPA of Sensors in Different Bands

For two BPAs, mb and mc, where b and c represent the serial numbers of the sensors
in different bands, the conflict coefficient [44] is used to measure the degree of conflict
between mb and mc. The greater the conflict, the greater the value of the conflict coefficient.
The formula is as follows: Kbc =

1
2 [kbc + dBPA(mb, mc)], where kbc is the classic conflict co-

efficient, expressed as: kbc = ∑
B ∩ D = φ
B ∪ D 6= φ

mb(B)mc(D), and dBPA(mb, mc) is the Jousselme

evidence distance: dBPA(mb, mc) =

√
1
2 (
→
mb −

→
mc)

T
D(
→
mb −

→
mc),where D is a 2n × 2nmatrix

whose elements are D = |B∩D|
|B∪D| , where B and D are the subsets of the frame of discernment.

3.2.2. Calculate the TF-IDF Weights of Sensors in Different Bands

TF-IDF is a keyword extraction method: TF-IDF = TF × IDF, where TF represents
the number of occurrences of a term in the article, IDF weights the value of TF accord-
ing to the importance of the term in the corpus, where IDF = log( Ctotal

Cnumber+1 ), where
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Ctotal represents the total number of articles in the corpus, Cnumber represents the num-
ber of articles containing the term. Here, in terms of IDF’s weighting idea, suppose
there are n BPAs for a certain BPA mb, b = 1, 2, · · · n if it is assumed to completely con-
flict with the rest of n − 1 BPAs; that is, the conflict coefficient is 1, the value of Ctotal
should be n− 1. Actually, the sum of the conflict coefficients of mb with the rest of the

n− 1 BPAs is
n−1
∑

b=1,c 6=b
Kbc. Therefore, the weights of sensors in different bands can be ob-

tained: for sensor b, an unnormalized weight of mb is obtained by the following formula:
w1′

b = log( n−1
n−1
∑

b=1,c 6=b
Kbc

)b = 1, 2, · · · n, where Kbc is the conflict coefficient between the BPA of

mb and mc. Then, the unnormalized n are normalized as follows:w1
b =

w1′
b

n
∑

b=1
w1′

b

b = 1, 2, · · · n.

3.3. Calculate the Neighborhood Influence Weight and Total Weight

Given the classification result of a sensor xb for each pixel ui j the weight of the
influence of ui j’s δ × δ neighborhood block to ui j’s classification result is calculated as
follows:w2

b = Num
δ2−1 , b = 1, 2, · · · , n, where Num represents the number of classification

result of pixels in ui j’s δ× δ neighborhood block whose classification results are same as
ui j’s. At last, by synthesizing the two weights w1

b and w2
b , a total weight wb (for ui j in sensor

xb’s classification results) can be obtained as: wb =
w1

bw2
b

n
∑

b=1
w1

b

.

3.4. Fusion

For every pixel uij, its classification results from n sensors, mb, b = 1, · · · , n, are used to
generate a weighted average BPA in terms of different weights wb, b = 1, · · · , n:m({θa}) =

n
∑

b=1
wbmb({θa}), θa ∈ Θ. Then, we use Dempster’s rule to fuse m for n − 1 times,

m = m⊕m⊕ · · · ⊕m, where ⊕ is the Dempster’s rule for the classification of two BPAs:{
m(E) = 1

1−kbc
∑

B∩D=E
mb(B)mc(D), E ⊆ Θ and E 6= ∅

m(∅) = 0
. After fusion, the final classifica-

tion result for pixel ui j is obtained.

4. Results

Two sets of multi-band SAR image data are used to verify the effectiveness of the
proposed method according to the classification accuracy, and the modified average ap-
proach [45] is used for quantitative and qualitative comparisons. The modified average
approach is a classic evidence combination method, which consists of weighted decisions
based on the distance of evidence similar to our proposed method. The intermediate visual
effects of the two methods are shown in Figures 3 and 4. For the proposed method, the com-
putational complexity of constructing the BPA part is O(h), the computational complexity
of calculating the conflict coefficient part is O(2h × 2h), the computational complexity of
calculating the Jousselme evidence distance is O(2h × 2h), and the computational complex-
ity of the fusion part is O(2h × 2h). For the modified average approach, the computational
complexity of constructing the BPA part is O(h), the computational complexity of calcu-
lating the Jousselme evidence distance is O(2h × 2h), and the computational complexity
of the fusion part is O(2h × 2h). The single-band SAR image classification experiment is
completed under the Pytorch framework, Adam is set as the optimizer, CrossEntropyLoss
is the loss function, the learning rate is 0.001 and the number of trainings is 100. All
decision-level combination experiments are run in a MATLAB R2021a environment. The
size of the δ× δ neighborhood block is 9× 9. For a single pixel, the time required to fuse
the first data set using the proposed algorithm and the comparison algorithm is 0.0201 and
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0.0193 s, respectively, and the time required to fuse the second data set using the proposed
algorithm and the comparison algorithm is 0.0510 and 0.0384 s, respectively.
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4.2. Experimental with the Dongying City Dataset

In order to verify the effectiveness of the method, the first set of multi-band SAR
images were captured by C-band SAR, L-band SAR, and P-band SAR sensors at the Yellow
River estuary in Dongying City, Shandong Province. Among them, the acquisition time
of C-band SAR is 25 November 2019, with a resolution of 0.5 m, the L-band SAR was
collected on 26 November 2019, with a resolution of 3.0 m and the acquisition time of
P-band SAR is 25 November 2019, with a resolution of 3.0 m. Figure 8 shows the images
from these sensors.
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The labels of these images are manually labeled, which contains three categories,
farmlands, buildings, and roads. The label is shown in Figure 9.
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At first, we use the single-band SAR image classification method in Section 2.2 to
classify the SAR images of the C, L, and P bands, respectively. Then, we use the method
mentioned in Section 3 to achieve decision fusion of multi-band SAR images to obtain the
final result. The single band classification result and the decision fusion result are obtained,
as shown in Figures 10 and 11. The accuracy of single-band and multi-band fusion is shown
in Table 1.
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Table 1. Classification accuracy.

C-Band SAR
Classification

L-Band SAR
Classification

P-Band SAR
Classification

Modified Average
Approach Our Method

Accuracy 66.32% 64.08% 63.17% 68.67% 70.34%

It can be seen from Figures 10 and 11 and Table 1 that the classification accuracy of
C, L, and P bands are 66.32%, 64.08%, 63.17%, and 68.19%. The classification accuracy
of the modified average approach and our decision fusion method is 68.67% and 70.34%.
Among them, the highest accuracy is achieved by the decision fusion method proposed in
this paper. The accuracy of the proposed method is 7.17% higher than the single-band’s
minimum accuracy and 4.02% higher than the single-band’s highest accuracy. Compared
with the modified average approach, the accuracy of our method is improved by 1.67%.
For the C-band classification results, a large number of farmlands is classified as roads,
while for the P-band classification results, the roads are not effectively identified. As can be
seen from Figure 11a, the modified average approach incorrectly classifies a large number
of farmlands into roads, which significantly reduces the classification accuracy. By contrast,
the proposed method can more accurately classify the three categories.

4.3. Experimental with the Baotou City Dataset

The second group of multi-band SAR images was captured by C-band SAR, L-band
SAR, P-band SAR, and X-band SAR sensors at the Baotou calibration field in Baotou,
Inner Mongolia Autonomous Region, and the acquisition time is 2 November 2019, with a
resolution of 0.5 m. Among them, the resolution of the C-band is 0.5 m, and the resolution
of the L, P, and X-bands is 3.0 m. Figure 12 shows the images.
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Similarly, all pictures are manually labeled, as shown in Figure 13, which contains
four categories, pits, bare soil, buildings and roads. For these images, the classification
results of the single band and the fusion method proposed in this paper are shown in
Figures 14 and 15 and Table 2.
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Table 2. Classification accuracy.

C-Band SAR
Classification

L-Band SAR
Classification

P-Band SAR
Classification

X-Band SAR
Classification

Modified Average
Approach

Fusion
Result

Accuracy 59.85% 62.39% 62.07% 67.75% 68.97% 69.26%

It can be seen from Figures 14 and 15 and Table 2 that the classification accuracy of C,
L, P and X bands are 59.85%, 62.39%, 62.07% and 67.75%. The classification accuracy of the
modified average approach and our decision fusion method is 68.97% and 69.26%. Among
them, the highest accuracy is achieved by the decision fusion proposed in this paper. The
accuracy of the proposed method is 9.41% higher than the single-band’s minimum accuracy,
and 1.51% higher than the single-band highest accuracy. Compared with the modified
average approach, the accuracy of our method is improved by 0.29%. By analyzing the
single-band classification result maps, most of the bare soil area in C-band SAR images was
identified as buildings. Moreover, the P-band classification does not effectively identify the
road. As can be seen from Figure 15, many of the bare soils of (a) were classified into pits,
and our method greatly alleviated this phenomenon. In general, the proposed method can
more accurately classify the four categories.

5. Conclusions

In this paper, an SAR image fusion classification method based on the decision-
level combination of multi-band information is proposed. The idea of evidence theory in
decision fusion is introduced into the SAR image classification process, and the results of
classification by sensors of different bands are merged to improve the final classification
accuracy. Belief entropy is used to measure the uncertainty of the single-band classification
result of each pixel, and the uncertainty value is assigned to the full set to obtain the
basic probability assignment function. In terms of the idea of TF-IDF in natural language
processing and conflict coefficients, the weights of sensors in different bands are obtained.
At the same time, considering the neighborhood classification of each pixel in different
band sensors, the total weight of each sensor is obtained, and weighted average BPA is
generated. After fusion, the final classification result is obtained. Experimental results
on two groups of multi-band SAR images demonstrate the effectiveness of our fusion
classification method.
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