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Abstract: The source region of three rivers (SRTR) is an important water conservation area, also
known as the Water Tower of Asia. Precipitation is one of the most important factors affecting the
ecological system and water resources over the SRTR. However, the characteristics and mechanism
of its change at different time scales are still uncertain. Using the GSMaP remote sensing products
and ERA5 reanalysis data, this study analyzes the spatial and temporal variability of precipitation
and water vapor transport in the SRTR over the past two decades. The annual precipitation slightly
reduces in the north and west and slightly increases in the east and south parts of the SRTR. The
spring, autumn and winter dominate the decrease in precipitation in most areas of the SRTR, while
the summer contributes the most increases. In contrast with the 2000s, the afternoon precipitation
slightly reduced in the 2010s, while the nighttime precipitation increases significantly. The changes in
nighttime precipitation, especially its intensity, associated with the water vapor transport contribute
to the changes in precipitation over the SRTR.

Keywords: remote sensing; afternoon and nighttime precipitation; source region of three rivers;
Tibetan Plateau

1. Introduction

The Tibetan Plateau (TP), due to its unique high altitude, large topography and
hollow heating effect, plays an important role in the modulation of Asian and even global
atmospheric circulation [1,2]. In recent decades, the TP has been experiencing rapid
warming and humidification characteristics, with the warming rate almost 1.5 times the
global average value [3]. Thus, the TP is known as the “initiator” and “amplifier” of climate
change. The source region of Three Rivers (SRTR) is located on the eastern TP and includes
the source region of the Yangtze River, Yellow River and Lantsang River and is honored as
the “Asia’s Water Tower” [4]. Precipitation is one of the most important climatic factors
affecting the ecological system and water resources over the SRTR [5]. Because it is located
in the intersection area of the Indian monsoon, East Asian monsoon and westerly belt, the
SRTR has a complex variety of climate types and inter-annual variation of precipitation [6].
Generally, the precipitation in the eastern and southern parts of the SRTR is significantly
more than that in the northwest [7], and there is a complex coupling relationship between
land surface processes and precipitation in different regions. Therefore, it is of great
value for climate change, water resources research and ecological protection to study the
characteristics and mechanisms of precipitation change in the SRTR.

The precipitation in the SRTR has been widely analyzed by using the in situ observa-
tion data. Besides the dominant pattern with high and low-value centers located in the
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southeast and northwest SRTR, respectively, a dipole pattern with southwest–northeast
reverse distribution also exists in the SRTR [8]. From 1961 to 2019, the SRTR average annual
precipitation was 470.7 mm and increased by 10.31 mm·10 a−1 [9], and the frequency of
extreme events has increased [10]. The period 1971–1980 was the driest period since the
year 1961, and 2001–2015 was the wettest period [11]. The trends in precipitation variation
during spring, summer and autumn decreased from northwest to southeast, but the oppo-
site trend was observed in winter [9]. Even in cold seasons, the precipitation has discordant
trends in different months, with an increasing trend in November and February and a
decreasing trend in other winter months [12].

In addition to meteorological station data, remote sensing products and reanalysis
data have also been used to analyze precipitation in the SRTR. The Global Precipitation
Climatology Project (GPCP) data are in agreement with the in situ measured precipita-
tion [13]. The Integrated Multisatellite Retrievals for Global Precipitation Measurement
(IMERG) products are affected by the temporal scale, precipitation intensity and phase,
and the performance in the wet season is superior to that in the dry season [14]. Compared
to the in situ observation data, the Climatic Research Unit (CRU) dataset underrated the
annual precipitation but gave a similar variation characteristic in the SRTR [15]. On the
same time scale, the consistency of NOAA Climate Prediction Center (CPC) products and
Tropical Rainfall Measuring Mission (TRMM) products is better than that of the NOAA
PERSIANN Precipitation Climate Data Record (PERSIANN-CDR) products [16]. Over-
all, remote sensing products have a higher ability to detect precipitation in high-altitude
areas (>3000 m) than in low-altitude areas (<3000 m), and they have a better detection
performance for light rain than moderate and heavy rain events [16].

Many studies have focused on the sources of water vapor and mechanisms of precipi-
tation variation over the SRTR under different climates, but the results remain inconclusive.
A study using the GPCP data suggests that the abnormal wind convergence and the low-
pressure system, combined with the effects of the western Pacific subtropical high and the
Mongolian high, provide conditions for the transport of water vapor and precipitation over
the SRTR [13]. Another study suggests that Niño3.4, North Atlantic oscillation and Arctic
oscillation play more important roles in the variation of dryness/wetness patterns in the
SRTR [12]. In the cold season, the mechanisms for the interannual variation in precipitation
are significantly different in different months. The main factors modulating the interannual
variability of precipitation are the anomalous westerly water vapor transport (WVT) branch
in November and southwesterly WVT anomalies in January and February [13].

In general, previous studies mostly focused on the analysis of long-term interannual
or seasonal variations of SRTR precipitation and rarely discusses the changes in specific
precipitation types (such as afternoon convective precipitation or nocturnal precipitation).
A few studies have found that precipitation in the TP occurred mostly in the afternoon
and night due to the thermal processes and the longwave radiation cooling [17,18]. In
this study, we used the remote sensing precipitation product to diagnose precipitation
changes in the SRTR in the last two decades. As previous studies emphasized an important
influence of the hydrological cycle on local precipitation [19–21], we also present variation
of afternoon precipitation as it is a dominant part of local triggered precipitation and is
strongly related to the local thermal and hydrological processes. The paper is organized as
follows. Section 2 introduces the study area and data used in this study. Section 3 presents
the results. Section 4 is the discussion. Section 5 presents the conclusions.

2. Study Area and Data
2.1. Study Area

The SRTR is located in the northeastern of the TP, with an average elevation of 3500 m;
we mainly focused on the area of 30–37◦N and 88–104◦E in this study (Figure 1). Previous
studies show that 38% of runoff in the source region of the Yellow River, 15% of runoff in
the source region of the Lantsang River and a considerate amount of runoff in the Yangtze
River originate from the SRTR [4,22]. The GSMaP_Gauge is densely covered with rivers,
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lakes, wetlands, snow-capped mountains and glaciers and thus is an important ecological
shelter zone in China [23].
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Figure 1. The overview of the Source Region of Three Rivers.

2.2. The GSMaP Precipitation Product

GSMaP (Global Satellite Mapping of Precipitation) and IMERG (Integrated Multi-
satellite Retrievals for GPM) are two widely used satellite precipitation products in the
GPM era, with high spatial and temporal resolutions. GSMaP (Global Satellite Map-
ping of Precipitation), developed by the Japan Aerospace Exploration Agency (JAXA)
(https://sharaku.eorc.jaxa.jp/GSMaP_CLM/index.htm, accessed on 10 May 2020), is one
of the most popular algorithms in the era of GPM [24,25]. The GSMaP_Guage product
we used in this study is a gauge-calibrated product that adjusts the GSMaP_MVK es-
timation with CPC (Climate Precipitation Center) gauge-based analysis of global daily
precipitation, whose spatial and temporal resolutions are 0.1◦ × 0.1◦ and 1 h, respectively.
Kentaro et al. (2015) compared GSMaP_Gauge and GSMaP_MVK products in Japan and
found that GSMaP_Gauge products have a better detection performance under different
time scales and precipitation intensities [26]. Previous studies show that GSMaP gets
some improvements in inversion accuracy and hydrological simulation utility compared to
TRMM (Tropical Rainfall Measuring Mission) products over the Tibetan Plateau [27]. In
the Yellow River basins. The latest GSMaP data is evaluated as having a relatively higher
accuracy than IMERG [28].

2.3. ERA5 Reanalysis Data

ERA5 is the fifth generation of global climate atmospheric reanalysis information from the
Copernicus Climate Change Service (C3S) at the European Centre for Medium-range Weather
Forecasts (ECMWF) (https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5,
accessed on 30 August 2021), which uses an advanced modeling and data assimilation system
to combine model data with observations from around the world to form a globally complete
and consistent dataset. Compared to its predecessor, ERA5 has a finer horizontal grid of about
30 km while also improving vertical resolution and providing hourly estimates of a large
number of atmospheric, terrestrial and oceanic climate variables [29–31]. Moreover, ERA5
effectively corrects for overestimating some physical quantities of thermodynamics and can
be used for general analysis of the Tibetan Plateau [32,33].

3. Results
3.1. Climatology of Precipitation

Figure 2 shows the climatology of annual and seasonal precipitation on the SRTR.
The annual precipitation ranges from 500 to 1000 mm/a, presenting a pattern of gradual
decrease from southeast to northwest. Among the different seasons, summer (June-July-
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August, JJA) precipitation dominates the pattern of annual precipitation, accounting for
about 61.3% of the annual precipitation (Figure 3). In spring (March-April-May, MAM),
summer and autumn (September-October-November, SON), the precipitation distribution
presents a pattern of decrease from southeast to northwest, while in winter (December-
January-February, DJF), precipitation has no significant spatial distribution characteristics.
In addition, the summer precipitation is mainly in July and August, suggesting influences
of water vapor transport by the summer monsoon.

Remote Sens. 2022, 14, 2216 4 of 14 
 

 

a finer horizontal grid of about 30 km while also improving vertical resolution and provid-
ing hourly estimates of a large number of atmospheric, terrestrial and oceanic climate var-
iables [29–31]. Moreover, ERA5 effectively corrects for overestimating some physical 
quantities of thermodynamics and can be used for general analysis of the Tibetan Plateau 
[32,33]. 

3. Results 
3.1. Climatology of Precipitation 

Figure 2 shows the climatology of annual and seasonal precipitation on the SRTR. 
The annual precipitation ranges from 500 to 1000 mm/a, presenting a pattern of gradual 
decrease from southeast to northwest. Among the different seasons, summer (June-July-
August, JJA) precipitation dominates the pattern of annual precipitation, accounting for 
about 61.3% of the annual precipitation (Figure 3). In spring (March-April-May, MAM), 
summer and autumn (September-October-November, SON), the precipitation distribu-
tion presents a pattern of decrease from southeast to northwest, while in winter (Decem-
ber-January-February, DJF), precipitation has no significant spatial distribution character-
istics. In addition, the summer precipitation is mainly in July and August, suggesting in-
fluences of water vapor transport by the summer monsoon. 

 
Figure 2. Precipitation (mm/month) in (a) annual average, (b) June-July-August (JJA) average, (c) 
March-April-May (MAM) average, (d) June average, (e) September-October-November (SON) av-
erage, (f) July average, (g) December-January-Februrary (DJF) average, and (h) August average 
from 2001 to 2019. 

Figure 2. Precipitation (mm/month) in (a) annual average, (b) June-July-August (JJA) average,
(c) March-April-May (MAM) average, (d) June average, (e) September-October-November (SON)
average, (f) July average, (g) December-January-Februrary (DJF) average, and (h) August average
from 2001 to 2019.

In terms of precipitation occurrence ratio (i.e., proportion of precipitation days in
the total days, Figure 4), the distribution characteristics for multi-year climatology, MAM,
JJA and SON consistently decline from southeast to northwest, the same as precipitation
amount shown in Figure 2. There is not much distinction between MAM and SON. How-
ever, for JJA, precipitation days occupy more than 60%, particularly in June, almost 80%
of the days have precipitation events, followed by July and August. In the west of the
SRTR, precipitation is suppressed most of the time. However, for the east part of the source
region of the Yellow River, it always presents a relatively higher frequency of precipitation
in all seasons, which has also become an important water supply area for the Yellow River.
In DJF, precipitation only occurs in this region, suggesting a very dry condition in other
regions of the SRTR.
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Figure 4. Precipitation occurrence ratio in (a) annual average, (b) June-July-August (JJA) average,
(c) March-April-May (MAM) average, (d) June average, (e) September-October-November (SON)
average, (f) July average, (g) December-January-Februrary (DJF) average, and (h) August average
from 2001 to 2019.

3.2. Changes in Precipitation
3.2.1. Precipitation Amount

Figure 5 shows differences between the climatology of precipitation in the two decades,
i.e., 2010 to 2019 and 2001 to 2010. For the annual average precipitation, it shows a
slight decrease in the north and west of the SRTR and a slight increase in the eastern and
southern parts. In a large area of central SRTR, precipitation shows tiny variation. The
most significant changes happened in the southeast of the source region of the Yellow
River and the Lantsang River. Considering the contribution of different seasons, MAM,
SON and DJF dominate the decreasing of precipitation in most area of the SRTR, while
JJA contributes the most increases. Precipitation in spring presents a similar pattern, with
the annual average, while in SON, precipitation in most of the area shows a drying trend
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except the southeast of the source region of the Yellow and Lanstang Rivers. The winter
presents a total drying pattern in contrast with the total wetting variation in most areas
in summer. For different months in summer, precipitation shows a significant increase in
June, especially in the center to the south, while it has an increase in the north in August.
In July, it shows basically a drying trend in the northwest of the SRTR and a wetting trend
in the south.
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(c) March-April-May (MAM) average, (d) June average, (e) September-October-November (SON)
average, (f) July average, (g) December-January-Februrary (DJF) average, and (h) August average
from 2010 to 2019 and from 2001 to 2010 (mm/month).

3.2.2. Precipitation Frequency

As to the changes in precipitation frequency, for the annual average, MAM, SON and
DJF, most areas show a reduction in the precipitation occurrence ratio (Figure 6). Only in
June and August do the precipitation occurrence ratios increase in most areas. In the west
of the Yangtze River headwater region, a significant rise in the precipitation occurrence
ratio is presented, although the precipitation amount does not increase correspondingly
in this region. The spatial correlation coefficients between the variations of precipitation
amount and precipitation occurrences ratio over the two decades are 0.689, 0.752, 0.48, 0.697
and 0.437 for the annual average, MAM, JJA, SON and DJF, respectively. The higher spatial
correlation in MAM and SON suggests the possibility of precipitation reduction caused by
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the decreasing precipitation frequency in these two seasons, while this is not the same in
JJA and DJF. In June, July and August, the spatial correlation coefficients are 0.195, 0.604
and 0.611, indicating the inconsistency in changes in precipitation amount and frequency. ‘
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3.2.3. Afternoon and Nighttime Precipitation

Figure 7 shows the changes in afternoon precipitation in the same period as Figure 5.
To address the contribution of afternoon precipitation to precipitation changes in the two
decades, we calculated spatial correlation coefficients between the afternoon precipitation
differences and total precipitation differences between the two decades (Table 1). Com-
paring Figure 5 with Figure 7, there was a similar pattern in Year, MAM, SON and JJA,
but the results were quite different in the three months in summer. In terms of the spatial
correlation coefficients, the maximum is from the total precipitation changes between the
two decades, and the correlation coefficients are 0.552, 0.438, 0.518 and 0.805 for MAM, JJA,
SON, and DJF, respectively, which are all larger than that in each month in summer.
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Table 1. Spatial correlation coefficients (Cor) between afternoon precipitation differences and total
precipitation differences among the two decades in different periods.

Year Season Month

period Year MAM JJA SON DJF Jun Jul Aug

Cor 0.629 0.552 0.438 0.518 0.805 0.186 0.485 0.326

As shown in Figure 8, the nighttime precipitation changes show similar patterns as in
Figure 5, except the magnitude in the night is different. The spatial correlation coefficients
are around 0.9 for almost all time periods (Table 2), suggesting a dominant contribution of
nighttime precipitation to the total precipitation changes. Figure 9 shows diurnal changes
in precipitation rates between the two decades. In the morning in the local time (i.e., 00:00
to 04:00 UTC), there are no significant changes between the two decades. For afternoon
precipitation (04:00 UTC to 12:00 UTC), there is a slight reduction in the 2010s in contrast
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with the 2000s, whilst there is a strong increase shown for the nighttime precipitation,
emphasizing the contribution of nighttime precipitation variation to the total precipitation.
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Table 2. Spatial correlation coefficients between nighttime precipitation differences and precipitation
differences among the two decades in different time periods.

Year Season Month

period Year MAM JJA SON DJF Jun Jul Aug

Cor 0.964 0.943 0.908 0.965 0.916 0.934 0.917 0.884

In order to quantify the causes of precipitation changes, we calculated the correlation
coefficients of precipitation difference with precipitation probability, afternoon precip-
itation difference, nighttime precipitation difference, afternoon precipitation frequency
difference and nighttime precipitation frequency difference (Table 3). It is very clear that
the maximums of the correlation coefficients occur between the precipitation difference
and the nighttime precipitation difference, suggesting the domination of nighttime pre-
cipitation changes in the total variations. When comparing the precipitation intensity and
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frequency in the nighttime (Table 4), the nighttime precipitation intensity difference shows
a higher correlation with the night precipitation changes, implying the domination of
nighttime precipitation.
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Figure 9. Diurnal changes in precipitation rate (mm/h) between the two decades.

Table 3. Correlation coefficients of precipitation difference with precipitation probability (Pp), after-
noon precipitation difference (Pa), nighttime precipitation difference (Pe), afternoon precipitation
frequency difference (Ppa) and nighttime precipitation frequency difference (Ppe).

Cor Year MAM JJA SON DJF Jun Jul Aug

Pp 0.689 0.752 0.480 0.697 0.437 0.195 0.604 0.611
Pa 0.629 0.552 0.438 0.518 0.805 0.186 0.485 0.326
Pe 0.964 0.943 0.908 0.965 0.916 0.934 0.917 0.884

Ppa 0.835 0.834 0.638 0.743 0.620 0.586 0.629 0.646
Ppe 0.818 0.844 0.562 0.699 0.589 0.465 0.599 0.595

Table 4. Correlation coefficients of nighttime precipitation difference with nighttime precipitation
intensity difference (Se) and nighttime precipitation frequency difference (Pa).

Cor Year MAM JJA SON DJF Jun Jul Aug

Se 0.963 0.946 0.890 0.959 0.912 0.916 0.909 0.929
Pa 0.795 0.823 0.455 0.705 0.528 0.393 0.538 0.469

4. Discussion

As was shown above, the nighttime precipitation intensity dominates the variations
of night precipitation and then precipitation amount in the SRTR. Previous studies have
investigated the interdecadal variability of regional precipitation in the SRTR. For example,
Shang et al. (2021) found that the increased precipitation in the cold season over the
SRTR is associated with the strengthened easterly anomalies over the TP and water vapor
meridional transport enhancement from tropical oceans and the South China Sea [34].
Zhao et al. (2021) found the heavy precipitation events, which mainly contribute to the
interannual increasing trend of summer precipitation over the SRTR, could be largely
attributed to the enhanced moisture sources from the neighboring northeastern areas of the
SRTR [35]. It is necessary to diagnose the changes in water vapor between the two decades.

Figure 10 shows the difference between the climatology of water vapor and its diver-
gence between the two decades. For the changes in annual average and different seasons,
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the variation in atmospheric water vapor convergence and dispersion is in good agreement
with the variation in the nighttime precipitation (Figure 8). For example, in SON and July,
the increase in water vapor transported from the south side and the decrease in water
vapor on the north side result in a distribution characteristic of a dry north and a wet south,
despite the spatial gradients being different. In MAM and DJF, the water vapor variation
is not evident, and with the strong decrease of vertical velocity (figure not shown), the
nighttime precipitation of the SRTR generally presents a reduction trend (Figure 8). For
JJA, a clearly drying trend is shown, although the pattern varies from month to month.
Basically, the water vapor transport increases from the south ocean in the monsoon period,
while it shows a decreasing trend in the monsoon retreat period. It is worth noting that
the substantial drying of the atmospheric water vapor content and decrease of vertical
upward motion in July in the past two decades over the whole SRTR has led to a decrease
in summer precipitation, which are different from other studies focusing on longer time
periods [12,35–37].
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Figure 10. Differences between climatology of vertical water vapor (Vectors, kg/(m.s)) and its
divergence (Shaded, kg/(m2.s)) in (a) annual average, (b) June-July-August (JJA) average, (c) March-
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April-May (MAM) average, (d) June average, (e) September-October-November (SON) average,
(f) July average, (g) December-January-Februrary (DJF) average, and (h) August average from 2010
to 2019 and 2001 to 2010.

5. Conclusions

This study focuses on the spatial and temporal variability of precipitation in the
SRTR over the past two decades based on satellite observations and reanalysis data. The
annual precipitation shows a slight reduction in the north and west of the SRTR and a
slight increase in the east and south parts. In most regions of central SRTR, there is little
variation in precipitation. For the annual variation, JJA contributes the most increases,
while the remaining three seasons dominate the decrease in precipitation in most areas of
the SRTR. In the west of the Yangtze River headwater region, although the precipitation
amount does not increase, the precipitation occurrences ratio significantly raises. The
higher spatial correlation between the precipitation amount and precipitation occurrences
ratio in MAM and SON suggests the possibility of precipitation reduction caused by the
decreasing precipitation frequency in these two seasons, while this is not the same in JJA
and DJF. In contrast with the 2000s, the afternoon precipitation slightly reduced in the
2010s, while there is a strong increase shown for the nighttime precipitation. The spatial
correlation coefficients between nighttime and total precipitation differences between the
two decades are around 0.9 for almost all time periods, suggesting a dominant contribution
of nighttime precipitation to the total precipitation changes. The water vapor transport
changes dominate the precipitation changes in different seasons and months in summer,
while the decreasing vertical velocity depresses precipitation to some extent. The changes
in nighttime precipitation, especially its intensity, associated with the water vapor transport,
contribute to the changes in precipitation over the SRTR region.
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