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Abstract: Pavement subsidence detection based on point cloud data acquired by mobile measurement
systems is very challenging. First, the uncertainty and disorderly nature of object points data results
in difficulties in point cloud comparison. Second, acquiring data with kinematic laser scanners
introduces errors into systems during data acquisition, resulting in a reduction in data accuracy.
Third, the high-precision measurement standard of pavement subsidence raises requirements for data
processing. In this article, a data processing method is proposed to detect the subcentimeter-level
subsidence of urban pavements using point cloud data comparisons in multiple time phases. The
method mainly includes the following steps: First, the original data preprocessing is conducted,
which includes point cloud matching and pavement point segmentation. Second, the interpolation of
the pavement points into a regular grid is performed to solve the problem of point cloud comparison.
Third, according to the high density of the pavement points and the performance of the pavement in
the rough point cloud, using a Gaussian kernel convolution to smooth the pavement point cloud data,
we aim to reduce the error in comparison. Finally, we determine the subsidence area by calculating
the height difference and compare it with the threshold value. The experimental results show
that the smoothing process can substantially improve the accuracy of the point cloud comparison
results, effectively reducing the false detection rate and showing that subcentimeter-level pavement
subsidence can be effectively detected.

Keywords: mobile laser scanner; subsidence detection; point cloud comparison; Gaussian smoothing

1. Introduction

As crucial components of infrastructure, road foundations are important for trans-
portation. A high volume of traffic results in a large load on the road, which may lead to
road subsidence. The deterioration of underground facilities and the extraction of ground-
water can also cause subsidence, which may lead to road collapse. Before road collapse
occurs, gradual subsidence can occur over a period of several months, even a few years,
providing ample time to detect subsidence [1]. If the subsidence area is detected before
it deteriorates to the point of collapse, several measures can be taken, and many serious
traffic accidents can be effectively avoided. Therefore, detecting the subsidence of road
surfaces is of great importance.

There are enormous challenges in locating and detecting areas of subsidence in the
road surface. First, subsidence is characterized by minute changes in quantity, which
require a high-precision measurement. Second, subsidence is a slow process that requires
long time intervals for repeated observations, increasing the difficulty of data comparison.
Third, the extension of urban roads causes a large but discontinuous measurement area.
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GNSS (global navigation satellite system) technology for ground settlement detection
has the advantage of high accuracy in positioning and elevation settlement values [2,3].
The measurement process is time-consuming and laborious due to the manual setting of
stations, and the measured data are often limited and incomplete. The measurement results
are obtained based on a cross-section of measurement point data and fail to reflect the
full process of pavement settlement. The increasingly widespread application of InSAR
(interference synthetic aperture radar) technology for wide-area subsidence detection is
attributed to its sensitivity in elevation direction [4–6]. In urban areas, the buildings cause
InSAR image shadowing, and parts of the pavement information are missing, preventing
a comprehensive measurement. Additionally, the limitation of InSAR image resolution
causes that it cannot detect subsidence areas smaller than itself.

With the development of laser scanning technology, laser measurement technology
is being increasingly used in the field of subsidence and change detection due to its high
accuracy and efficient data acquisition capability. L. Zhao et al. used a TLS (terrestrial
laser scanner) to monitor expressway subsidence [7]. K. Anders et al. used a TLS to
find thaw subsidence [8]. Y. Shen proposed a baseline-based method to detect changes
in brickwork walls, which avoided the matching step in the point clouds comparison
process [9]. D. Zhang et al. used a 3D laser scanning system to obtain pavement disease
information by analyzing the characteristic points of the road profile [10]. G. Antova used
TLS data to obtain a dam surface change by calculating the distance between the regular
grid points and 3D meshed surface, and the results showed that the method worked well
on a flat surface [11]. Due to the characteristic of quickly acquiring high-density surface
point cloud data of objects, a laser scanner system is more suitable for application in object
change detection with planar features [12]. In these applications, high-precision point cloud
data perform an important role, but the way of setting the station measurement causes its
scanning range to be very limited. An MLS (mobile laser system) can obtain interest point
information by moving positions. The flexible moving feature solves the problem of the
data scanning range limitation. However, the accuracy of MLS data is not as high as that of
TLS data. In the acquisition of MLS motion data, errors, including positioning errors, are
introduced. To improve the data accuracy, the applied MLS should be calibrated, which
aims to correct the integration errors of various sensors. E. Heinz et al. demonstrated that
calibrated MLS data can reflect several centimeters of pavement settlement using the data
accuracy of 10 mm [13].

We summarize the methods for change detection using multitemporal point cloud data
into two categories: the occupancy method [14,15] and distance-based approach [9,16–20].
The occupancy method describes the scan line with the sensor as the vertex and the target
object point as the direction by the 3D voxel. The scan line occupancy voxel property is
defined as empty, occupied and unmeasured. The dynamic changes of occupancy rates
can be used to identify the changes in the road environment, and are usually applied to
environmental change detection or real-time change detection, such as the vehicle driving
environment. For tiny changes in the surface, it is more effective to use distance-based
methods, due to the voxel-based occupancy method identification as the voxel cell size. The
distance-based method calculates the distance among point clouds in different periods, and
its resolution can, theoretically, reach the data acquisition accuracy. The methods can be
categorized into three types: cloud-to-cloud, cloud-to-model, and model-to-model methods.
In the cloud-to-cloud comparison [18,19], scattered points are usually organized in an octree
structure, and the nearest point is taken as the current point in cloud comparison. This type
of method can preserve the precision of the data, but the measurement error is ignored. In
addition, the results usually have no positive or negative sign, so it is difficult to determine
whether the change in area is due to subsidence or another process. In road settlement
detection, the direction of pavement change needs to be noted. Thus, the cloud-to-cloud
comparison approach does not meet these requirements. In cloud-to-model comparison
methods, the point cloud is used as a reference to generate a surface model, and point-to-
model distances are calculated for a point cloud comparison. The distance from a point to
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the model corresponds to the direction between the point and a plane, which is generally
taken as the direction normal to the plane [9]. Such methods can determine whether it
is a change region by calculating the distance from each point in the data to the model.
However, this method is sensitive to the noise points of the data, which cannot be effectively
removed. In model-to-model comparison methods [20], the data from different epochs are
processed, and the distances between models are calculated.

The two main challenges of using MLS data for pavement subsidence detection
are as follows: First, the disorderly nature of point clouds makes it difficult to compare
multitemporal data. The point cloud data are disordered and uncertain, so it is difficult
to determine the comparison point and reference point for comparing different point
cloud data. Second, the MLS error causes the pavement point data roughness to be
much larger than the real pavement roughness. For the challenges mentioned above, we
propose an MLS data processing method in the paper. Firstly, we preprocess the acquired
data, including aligning the different simultaneous phase point clouds and extracting the
pavement point data. Secondly, the matched data are processed to regular grids to establish
the point correspondence between different point cloud data, which solves the point cloud
comparison problem. Then, Gaussian smoothing is performed on the regular grid to solve
the problem where the data roughness caused by the MLS data error is larger than the
pavement roughness. It is worth mentioning that the Gaussian smoothing cells need to
be adjusted according to the information of pavement roughness. Finally, a histogram is
used to determine a threshold value, which defines the settlement area and nonsettlement
area for the compared data. The experiment results show that subcentimeter-level urban
road settlement areas can be effectively detected, and the smoothing process can effectively
improve the comparison results of point clouds.

2. Methods

To distinguish the positive and negative results obtained by comparing data from
different epochs, we used a model-to-model comparison method. The main steps in the
method include data preprocessing for road surface points separation, regular grid square
generation, smoothing using Gaussian kernel convolution, and a comparison for subsidence
area determination. The workflow is shown in Figure 1.
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2.1. Data Preprocessing

Data preprocessing involves processing raw multitemporal point cloud data with the
goal of obtaining pavement point cloud data that can be directly compared. This process
mainly includes multitemporal data coregistration, the separation of ground points and
nonground points in point cloud data, and pavement point extraction.

Data from different epochs need to be matched because of the positioning error
associated with data acquisition at different times. There have been many studies of point
cloud matching including the iterative closet point method [21,22], the normal distributions
transform [23], and the coherent point drift [17]. An occupancy map-matching method
is used to estimate the translation and rotation of the vehicle [24]. Not all matching
methods are suitable for change detection applications. To avoid introducing errors in
the matching process, a drifting matching method should not be used. However, the
registration accuracy needs to be guaranteed because the result has a notable influence
on the point cloud comparison. The coherent point drift method may adjust the point
cloud data according to the two temporal phases of data during point cloud processing [17],
which may alter the field of change; therefore, a rigid registration method should be selected
to avoid additional errors caused by registration. Positioning errors accumulate as the
vehicle moves during data collection. We took the approach of segmenting road sections
and matching them separately to reduce this influence in the matching stage.

Ground point and nonground point separation is usually the first and key step in
processing MLS data [25]. A variety of methods and algorithms has been developed for
road surface detection and extraction using MLS data. Such methods are mainly catego-
rized into two-dimensional (2D) feature image-based and 3D point-based methods [26–29]
according to the different data formats used. Converting 3D MLS point clouds into 2D
georeferenced feature images can decrease computational complexity in the stage of road
surface extraction. By using existing computer vision and image processing methods, road
boundaries and pavements can be efficiently detected and extracted [30]. Urban roads
have structured edges, and the height difference between roads and road curbs is usually
designed to be 10~25 cm. The pavement point cloud is separated from other points based
on the height difference between the road surface and road curb [31].

2.2. Regular Square Mesh (RSM) Generation

Disordered point cloud in the format of (x, y, z) can be used to generate a regular
square mesh if the size of the square and the interpolation method are sufficiently chosen.
For the purpose of detecting the subsidence of urban roads and changes in the elevation
direction, the points were projected onto the XOY plane, and the Z values were interpolated.
The size of the grid was determined mainly based on the point spacing. The data obtained
by an MLS are high-density data, and the distance between points varies with the frequency
of scanning sensors and the movement speed of the carrier platform. Therefore, the distance
between the scanned points increases with the scanning distance. The distance between
points along adjacent scan lines varies with the vehicle movement speed. To obtain high-
quality scan data, scan measurements are usually obtained at a fixed speed in the scan
area, and the distance between scan lines is relatively stable. The typical distribution of
points in the road area is smallest in the middle of the road (near the scanned lane), and
spacing increases towards the edge of the road. Notably, high-density data are helpful for
improving the accuracy of modeling [32]. When the size of a square is smaller than the
minimum point spacing, the point cloud data can retain the full accuracy of the original
data. However, for large amounts of point cloud data, the time cost for this process can be
very large.

A suitable interpolation method can effectively preserve data accuracy, especially if
the grid size is selected to be similar to the point spacing. Therefore, we used the nearest
point interpolation method for modeling. Due to the large data volume of point cloud
data, the nearest point difference method could effectively reduce the computing volume of
interpolation. Since the grid size is close to the point spacing, this interpolation method can
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preserve data accuracy effectively as well. The specific implementation is to find the point
nearest to a grid point to be inserted and to use the corresponding z value as the inserted
value. In this process, if two or more points are determined to be nearest to each other, the
average of the points is calculated and assigned to the interpolated point. Figure 2 shows
the point distribution from a top view before and after the interpolation step.
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2.3. Smoothing Using Gaussian Kernel Convolution

The data acquisition principle for a point cloud is to obtain the distance and angle
information of a target by recording the reflection signal of the target and then calculating
the corresponding 3D coordinate information. In this process, there are various sources of
errors [25,33]. Roads are considered to be artificial structures designed as flat or curved
surfaces. When a mobile LiDAR system acquires data, due to error, the road point cloud is
not in a flat or curved surface, and this variation is defined as roughness. Based on the high-
frequency measurement speed of LiDAR and the slow change in road surface elevation, we
performed Gaussian smoothing for the data to reduce the effect of high-frequency errors
on the results.

The two-dimensional Gaussian function used to smooth the model was:

w(x, y) =
1

2πσ2 e−
∆x2+∆y2

2σ2 (1)

where w is the weight of point (x, y, z), ∆x and ∆y are the distances from the center point in
the x direction and y direction, respectively, and σ is the standard deviation, which was
used to determine the degree of smoothing. Convolution was applied to update the value
of the central point by using the weighted average value of the data around the current
point. In the data processing stage, z(x,y) for a given point was updated by convolving the
z values of the surrounding points with the following Gaussian weight function:

zg(xi, yj) =

n−1
2

∑
i=− n−1

2

n−1
2

∑
j=− n−1

2

w(xi, yj)·z(xi, yj) (2)

where zg is the updated z value after Gaussian convolution and n is the number of points
involved in calculations in one direction (x-axis direction or y-axis direction).

In this data processing, n and σ were determined and adjusted to the pavement rough-
ness. To explore the impact of LiDAR errors on the parameters, we designed simulated
experiments, in which only ranging errors existed, and the road pavement and subsidence
were ideal. The gird size and n determine the actual Gaussian smoothing cell size jointly.
The actual smoothing cell size can be adjusted by the pavement roughness [34]. When the
road is determined to be good by pavement roughness [35], the smoothing unit can be
set relatively big, which contributes to the elimination of ranging errors. When the road
is determined to be bad, the smoothing unit should be adjusted to be small to leave the
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road trends. The correlation of parameters and their impact on the experimental results are
elaborated in Section 4.3.

2.4. Subsidence Area Determination

After data interpolation and smoothing, the difference in height was calculated for
subsidence area determination. Since data from different epochs had the same values of x
and y, we could obtain the height difference in the surrounding area.

∆z(x, y) = zn(x, y)− zp(x, y) (3)

where ∆z is the height difference for the corresponding points, zn is the newly obtained
value, and zp is the previously obtained value.

Subsidence is a negative change in height. Thus, ∆z < 0 can be used to identify areas
of subsidence. However, due to data errors and actual field requirements, a threshold value
(∆h) is usually set to compare changes for subsidence area determination. A histogram can
be used to reflect the distribution of elevation differences, and we analyzed the histogram
of height differences in this study. A normal distribution should be observed if there is no
subsidence. If ∆zmax is the maximum height difference and ∆zmin is the minimum height
difference, it is known that ∆zmin ≈ −∆zmax and the number of positive and negative
signs of the difference is approximately equal under the condition that there is no change
of pavement. However, with the subsidence of the pavement, there are more negative
signs, and ∆zmin is less than −∆zmax. Therefore, the threshold ∆h was determined by the
following formula:

∆h = (−∆zmax + ∆zmin)/2 (4)

The road surface was sorted into two categories based on a comparison: if ∆z < ∆h,
the area was a subsidence area, and if ∆z ≥ ∆h, the area was a different type of area.

3. Materials and Experiments

To test the effectiveness of the method, both a set of simulated data including ideal road
surface point clouds and a set of real road surface data were used to simulate subsidence in
the experiment.

3.1. Simulated Data

Figure 3 shows a diagram of simulation data acquisition. The data were generated by
a self-developed software with a laser simulator in a point frequency of 300 MHz and a
line frequency of 100 Hz. The laser scanning travel speed was 20.000 km/h. The simulated
pavement length was 50 m (coordinates 100 to 150) and the width was 40 m (coordinates 80
to 120). The material of pavement was designed as an ideal reflection plane, expressed that
the angular difference in laser incidence angle did not affect the point cloud data results.
The height of the laser simulator from the pavement was 5 m. We defined x-positive as
the direction of movement of the simulated sensor, y-positive as the leftward direction of
sensor movement, and z-positive as the upward direction. The design positioning error
was 0.05 m, and the scanning ranging error was 0.02 m. In the first simulation scan, the
settlement area radius was not set, but in the second, third, and fourth scans, the radius of
the circular settlement area was 3 m; additionally, settlement center values of 1 cm, 2 cm,
and 4 cm, respectively, were used. The settlement value at distance d from the settlement
center was ∆z:

∆z = ∆zmax · tan(
π

4
· 3− d

3
) (5)

where ∆zmax is the subsidence value at the center.
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Figure 3. Diagram of simulation data acquisition.

Thus, we acquired the simulated pavement data for five epochs shown in Table 1. The
first pavement scan data were obtained for the original pavement without settlement. The
second, third, fourth, and fifth pavement datasets were for circular settlement areas with
central settlement values of 1 cm, 2 cm, 4 cm, and 8 cm, respectively.

Table 1. Central settlement values of the simulated subsidence area.

Pavement Data
Generation Stage

Central Settlement Values of the Simulated
Subsidence Area

1 0 cm
2 1 cm
3 2 cm
4 4 cm
5 8 cm

Figure 4 shows the data obtained from the fourth payment simulation. Since there
was no rotation or translation among data from different epochs, the preprocessing step
could be omitted.
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Figure 4. Simulated road surface point cloud data (m).

3.1.1. Interpolation and Gaussian Convolution Smoothing Experiments

The laser simulator point frequency was 300 MHz, and the line frequency was 100 Hz.
The laser scanning travel speed was 20.000 km/h. Accordingly, the point spacing for the
same scan line ranged from 0.02 m to 0.05 m, and the distance between adjacent scan lines
was 0.05 m on the pavement. A high density of data helped to improve the accuracy of the
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results. To balance the accuracy of the results and the computational burden, the grid size
was set to 0.1 m. The result of interpolation for the fourth simulation is shown in Figure 5.
With a positioning error of 0.05 m and scanning error of 0.02 m, the road surface was shown
as a rough surface rather than a smooth plane.
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Figure 5. Simulated road surface point cloud data (m).

The smoothing was performed with MATLAB 2020. We smoothed the z-coordinate
as a matrix with rows in x-direction and columns in y-direction. In the Gaussian kernel
convolution process, the parameter σ was set to 10, and n was set to 61. The result of
smoothing the 4 cm subsidence data is shown in Figure 6. After the smoothing process, the
road surface was shown as a smooth surface, which was comparatively more similar to the
real road pavement.
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Figure 6. Gaussian smoothing result for the simulated data (m).

To clearly illustrate the data, a profile of all of the data is shown in Figure 7. Figure 7a
is the result of interpolation, where the points were scattered around the road surface and
the subsidence area was difficult to determine. Figure 7b shows the result after Gaussian
smoothing; notably, the road surface profile better approximated the actual profile, and the
subsidence area was easily identified by comparison.
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Figure 7. The profile obtained by simulating the subsidence center for all data (m): (a) interpolation
result; (b) Gaussian smoothing result.

3.1.2. Height Difference Result

To validate the results for different settlement heights, we obtained four sets of height
difference results by subtracting the first set of simulation data from the second, third,
fourth, and fifth sets. Figure 8 is a section view of the results for the subsidence area. From
the figure, the subsidence area could be easily distinguished from the unchanged area,
where the values were approximately 0.
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3.1.3. Subsidence Determination

While determining the subsidence area, a threshold was set to classify the subsidence
area and the areas without subsidence. If the absolute value of the threshold was set too
large, it would result in poor subsidence detection; in contrast, if it was set too small,
subsidence areas would be introduced in error. To choose an appropriate threshold value,
we analyzed the histograms of height differences. Figure 9 shows the histograms of height
differences and the method used to determine the threshold.

As shown in Figure 8, the abscissa was the height difference ∆z, and the ordinate was
the number of points. The subsidence area accounted for a small portion of the total road
area. Therefore, the number of subsidence area points was very small in the histogram. To
highlight the corresponding values, the ordinate was shown in the logarithmic form. In
the figure, max (∆z) and min (∆z) were the maximum and minimum values of the height
difference, respectively. The threshold value ∆h was set to the average of the sum of the
negative max value and the minimum value: ∆h = [−max(∆ z) + min (∆ z)]/2. Table 2
gives the threshold values for the different experimental datasets.

The subsidence region was determined through a comparison of simulated values
and threshold values. The results were presented in a binary graph, with the yellow area
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representing the settled area and the blue background area representing the unsettled area,
as shown in Figure 10. We could see that the settlement areas were accurately detected.
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Table 2. The threshold values for different subsidence datasets (cm).

Datasets Max (∆z) Min (∆z) ∆h

1-0 0.19 −0.41 −0.30
2-0 0.18 −1.21 −0.70
4-0 0.18 −2.64 −1.41
8-0 0.20 −5.39 −2.80
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3.2. Real Data Experiments

The real data were obtained with the SSW mobile measurement system (Figure 11),
which integrated a laser scanner, an inertial measurement unit (IMU), a panoramic camera,
an odometer, and a GPS antenna loaded on a transit vehicle. All the sensors were configured
based on the relevant software and an embedded computer and synchronized with the
GPS time. The x-direction of the acquired data was the right side of the vehicle movement
direction, the y-direction was the vehicle movement direction, and z-direction was upward.
The side spacing of points was 0.03 m~0.04 m on the road surface, and the line spacing was
approximately 0.05 m. The obtained data accuracy was 10 mm. The study area was located
in a section of Xiaotun Road, Fengtai District, Beijing, China. To simulate subsidence, seven
boards were placed on the road. A height-adjustable nail was placed below the center of
each board to control the amount of change in the center height. We collected pavement
data with the nail height set at 15 mm, 10 mm, 5 mm, and 0 mm (without nail placement).
The pavement data were obtained over approximately 90 m.
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Figure 11. The real experimental data and acquisition system.

3.2.1. Data Preprocessing: Registration and Pavement Point Segmentation

Data preprocessing mainly included registration and road surface segmentation. Since
the road was a long narrow target, we divided the experimental road into three parts (each
part was approximately 30 m long) and aligned them separately. The rigid ICP (iterative
closest point) alignment method was used to avoid introducing additional errors in the
registration stage. The initial positions of the two sets of point clouds were crucial for
ensuring the accuracy of the matching results. The MLS included a positioning system
so that the acquired data were spatial point cloud data in a geodetic coordinate system.
Therefore, the data obtained by the MLS were approximately aligned in the same coordinate
system. Using ground control points for rough alignment is a common method. Since
the test system had already resolved the point cloud data to geodetic coordinates, and the
process of accurate alignment had to be performed, we did not set ground control points
for rough alignment. The ICP algorithm was used to implement an accurate matching
process for the point cloud data, as described below.
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Assume that p is the set of points to be aligned and Q is the set of target points. The
main steps in registration are as follows:

(1) Select points qi in the target point set Q (downsampling).
(2) Find points pi in p to be aligned with the corresponding points qi in the point set Q

such that ||pi − qi|| is minimized.
(3) Calculate the rotation matrix R3×3 and translation matrix T3×1 from the coordinates

of point pi to qi.
(4) Using the rotation matrix R3×3 and translation matrix T3×1, update the point set p:

p′i = R3×3∗ pi + T3×1 (6)

(5) Calculate the average distance between pi
′ and the corresponding point qi:

d =
1
n

n

∑
i=1
‖p′i − qi‖

2 (7)

(6) Judgment: If d is less than the given threshold or the number of loops is greater than
the preset number, stop the calculation; otherwise, return to step 2 for looping until
the convergence condition is satisfied.

To evaluate the effect of the matching process on the results, we analyzed the data in
the elevation direction after the pavement gridding in Section 4.

Urban roads are manufactured infrastructure components with flat and smooth planes,
and road edges usually have curbstones. The height difference between the road and road
curbs is usually designed to be 10~25 cm, and this difference can be used for the separation
of road surfaces and other points. Using this characteristic, we used the region-growing
algorithm [36] based on the height difference and slope [37] limitations for roads to extract
pavement points. The specific steps were as follows:

1. Seed point selection. The key to the region growing method is the selection of seed
points. Since urban pavement is continuous, pavement can be considered a plane. The
accurate selection of one seed point for region growth is important in the judgement
process. It is very common to select the lowest point or the point with the lowest
curvature as the ground seed point [38]. However, if the lowest point is used, it must
be verified that the lowest point is not a noise point, although the probability of such
a situation is very low. Using the point with the lowest curvature as the seed point is
a more robust method, but this method can result in a large computational cost due to
the large amount of data required. In our experiment, we used the manual method to
select the pavement seed points because it is the fastest and most accurate approach.

2. Define the growth conditions. When a point meets the following conditions, it is
determined to be a ground point.

dz < Tdz & slope < Tslope (8)

where Tdz is the height difference threshold and Tslope is the slope threshold. dz and
slope are the elevation difference and slope values for the current seed point and its
k-nearest neighbor point, respectively. The values of dz and slope were obtained from
the following equations. 

dx = xnear − xseed
dy = ynear − yseed
dz = znear − zseed

slope = arctan
∣∣∣∣ dz√

dx2+dy2

∣∣∣∣
(9)

3. Finish growing. The growth is finished when none of the ungrown neighboring points
of the current point satisfy condition 2.
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In the experiment, k was set to 8, which means that the 8 nearest points of the seed
point were searched. To obtain better results, series of elevation and slope thresholds were
tested. Figure 12 shows the results for Tdz = 0.015 m and Tslope = 30◦. From the figure, we
could see that the pavement points were effectively separated from other points, including
plants and road curbs.
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Figure 12. Results of road surface segmentation: (a) 3D view; (b) close-up views of road edges
projected in the XOZ plane.

3.2.2. Regular Grid Model and Gaussian Convolution Smoothing

To balance accuracy and the computational time, we chose 0.05 m as the grid size. This
value could preserve data accuracy and maximize the speed of computations. Figure 13
shows a portion of the road pavement interpolation results.
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Figure 13. A portion of road pavement interpolation results (m).

Two-dimensional Gaussian smoothing can be achieved by convolving with a two-
dimensional smoothing unit in one step or by row convolution with a line Gaussian unit,
followed by column convolution with a line Gaussian unit in two steps. During the
experiments, the boards simulating subsidence were close to the edge of the road. To
effectively preserve the boundary data, we used a two-step implementation to smooth the
data: Gaussian smoothing in one direction followed by smoothing in the other vertical
direction. The smoothing was performed with MATLAB 2020. We smoothed z-coordinate
as a matrix with rows in x-direction and columns in y-direction. The Gaussian parameter σ

was set to 10 and n was set to 51. The result obtained after Gaussian convolution smoothing
is shown in Figure 14.
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To clearly illustrate the data, the profile obtained by simulating the subsidence area
was visualized. As shown in Figures 15 and 16, the black line was the profile position,
and the yellow frame was the position where the board was set. From the figures, the
road surface was discontinuous in elevation before smoothing, and it was continuous and
approximately accurate after smoothing. In the board area, the data seemed more accurate
before smoothing, but the height difference between points and the board was not clear.
After smoothing, the board edge was not distinguished, but the height difference was clear.
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3.2.3. Height Difference Results

The experimental results are shown in Figure 17. Since the board was used to simulate
the subsidence area, we used the data obtained without the board and subtracted the data
obtained with the board to calculate the final values. In this way, three sets of data were
acquired: 0–5 mm, 0–10 mm, and 0–15 mm sets. Figure 16 shows the negative differences.
According to the different subsidence values, we divided the results into 1–, 2– and 3–
periods of data, where 1– represents the results of 0–5 mm, 2– represents the results of
0–10 mm and 3– represents the results of 0–15 mm. According to the segmentation points
of segment matching, the area of different time period data is divided into three parts: a,
b and c. As shown in the figure, the area with a board could be distinguished (in the red
frames). Since we split the data into three segments in the matching step, there was a gap
(in the black frames) in the elevation of the segmented area in the result.
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Figure 17. Height difference results (negative, m): (a) 0–5 mm; (b) 0–10 mm; (c) 0–15 mm.

To provide a clear visualization of the results, Figure 18 shows three-dimensional
views of the nine subregions in Figure 17.

To show the results of the experiments comparing boards of different heights, Figure 19
shows the profiles of the board center. From the figure, the height difference where the
board was placed (height change area) was lower than that in other areas. The areas with
elevation change values of 0–5 mm, 0–10 mm, and 0–15 mm were also correctly represented.
Moreover, the height difference exhibited regular fluctuations on one side of the road. The
three blue lines marked the peaks of the 0–10 mm data, and the two other data classes
exhibited similar trends.
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3.2.4. Subsidence Detection

Since the road sections were matched segmentally, the matching parameters were
different for each road section. Thus, the height difference between different road sections
could also be different. To reduce the influence of the difference between road sections
on threshold selection, it was necessary to select a threshold value for each road section
to identify the pavement settlement area. The threshold values for each road segment are
shown in Table 3.
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Table 3. Threshold values for each road segment (cm).

Road Section Min (∆z) Max (∆z) ∆h

1-a −0.47 0.33 −0.40
1-b −0.85 0.42 −0.63
1-c −0.74 0.33 −0.54
2-a −0.72 0.41 −0.57
2-b −0.82 0.37 −0.60
2-c −1.09 0.43 −0.76
3-a −0.81 0.43 −0.62
3-b −0.91 0.36 −0.63
3-c −1.12 0.34 −0.73

For comparison with the threshold value, the height difference results were converted
into settlement detection values, as shown in Figure 20. The yellow areas were determined
to be subsidence, the areas in the green frames denoted the board locations and the areas
that were detected correctly, and the areas in the yellow frames denoted the board locations
and the areas that were not detected. From the figure, there was one missing detection
value in each of the 0–5 mm and 0–10 mm sets. There were no missing or incorrect values
in the 0–15 mm set.
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4. Discussion
4.1. Simulated Data

The method proposed in this paper performed well based on simulated data. The
simulated data had a LiDAR localization error of 0.05 m and a ranging error of 0.02 m, and
the combined error was 5.39 cm (

√
0.052+0.022 m). The proposed method could effectively

reduce the systematic error in settlement detection. The experimental results indicated
that the pavement settlement area was effectively detected. With the smoothing process
in the proposed method, the test results at the true settlement values of 1 cm, 2 cm, 4 cm,
and 8 cm were 0.41 cm, 1.21 cm, 2.64 cm, and 5.39 cm, respectively. To further analyze
the influence of Gaussian parameters on the results, we tested different Gaussian kernel
parameters. Due to the decreasing effect on the central grid with increasing distance and
because the distance of the 3σ grid outside the central grid could be considered negligible,
n was generally set to no more than 6σ + 1 to accelerate calculations. Figure 21 shows the
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results of 0–1 cm subsidence experiments, in which the parameters were set to (σ = 10,
n = 61), (σ = 5, n = 31), and (σ = 2, n = 13). From the figure, we knew that the smoothing
was effective for rough pavement points, and the larger σ was, the smoother the effect of
the model was. However, this result came at the cost of undetectable areas of extremely
small subsidence and the accuracy of detection in some subsidence areas.
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Since there was no rotation and translation among different periods of data, the
simulated experiments could test the effect of smoothing on measurement results without
matching errors. Furthermore, the simulated experiments provided a reference of the
relationship between the parameters with the point spacing and settling area.

4.2. Real Data

In the experimental results based on the real data, the detection percentages for pave-
ment settlement were 85.7%, 85.7%, and 100% for elevation changes of 5 mm, 10 mm, and
15 mm, respectively. There was one missing detection in each of the 0–5 mm and 0–10 mm
datasets, and there were no missing or incorrect values in the 0–15 mm dataset. The results
indicated that the proposed method could effectively detect subcentimeter-level pavement
settlement with data accuracy at 10 mm. According to the distribution of settlement detec-
tion errors, we assumed that the point cloud alignment error [4] was the main cause of the
detection errors. Thus, we evaluated the distribution of registration results in the elevation
direction to determine the effect of the matching accuracy on the results. After regular
square interpolation, each region was interpolated into 601 × 243 grids, resulting in 146,043
location points. Table 4 shows the normally distributed fitting parameters for the registered
point cloud data for elevation differences. µ is the average and S is the standard deviation.

Table 4. Normally distributed fitting parameters for the registered point cloud elevation difference.

Registered Road Section µ/mm S/mm

1-a −0.0155 3.6212
1-b −0.0113 3.5969
1-c 0.0008 3.6033
2-a −0.0070 3.7828
2-b −0.0161 3.6032
2-c 0.0073 3.0765
3-a −0.0018 3.7901
3-b −0.0220 3.1098
3-c 0.0087 3.0172

From the table, we could see that the average values were all approximately 0 mm.
The µ value for the 0–5 mm results for the third region was closest to 0 at 0.0008 mm. The
worst µ result was for the 0–15 mm data in the second region, but the value was close to 0
at −0.0220 mm. The S values were all less than 4 mm. Compared to the subsidence value,
the result for the 0–5 mm data in the first section was the worst, with a subsidence value of
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3.6212 mm. When detecting 10 mm or 15 mm settlement, S values of 3 mm or 4 mm could
be considered to have little effect on the results. From the above analysis, we found that
the registration process achieved a good result. Additionally, the matching process did not
affect the detection of settlement, except possibly for the 0–5 mm settlement detection.

4.3. Parameters

In the interpolation process, the size of the square (s) was an important factor affecting
the results, which also influenced the setting of Gaussian parameters and the calculation
speed. It was determined by the points density and spacing. If the size of the square grid
was set much larger than the point spacing, the point cloud data would be downsampled,
which would cause accuracy loss. From the perspective of data accuracy preservation, it
was better for s to be as small as possible. However, if the grid size was set much smaller
than the point spacing, the computation would increase. The parameters of the Gaussian
convolution kernels σ and n, respectively, controlled the degree of smoothing and the
number of points involved. We could calculate the actual smoothing area size (l × l) of
the Gaussian convolutional kernel unit according to the grid size (s) and number of points
(n × n):

l = s× n (10)

To achieve a better smoothing effect, l was desired to be relatively big, for example,
1 m~3 m in our experiments. Paradoxically, s was taken to be as small as possible to
ensure the data accuracy. Under such preconditions, n needed to be taken as a large
value to achieve the purpose. According to the probability density function of the normal
distribution, it is known that the probability sum of n taking values in (−3σ, 3σ) was 99.73%.
It indicated that when n > 6σ + 1, it seemed that the number of points involved in the
smoothing calculation increased, but the points substantially involved in the calculation
were located in (−3σ, 3σ) with the contribution of 99.73%. With all the above assumptions
satisfied, σ could be taken as large as possible, but this came at the cost of a significant
increase in computation. Under the constraints of the data accuracy, smoothing effect, and
calculation volume, we gave the following suggestions for the values of the parameters.
We tested the impact of different grid sizes on the results and recommended that a fine
result could be obtained when the grid size was set to no more than five times the point
average spacing. In our experiment, the simulated data point spacing was 0.02 m~0.05 m
(point average spacing was 0.035 m). Due to the data volume, we chose 0.1 m as the grid
size. The real data point spacing was 0.03 m~0.05 m (point average spacing 0.04 m), and
we chose 0.05 m as the grid size in order to keep the data accuracy.

4.4. Others

We validated the proposed method using simulated data and real pavement data,
but strictly speaking, the settlement areas in our real data were also simulated. It is a
more convincing validation on real cases of subsidence data, which is also our next work.
The comparison with other methods was still lacking, but in the process of experimental
comparison, we compared the results before and after smoothing to illustrate the positive
effect of smoothing on point cloud comparison. It was considered that the comparison
results before smoothing were general point cloud processing results, while the results after
smoothing illustrated the effectiveness of our proposed method.

The purpose of Gaussian convolution processing is to reduce the error-detected subsi-
dence areas by smoothing the pavement. However, the subsidence area would be smoothed
as well. Therefore, the precision of settlement values was also reduced. The proposed
method aimed to achieve a fast localization of subsidence areas. If the value of the subsi-
dence area needs to be correctly detected, the method may not be appropriate. A possible
solution is to first use the method proposed in this paper to locate the area and then use
the GNSS or TLS to obtain the values in the located subsidence zone. For areas where
subsidence areas perform abnormally, GPR (ground-penetrating radar) technology can be
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used to find the specific cause of subsidence from the perspective of the physical structure
of the underground strata.

5. Conclusions

This study focused on urban road subsidence detection using point cloud data from
an MLS system. A method that uses Gaussian kernel convolution to process regular grid
data generated from point cloud data was proposed, and a histogram method was used
to determine the appropriate thresholds. Simulated road data and real road data were
tested, and the results were presented in the form of binary diagrams, which indicated that
the detection effect was more accurate than that obtained by directly comparing meshes
generated from point data. The conclusions were as follows:

First, smoothing high-density point cloud data could improve the accuracy of point
cloud comparisons. The road surface could be considered as a smooth surface, while in
high-density point clouds appeared as a rough plane, causing errors in the point cloud com-
parison. With the process of smoothing, the comparison errors could be effectively reduced.

Second, the method could detect the subsidence area, which was slightly lower than
the accuracy of data acquisition. Theoretically, regions with subsidence values smaller than
the accuracy of data acquisition were not detectable. With the proposed method, they were
effectively detected. In the experiments, the subsidence values of 1 cm, 2 cm, and 4 cm,
which were smaller than the data accuracy of 5.39 cm, were detected in simulated data and
a subsidence value of 5 mm, which was smaller than the data accuracy of 10 mm, which
was detected in real data.

Third, the method could effectively reduce the false detection probability. It was easy to
determine a number of unsettled areas as settling areas using the threshold method. Using
the method proposed for smoothing the data, the false detection rate could be effectively
reduced. In terms of microsettlement detection, the reduction in the false detection rate
had great practical significance for the detection results.

Finally, appropriate parameters, according to the pavement roughness, could achieve
good experimental results. It was crucial to obtain promising results that chose an ap-
propriate grid size and parameters of the Gaussian convolution kernel according to the
smoothness of the pavement. If the pavement and the settlement area were gently sloping,
the grid size and σ, and the corresponding n, could be adjusted to be appropriately larger to
obtain better results. While, in this case, the pavement was not gently sloping or preferred
to retain the pavement height variation trend, the grid size should have been adjusted to
be appropriately smaller; thus, decreasing the values of σ and n and obtaining smaller
areas of the settlement region. According to Equation (10), l could be determined by the
per-known pavement roughness; then, the grid size and Gaussian parameters should have
been adjusted according to l. l could be used as a sensitivity indicator for the subsidence
area size. In other words, the method was most sensitive to the subsidence area of size l.
Our next work should focus on quantitative effects of Gaussian smoothing parameters on
pavement settlement detection, how the pavement roughness relates to the data accuracy,
and quantitative effects on elevation.
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