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Abstract: In emergency response and disaster rescue, unmanned aerial vehicles (UAVs) onboard
thermal infrared (TIR) sensors are an essential means of acquiring ground information in the nighttime
working environment. To enable field personnel to make better decisions based on TIR video streams
returned from a UAV, the geographic information enhancement of TIR video streams is required. At
present, it is difficult for low-cost UAVs to carry high-precision attitude sensors and thus obtain high-
precision camera attitude information to meet the enhanced processing requirements of UAV TIR
video streams. To this end, this paper proposes an improved Kalman filter algorithm to improve the
geographic registration (geo-registration) accuracy by fusing the positioning and heading data from
the dual-antenna real-time kinematic global positioning system (RTK-GPS) with onboard internal
measurement unit (IMU) data. This method can yield high-precision position and attitude data in
real time based on low-cost UAV hardware, based on which high-precision geo-registration results
can be obtained. The computational complexity can be reduced compared with video stream feature
tracking algorithms. Furthermore, the problem of unstable matching due to the low resolution and
texture level of TIR video streams can be avoided. The experimental results prove that the proposed
method can reduce the registration error by 66.15%, and significantly improve the geo-registration
accuracy of UAV TIR video streams. Thus, it can strongly support the popularization and practicality
of the application of augmented reality (AR) technology to low-cost UAV platforms.

Keywords: TIR video; UAV; augmented reality; RTK; geo-registration

1. Introduction

Low-cost unmanned aerial vehicle (UAV) platforms have a wide range of applications
in emergency rescue and other activities. The use of low-cost UAV platforms to obtain
necessary information for emergency rescue and other operations is a trending topic
in related research. Most previous research has been based on RGB images and video
streams [1–4]. However, most disaster rescue operations must be performed continuously.
Thermal infrared (TIR) sensors are ideal for the acquisition of information at night by
collecting thermal radiation from ground objects without additional lighting measures, and
for the imaging of ground targets with good stealth; moreover, these sensors can easily be
carried by low-cost UAVs.

However, compared with RGB video cameras, TIR cameras have some limitations. For
example, they have low resolution, and the appearance of targets may differ significantly
from their appearance in RGB video streams. Some distinctive features in the visible
band may also become difficult to distinguish in nighttime TIR images. These limitations
increase the difficulty of the use of TIR video streams by ground personnel to a certain
extent, making it challenging to obtain the state information of the scene solely by relying
on UAV TIR video streams. The overlay of existing geo-information onto real-time UAV
TIR video streams can provide rich information to describe the on-site situation, which
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can play a significant complementary and supplementary role to UAV TIR video streams.
Therefore, it is of tremendous research significance and application value to simultaneously
provide known geo-information in the UAV TIR video stream to front-line operators, which
can help commanders establish better situational awareness at night and make better
operational decisions [5,6].

There are two main implementation methods of augmented reality (AR) geo-registration
based on UAV platforms [7], the first of which is to calculate the position and pose parameters
of the camera by tracking feature points in the video stream to stably register virtual targets
in the video scene [8–11]. The second method is to directly use sensors such as internal
measurement units (IMUs) to obtain the position and pose parameters of the camera, and
then to register virtual targets in the scene [12,13]. A disadvantage of the former method is
that it is computationally intensive, and registration information can easily be lost when the
camera moves or rotates widely. The disadvantage of the latter method is that it relies on
high-precision attitude sensors, which are difficult to afford in terms of price and the load
capacity of ordinary UAVs.

The combination of the two methods exploits the strengths of each one and minimizes
the impact of their weaknesses. However, in this research work, the algorithms are ex-
pected to run directly on UAV platforms, and the main application scenarios are in fields
such as emergency rescue. Hence, the computational burden of the equipment must be
reduced to the greatest extent, thus making it less challenging to use. Furthermore, when
a feature point tracking algorithm is used for TIR video streams, the matching effect is
significantly constrained in scenarios such as floods, snow, grassland, and woodland due
to the monotonous ground scene. Therefore, in this study, focus is placed on the direct use
of a pose sensor to obtain the pose of the camera.

In the authors’ previous study [14], a method was proposed to improve the geo-
registration accuracy of UAV video streams based on a real-time kinematic global position-
ing system (RTK-GPS). However, only the results of RTK single-point localization were
used, and the dual-antenna heading data from the RTK system were not further utilized.
In the method proposed in the present study, a dual-antenna RTK system is carried on the
UAV, and the extended Kalman filter algorithm is also improved to further optimize the
UAV attitude results using the RTK output heading data. This improves the accuracy of
the DJI UAV position and sensor-based video stream registration from 3 to 1 m.

The remaining sections of this paper are organized as follows. Section 2 reviews
the existing related studies, and Section 3 describes the method proposed in this paper.
Section 4 describes the experiments and results, and Section 5 analyzes and discusses the
experimental results. Finally, this work is concluded in Section 6.

2. Related Research

As stated in the introduction, the main objective of the present research is to implement
AR for TIR video streams in nighttime environments. Regarding the existing technical
means, TIR video streaming is a mainstream method to provide scene information at
night. However, TIR video differs significantly from visible video in terms of its resolution
and texture features, as the luminance value is based on the temperature of the object.
Moreover, it is characterized by the problems of low resolution and weak texture features
compared to ordinary visible video streams. In emergency rescue scenarios, there may also
exist large monotonous environments that lack sufficient texture, such as water and snow.
Under such conditions, visual tracking-based approaches will result in a large number of
mismatches or even no matches. Conversely, real-time feature matching can also increase
the computational burden of the onboard devices.

Accurate camera positioning and direction tracking are necessary for AR systems
to correctly overlay virtual information onto realistic scenes. The improvement in geo-
registration accuracy is a major theme of UAV AR research. The geo-registration accuracy is
directly related to the accuracy of tasks such as the positioning of people in the video stream,
the determination of the relationship between the location of features and roads, and the
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estimation of vehicle speeds. Two core ideas have often been adopted to improve the geo-
registration accuracy, the first of which is the use of high-precision pose sensors to obtain
high-precision camera pose data, thus directly achieving high-precision geo-registration.
The second notion is the computer vision-based approach, via which the relative motion
between the camera and the ground scenery are restored to obtain accurate camera position
and pose data.

Typical research that has adopted the first concept includes the following.
To achieve the all-around texture mapping of buildings in TIR imagery, Stilla et al. [15]

used position and attitude data provided by airborne positioning equipment and high-
precision inertial navigation equipment for geo-registration. The positioning and attitude
sensor system attached to a manned aircraft was found to have an error of less than 1◦ in the
traverse and heading directions and a positioning error of 2.8 m. Using only these sensor data,
more desirable geo-registration could be achieved. However, the system uses a high-precision
IMU system weighing nearly 3 kg, which is suitable for use on manned aircraft, and the cost
of manned aircraft applications is not practical for the vast majority of users.

Because carrying high-precision attitude sensor devices on low-cost UAVs is not
currently feasible in terms of either weight and price, the second concept, namely the use
of image feature point tracking to achieve geo-registration, has primarily been adopted in
previous research. Via this method, satellite positioning data and IMU data are usually
combined with computer vision methods to achieve high-precision registration.

Angelino [16] proposed a set of methods in 2012 using Kalman filtering to fuse global
navigation satellite system (GNSS), IMU, and computer vision positioning data to provide
highly accurate position attitude information for UAVs, which could reduce the average
UAV attitude angle error to 1◦. However, only simulated data, not actual UAV flight data,
were used for experimental evaluation.

In 2015, Chen et al. [17] proposed the augmentation of the vector of locally aggregated
descriptors (VLAD) image search algorithm using GNSS positioning information with
gravity sensor data to achieve AR geo-registration for mobile devices. However, the VLAD
algorithm needs to run on a high-performance server, and the initialization operation
during the initial run has an enormous computational burden.

Liu et al. [18] implemented geo-registration through images by matching the features
of the camera-acquired frame with laser point clouds of the surrounding environment. The
system must operate with high precision and good presentational laser point cloud data. Thus,
the generality is not good enough for most application environments. In addition, the study
did not provide data such as the camera pose accuracy based on the matching results, and it
is unknown whether good registration results can be obtained based on this method.

In 2020, Balázs et al. [19] proposed the use of a combination of topographic data
such as digital elevation model (DEM), Shuttle Radar Topography Mission (SRTM), and
Advanced Spaceborne Thermal Emission Radiometer (ASTER) data to calculate the skyline
of the user’s location and compare it with the skyline extracted from the camera to correct
the northward error of a portable compass. The results of experiments demonstrated that
this method can reduce the average angular error to 1.04◦. However, this method requires
an open view of the user’s environment to obtain a high-quality skyline image, and UAVs
often do not contain skylines in their ground observation, which also limits the application
of this method in the field of UAV AR.

The accuracy of the satellite positioning module used in these previous studies was
low. Considering that the location information of the UAV has a significant impact on
the registration accuracy in the process of geo-registration, some scholars have attached
RTK modules to UAVs to improve the geo-registration accuracy of UAV video streams via
low-cost, high-precision measurements.

In 2016, Schneider [20] proposed the use of the simultaneous localization and mapping
(SLAM) computer vision algorithm combined with a dual-antenna RTK-GPS system to
obtain the accurate attitude of UAVs, and achieved attitude and heading errors of less
than 1◦, and a centimeter-level localization error. However, this system is mainly used
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for mapping, and whether it can achieve the desired effect of high-accuracy registration
when used in the process of real-time AR requires further investigation. Moreover, the
SLAM algorithm has a large computational load and is not suitable for processing TIR
video streams.

In addition, some scholars have also equipped RTK modules on UAVs to improve
the mapping accuracy of UAVs, which has some implications for this study. For example,
Nakata [21] proposed the use of an RTK-equipped UAV for surface displacement monitor-
ing, which was found to achieve an accuracy of 0.1 m for the positioning of ground points
using post hoc differencing for assistance. Štroner [22] proposed the use of UAVs equipped
with an RTK model for the aerial photography of the ground to achieve centimeter-level
mapping results without ground control point correction. Svedin [23] proposed the con-
struction of a low-cost synthetic aperture radar (SAR) remote sensing platform based
on RTK technology. Their experiments demonstrated that sub-meter accuracy could be
achieved without relying on ground control points.

Although these studies did not directly use AR technology, theory and practice show
that carrying RTK positioning modules on UAVs can effectively improve the positioning
accuracy of UAVs relative to the ground.

Therefore, in this research, a more desirable geo-registration method on UAV TIR
video streams is proposed via the use of only GNSS and IMU sensor data based on a
low-cost UAV platform. Based on the preceding review of existing research, the approach
based solely on sensor data is a more desirable solution for the use of AR for low-cost UAVs
without considering visual tracking. The introduction of the RTK module to the existing
UAV sensors can significantly improve the geo-registration accuracy of video streams.

In the authors’ previous research [14], more accurate RTK data than those used by
Schneider [20] were used in combination with an improved extended Kalman filter al-
gorithm to improve the UAV positioning and attitude accuracy. However, only RTK
localization results from a single antenna were used in that work. In the present research,
the utilization of the dual-antenna RTK module in combination with the improved extended
Kalman filter algorithm is expected to further improve the UAV registration accuracy.

3. Method
3.1. Augmented Reality Geo-Registration Based on Position and Posture Sensor Data

As mentioned previously, this study is based on the direct geo-registration of UAV
TIR video streams from UAVs with satellite positioning and attitude sensors. The basic
principle is that the camera in the virtual scene is given the same position, attitude, and
viewpoint as the UAV camera. The ground target captured by the airborne camera can
overlap with the markers corresponding to the ground target in the virtual scene. The
airborne camera usually follows the center projection model, and after the center projection
transformation of the lens, the target point on the ground (X, Y, Z) has coordinates (u, v)
on the screen, which can be calculated using the following equation:

 u
v
1

 = MW−S


X
Y
Z
1

 (1)

where MW−S is the transformation from the world coordinate system to the screen coordi-
nate system, which includes the transformation matrixes from the world coordinate system
to the camera coordinate system, from the camera coordinate system to the projection
coordinate system, and from the projection coordinate system to the screen coordinate
system. The parameters determining MW−S include the three-dimensional position of the
UAV (xuav, yuav, huav), the traverse, pitch, and heading angles of the camera (γ, α, β), the
field of view (FOV) of the camera f ov, and the aspect ratio of the screen aspect. When the
camera in the virtual scene is assigned the same parameters as the onboard camera, the
conversion matrix MW−S of the onboard TIR camera has the same value as the conversion



Remote Sens. 2022, 14, 2205 5 of 33

matrix Mv
W−S of the virtual scene camera. This means that the ground point (X, Y, Z)

and its counterpart in the virtual space (Xv, Yv, Zv) will have the same screen coordinates
(u, v) after projection transformation, and 3D geo-registration is achieved. A detailed
description of this content can be found in the authors’ previous study [14].

3.2. The Basic Principle of Extended Kalman Filtering

The classical Kalman filter is only applicable to linear systems. However, there are
many nonlinear operations in the inertial navigation system model of a UAV. The extended
Kalman filter [24] uses Taylor series expansion to linearize the nonlinear model at the oper-
ating position, and is usually applied in combinatorial navigation algorithms to combine
data from different sensors.

The working process of the Kalman filter consists of the following two main parts.
(1) First, the current state of the system, including the uncertainty, is predicted. (2) When
new measurements containing errors and noise are input, the prediction of the system
state is updated using the weighted average of these measurements, and more accurate
measurements receive a higher weight. As shown in Figure 1, this process is recursive, can
be run in real time, and requires only the current measurements and predictions from the
previous step and its uncertainty matrix, not more historical data.
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3.3. An Improved Extended Kalman Filter Algorithm with RTK Heading

RTK positioning data are usually highly accurate and can be approximated as accurate
measurements relative to the usual operating range of UAVs. In the authors’ previous
work [14], the extended Kalman filter algorithm described in another study [25] was
purposefully improved to make better use of the high-accuracy RTK positioning results.
In the standard Kalman filter algorithm, most of the input data from various sensors are
unreliable measurements with large confidence intervals. Thus, it is necessary to initialize
the Kalman filter using the corresponding error parameters, and to cyclically update the
error parameters while the Kalman filter is operating. The measurements must then be
corrected using the error parameters. In this work, the authors consider the measurements
of RTK-GPS receivers to be reliable due to their high accuracy.

Because the error parameters are dynamically updated while the program is running,
simply initializing the Kalman filter according to the confidence interval of the RTK data
will not effectively exploit the high-accuracy characteristics of the RTK data, and will
increase the uncertainty in the filtering process. Therefore, the improved extended Kalman
navigation algorithm retains only the filtered attitude data for the next cycle after each cycle
of the Kalman filtering operation. The position of the next cycle of the Kalman filtering
operation directly uses the RTK position after median filtering.

In this study, the heading angle obtained from RTK dual-antenna orientation measure-
ments is added to the extended Kalman filter model to further improve the UAV attitude
measurement accuracy The workflow of the improved extended Kalman filter algorithm is
shown in Figure 2.
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As shown in Figure 6, the RTK receiver is equipped with dual antennas, and the
heading angle of the UAV can be determined by using the positioning data from the
dual antennas during positioning. Most previous studies on navigation algorithms using
dual-antenna orientation assumed that the original positioning message of each antenna is
available in its entirety. Therefore, the measurement state of each antenna can be separately
incorporated into the working model of the Kalman filter, and the measurement error for the
measurement state of each antenna can be separately corrected during the working process.
Moreover, the attitude measurement results of the system can be corrected according to the
relative position of the antenna installation. As a typical low-cost UAV RTK receiver, the
dual-antenna RTK receiver used in this study directly outputs the heading angle derived
using the dual antennas, instead of providing the original positioning information of each
antenna. Targeted improvements to the extended Kalman filter navigation algorithm are
required to address this condition. The algorithm can directly accept RTK dual-antenna
heading values as input values for processing.

The addition of the RTK heading values to the extended Kalman filter requires that the
heading values be used as new observations. Correspondingly, the dual-antenna heading
angle measurements from the RTK module must be added to the matrix containing the
new measurements at each cycle, and the matrix of satellite positioning measurements in
an extended Kalman filter is usually as follows:

δyGNSS =

[
δyvelocity
δyposition

]
(2)

where:
δyvelocity =

[
vnavi

predicted − vnavi
GPS

]
(3)

δyposition = Tr
p

[
pnavi

predicted − pnavi
GPS

]
+ Cbody–to–navilbody–to–antenna, (4)

Tr
p =

 RM + h 0 0
0 (RN + h)cos(lat) 0
0 0 −1

, (5)

where δy is the observed state of the system, δyvelocity is the observed 3D velocity error,

vnavi
predicted is the airframe velocity estimated by inertial navigation, and vnavi

GPS is the airframe
velocity obtained from GPS measurements. Moreover, δyposition is the observed 3D position

error, pnavi
predicted is the body position estimated by inertial navigation, pnavi

GPS is the body posi-

tion measured by GPS, Cbody–to–navi is the transformation from the body coordinate system
to the world coordinate system matrix, lbody–to–antenna is the GPS antenna installation posi-
tion, Tr

p is the conversion matrix from latitude and longitude to the right-angle coordinate
system, RM is the meridian radius of the Earth, RN is the normal radius of the Earth, and h
is the height of the airframe relative to the reference ellipsoid.
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After adding the heading angle obtained from the RTK measurements, the input
matrix of the system is increased by the azimuth error δyyaw, and the input matrix becomes:

δyRTK_yaw =

 δyyaw
δyvelocity
δyposition

 (6)

where:
δyyaw = ψnavi

predicted − ψnavi
RTK (7)

where ψnavi
predicted is the UAV heading angle calculated by the IMU based on the UAV angular

velocity, and ψnavi
RTK is the UAV heading angle obtained by the RTK receiver via dual-

antenna positioning.
The measurements input to the system must be multiplied by the measurement matrix,

which, in the original Kalman filter algorithm, is as follows:

HGPS =

[
0 I 0 0 0
0 0 Tr

p 0 0

]
(8)

where I is a 3 × 3 unit matrix and 0 is a 3 × 3 matrix. The first column corresponds to the
attitude measurements in the measurement matrix, the second column corresponds to veloc-
ity measurements, and the third column corresponds to position measurements. Therefore,
the improved measurement matrix must include a row at the top that corresponds to the
heading measurements.

The measurement matrix is modified as follows:

HRTK_yaw =

 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 I 0 0 0
0 0 Tr

p 0 0

 (9)

In the newly added row, element 1 corresponds to the newly added directional differ-
ence δyyaw, which in turn makes the dimension of HRTK_yaw correspond to δyRTK_yaw.

Correspondingly, the uncertainty matrix R must be changed according to the previous
changes. The original uncertainty matrix is as follows:

RGPS =

[
δ2

GPS–velocity 0
0 δ2

GPS–position

]
(10)

After adding the heading measurements, the uncertainty matrix must also be increased
by the uncertainty term corresponding to the heading measurements and kept in a diagonal
form, and is changed to:

RRTK_yaw =

 δ2
RTK–yaw 0 0

0 δ2
GPS–velocity 0

0 0 δ2
GPS–position

 (11)

where δ2
RTK–yaw is the variance of the RTK dual-antenna heading angle.

By using the improved extended Kalman filter algorithm, the dual-antenna RTK heading
can be added as an additional measurement for the filtering operation. Compared with the
improved Kalman filter algorithm, the UAV attitude angle is no longer constrained indirectly
by the GPS position and the airframe motion state, but directly by the input RTK dual-antenna
orientation result, and thus a relatively accurate UAV attitude angle can be obtained. Based
on the airframe attitude data, an accurate airborne camera attitude can be derived.

Because the UAV body is connected to the camera using a three-axis gimbal, the
three-axis gimbal can stabilize the camera attitude in the roll and pitch axis directions while
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following the body movement in the heading axis, which causes the roll and pitch angles of
the camera to remain stable when the user does not input a rotation command. Moreover,
in the heading axis direction, the camera heading remains in line with the UAV fuselage
when the UAV fuselage is not rotating horizontally. In contrast, when the UAV fuselage is
rotating, the camera follows the UAV fuselage rotation with a particular speed difference.
The UAV determines the rotation angle of the camera relative to the fuselage through the
code dial, which is combined with the attitude of the fuselage to deduce the attitude of the
camera in the navigation coordinate system.

The detailed steps for the AR geo-registration of the UAV TIR video stream using
these data have been described in the authors’ previous study [14].

3.4. Camera Pose Calculation for Geo-Registration

According to the extended Kalman filter algorithm described in Section 3.3, the attitude
of the UAV body can be calculated. The onboard camera is connected to the UAV through
the gimbal, which compensates for the shaking of the UAV during the flight process. The
three-axis angle of the onboard camera relative to the airframe can be read according
to the code dial on the gimbal. The camera pitch and roll axes are relatively constant,
while the heading angle changes more frequently during flight and is more susceptible
to interference. Therefore, among the three-axis attitude angles of the camera, the pitch
and roll angles can be calculated using the original values provided by the flight controller,
and the heading angle is based on the airframe heading angle obtained by the method
described in Section 3.1.

ATTcamera =

 ϕcamera
θcamera

ψEKF + ψcoder

 (12)

where ϕcamera and θcamera are, respectively, the camera roll angle and pitch angle given
directly by the UAV flight control, ψEKF is the body heading angle obtained by the improved
extended Kalman filter algorithm, and ψcoder is the heading angle difference between the
UAV body and the camera obtained by the gimbal code disk. After determining the three-
dimensional position and three-axis attitude of the UAV, the AR geo-registration of the
UAV TIR video can be performed.

3.5. Error Analysis of Position and Attitude Sensor Data for Geo-Registration

From the discussion in the previous section, it is clear that obtaining accurate camera
positions and poses is a prerequisite for achieving accurate geo-registration. The geo-
registration of UAV TIR video relies on the 3D position of the UAV and the attitude of the
onboard camera. UAV position and attitude errors can lead to errors in the registration
results. On the other hand, camera imaging errors can also impact the registration results,
so the errors arising from the imaging process must also be considered when performing
error estimation. The registration error can thus be expressed as:

Ereg = ECamPosition3D
reg + ECamAttitude

reg + ELensDistortion
reg (13)

where ECamPosition3D
reg is the effect of the camera position on the registration accuracy,

ECamAttitude
reg is the effect of the camera attitude error on the registration accuracy, and

ELensDistortion
reg is the effect of camera lens distortion on the registration accuracy. The pitch

and roll axes of the camera are kept stable by the gimbal, and the correction of the camera
attitude is only for the camera heading angle; thus, ECamAttitude

reg can be simplified to ECamYaw
reg ,

which is the effect of the camera heading angle on the registration accuracy. The effect of
camera lens deformation on the registration accuracy is compensated by the calibration
result of the lens. In comprehensive consideration of these factors, the factors that affect the
registration accuracy considered in this study are as follows:

Ereg = ECamPosition3D
reg + ECamYaw

reg (14)
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In Figure 3, B is the location of the camera, and its 3D coordinates are (xcam, ycam, hcam).
Moreover, AB is the central optical axis of the camera, the plane ACD is the ground, and D
is the target point in the image. The pitch and heading angles of the camera are αcenter and
βcenter, respectively. The coordinates of the point D on the ground can be expressed as:

XD = − xcamyim sin(αcenter)+hcamxim cos(βcenter)− f xcam cos(αcenter)
f cos(αcenter)−yim sin(αcenter)

− f hcam sin(αcenter) sin(βcenter)+hcamyim cos(αcenter) sin(βcenter)
f cos(αcenter)−yim sin(αcenter)

YD = f ycam cos(αcenter)+hcamxim sin(βcenter)−ycamyim sin(αcenter)
f cos(αcenter)−yim sin(αcenter)

+ f hcam sin(αcenter) cos(βcenter)+hcamyim cos(αcenter) cos(βcenter)
f cos(αcenter)−yim sin(αcenter)

(15)

where (XD, YD) is the ground coordinate of the point (xim, yim) in the image, the original
point of the screen coordinate system is at the center of the image. f is the focal length
in pixel of the lenses. Because the camera is kept stable in the transverse roll and pitch
directions by the gimbal, the transverse roll direction can be regarded as horizontal, and
the pitch angle can be regarded as a stable value. It can be seen from Equation (15) that
the accuracy of the target location is affected by camera location (xcam, ycam, hcam) and the
yaw of the camera βcenter. Therefore, the error caused by these factors can be estimated
with Equation (15).
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3.5.1. The Effect of the Camera Position Error on the Registration Accuracy

The effect of the camera position error on the registration accuracy is:

ECamPosition
reg =

[
EXcam
EYcam

]
. (16)

where EXcam and EYcam are the positioning errors of the camera, which are equal to the
UAV positioning error. Moreover, ECamPosition

position is the registration accuracy error generated
by the GPS positioning error, and its scalar value is as follows:

||ECamPosition
reg || =

√
E2

Xcam + E2
Ycam (17)
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3.5.2. The Effect of the Camera Height Error on the Registration Accuracy

The positioning error of the ground point D caused by the height error is:

ECamHeight
reg =

[
∂XD
∂hcam
∂YD

∂hcam

]
Ehcam (18)

where Ehcam is the positioning error of the UAV in the vertical direction. The scalar length
of ECamHeight

reg is as follows:

||ECamHeight
reg || = Ehcam

√(
∂XD
∂hcam

)2
+

(
∂YD

∂hcam

)2
(19)

3.5.3. Effect of the Camera Attitude Error on the Registration Accuracy

The camera attitude includes three directions, namely the pitch, roll, and heading
directions. Because the pitch and roll axes of the airborne camera used in this study are
stabilized by the gimbal, the actual attitude direction that changes with the UAV motion
and affects the registration accuracy is the heading direction. The positioning error of
ground point D caused by the camera heading is:

ECamYaw
reg = Eβ||CD || (20)

where Eβ is the camera heading angle error. The scalar length of ECamYaw
position is as follows:

||ECamYaw
reg || = Eβhcam

√√√√√√ f 2 cos(αcenter)
2−2 f yim sin(αcenter) cos(αcenter)

[ f sin(αcenter)+yim cos(αcenter)]
2

+ xim
2+yim

2 sin(αcenter)
2

[ f sin(αcenter)+yim cos(αcenter)]
2

(21)

As can be seen from Equations (19) and (21), due to the different distances of the
ground objects in the image relative to the camera, the registration error caused by the
camera height and the camera heading error at each part of the picture will vary with
the distance between the object and the camera. When the ground target is farther away
relative to the camera, the influences of the camera height and the camera heading error
on the registration accuracy increase. The effects of the camera height and the camera
heading error on the registration accuracy decrease when the ground target is closer
to the camera. To estimate the theoretical value of the geo-registration error based on
Equations (17), (19) and (21), the horizontal camera positioning error (EXcam, EYcam), the
vertical camera positioning error hcam, and the camera heading angle error Eβ must be
calculated or obtained from the UAV datasheet.

Due to the high accuracy of RTK data, they can be used as the true values. The root-
mean-square error (RMSE) between the UAV position obtained by RTK measurement and
the UAV flight control output based on ordinary GPS data can be used as the value taken
when estimating the theoretical value of registration error (EXcam, EYcam). Similarly, the
RMSE between the altitude measured by the RTK module and the altitude output by the
flight control can be used as the estimated value of hcam, and the RMSE between the RTK
heading and the flight control output can be taken as the value of Eβ. The formula for
calculating the RMSE is as follows:

eRMS =

√√√√√∑
npoints
j=1

(
valueresult

j − valuegt
j

)2

npoints
(22)
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In Equation (22), npoints is the number of sampling points, valuegt
j is the standard

value of the jth sampling point, and for EXcam, EYcam, and hcam, valuegt
j is the value of the

corresponding item using the RTK module. Moreover, valueresult
j is the measured value

using a regular GPS receiver. For Eβ, valuegt
j is the camera heading value after filtering

by the proposed method, and valueresult
j is the camera heading value given directly by the

UAV flight control system. The calculation results are reported in Table 1.

Table 1. Measurement results of root mean square error of each measurement.

Numerical Name EXcam EYcam Ehcam Eβ

Numerical results 1.2846 m 0.9342 m 2.8017 m 1.7972◦

According to Table 1, during the flight, the root-mean-square positioning errors of the
UAV in the horizontal direction obtained using the RTK and ordinary GPS receivers were
respectively found to be EXcam = 1.2846 m and EYcam = 0.9342 m. The registration error
caused by the UAV positioning error was found to be ||ECamPosition

reg || = 1.5884 m. Similarly,
the root-mean-square positioning error of the UAV in the vertical direction obtained using
the RTK module with a normal GPS receiver was found to be hcam = 2.8017 m.

The distribution of the registration error within the camera FOV due to the height
error is shown in Figure 4.
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Figure 4. The distribution of registration errors caused by camera height errors.

As shown in Figure 4, the distribution of registration errors caused by altitude error
in the camera FOV was found to increase with the distance of the ground target from
the camera, and the average error in the camera FOV was 5.6036 m. In practice, for the
convenience of target point selection, most of the positioning operations will be performed
closer to the camera, and the measured error may be lower than the average value in the
FOV. According to the flight parameter setting, namely the UAV flight height hcam = 20 m,
Figure 5 presents the error distribution generated by the camera heading angle within
the camera FOV calculated by Equation (21). The theoretical average value of the error
generated by the camera heading angle within the camera FOV was calculated to be
1.2497 m. In comprehensive consideration of these results, the theoretical estimates of the
registration error due to the camera horizontal positioning error, vertical positioning error,
and camera heading angle error are reported in Table 2.
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Table 2. Calculation results of registration errors due to different factors.

Numerical Name ||ECamPosition
reg || ||ECamHeight

reg || ||ECamPosition3D
reg ||||ECamYaw

reg ||

Numerical results 1.5884 m 5.6036 m 5.8243 m 1.2497 m

As shown in Table 2, the experimental data that have the most significant impact on the
registration results were found to be the camera height error data; however, this calculation
is based on the average value of the camera FOV. In practice, the objects farther away
occupy a smaller area due to the influence of the perspective projection on the screen, and
have lower availability. Thus, the targets closer to the camera have a higher significance,
and the actual measurement of the error may be lower than this estimate.

4. Experiments
4.1. Experimental Platform

The UAV platform used in this study was the DJI M600 UAV [26], which is a six-axis,
multi-rotor UAV that can be equipped with various types of sensors. Furthermore, the UAV
can be fitted with RTK positioning kits for more accurate positioning. The performance
indicators of the UAV are reported in Table 3.

Table 3. The parameters of the DJI M600 drone.

Parameter Value

Diagonal Wheelbase 1133 mm
Weight (with six TB47S batteries) 9.5 kg

Max Takeoff Weight Recommended 15.5 kg

Hovering Accuracy (P-GPS) Vertical: ±0.5 m,
Horizontal: ±1.5 m

Max Angular Velocity Pitch: 300◦/s,
Yaw: 150◦/s

Max Pitch Angle 25◦

Max Ascent Speed 5 m/s
Max Descent Speed 3 m/s

Hovering Time (with six TB47S batteries) No payload: 32 min,
6 kg payload: 16 min

Flight Control System A3 Pro
Operating Temperature −10 ◦C to 40 ◦C

The DJI M600 UAV can carry various payloads depending on the mission, includ-
ing RGB cameras, TIR cameras, and any custom sensor that meets the weight and size
requirements, via a comprehensive gimbal system.
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The XT2 TIR sensor used in this study has a dual TIR/visible imaging function,
which can simultaneously capture TIR and visible images and video streams. Its specific
specifications are reported in Table 4.

Table 4. The parameters of the Zenmuse XT2 TIR camera [27].

Parameter Value

Thermal Imager Uncooled VOx Microbolometer
FPA/Digital Video Display Formats 640 × 512

Spectral Band 7.5–13.5 µm
Field of View 45◦ × 37◦

Exportable Frame Rates <9 Hz
Sensitivity (NETD) <50 mk @ f/1.0

Scene Range (High Gain) −25 ◦C to 135 ◦C
Scene Range (Low Gain) −40 ◦C to 550 ◦C

As shown in Figure 6, the M600 UAV can be equipped with a D-RTK differential GPS
kit, which enables the more accurate positioning of the UAV and can acquire a UAV heading
based on the dual-antenna orientation. This differential GPS kit has a horizontal positioning
accuracy of 1 cm + 1 ppm and a vertical positioning accuracy of 2 cm + 1 ppm [28]. The
D-RTK has a heading accuracy of (0.2/R)◦, where R is the distance in meters between the
two antennas at the sky end. The distance between the two antennas is approximately
0.5 m when the D-RTK is installed on the M600 fuselage, so the orientation accuracy is
about 0.4◦. However, the D-RTK kit only provides a dual-antenna directional output of
1◦, so it cannot independently rely on the RTK dual-antenna lateral direction to provide
accurate UAV heading information. The differential ground station of the D-RTK suite is
shown in Figure 7.
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4.2. Experimental Area and Geographic Data Collection

The experimental area for the AR geo-registration of a UAV TIR video was located
in Lucheng Medicine Art Park, Tongzhou District, Beijing, China. The terrain of the
experimental area is flat, and the ground targets have a large number of distinctive corner
points, which makes it easy to select target points for localization. The experimental area is
shown in Figure 8.
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Figure 8. The orthophoto of the experimental area.

Visible images of the experimental area were first acquired using a UAV and stitched
together using Pix4Dmapper software to obtain the geographic information used for the
enhancement of the TIR video. The weather was cloudy and breezy at the time of data
acquisition. The UAV flew at an altitude of 80 m with a 75% overlap in the heading and a
75% overlap in the side direction, and the total route length was 4058 m, over which a total
of 360 visible images were obtained. The route range is shown in Figure 9, and the ground
resolution after Pix4Dmapper stitching was 2.15 cm, as shown in Figure 10.

To ensure the accuracy of the geographic information mapped based on the UAV
visible images, ground control points were collected in areas with significant corner point
features on-site, as shown in Figure 11.

The control points were evenly distributed in areas with richer corner features, and
there were 20 in total. The control points were used to accurately calibrate the stitched
images. Because the areas without control points may have significant resampling errors,
only those with control points were retained for mapping the vector map in the calibrated
visible images. The target area contains several flowerbeds with rich corner point features
suitable for identifying and measuring control points. The coordinates of the control points
were measured by placing the D-RTK antenna on the location of control points. The horizontal
accuracy of the control points is 1 cm + 1 ppm, and the vertical accuracy is 2 cm + 1 ppm [28].
Based on the acquired control points, a cubic polynomial transformation was performed on
the stitched image. The average residual of control points in the image was 3.52 pixels.
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The vector map obtained by following the outline of the flowerbed features in the
target area is shown in Figure 12.
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4.3. TIR Video and UAV Flight Data Acquisition

Pre-defined waypoints were adopted for the flight for TIR video and UAV attitude
data collection, and the UAV flew autonomously according to the pre-defined waypoints
and trajectories. TIR video streams were recorded during the flight, and the necessary
information, such as the UAV positioning data, attitude data, acceleration, and angular
velocity, were obtained by the onboard computer. The speed of the UAV was 3 m/s, its
altitude was 20 m, and the time required to fly the entire route was 107 s.

The TIR and visible light videos are respectively shown in Figures 13 and 14. During
the flight, the gimbal was tilted 30◦ downward relative to the horizontal direction. Due
to the tilt of the camera, the ground resolution in the video was not constant; considering
the horizontal FOV of the TIR camera is 45◦ and the horizontal pixel number is 640, the
resolution of the image center in the TIR video is about 0.05 m.
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Figure 15 presents the RTK trajectory. As the frequency of the RTK recorded data was
relatively fixed, the sparsity of the trajectory points corresponds to the airspeed of the UAV.

4.4. IMU Error Parameter Acquisition

In the method proposed in Section 3.3, an algorithm based on an improved extended
Kalman filter is used to fuse RTK data with other UAV attitude data to improve the accuracy
of the UAV attitude measurement. The algorithm requires the error parameters of the UAV
flight control mounted sensors to be set in the process of computing. This improves the
registration accuracy of the UAV TIR video to a certain extent via high-accuracy RTK
positioning and dual-antenna directional measurement data.

The sensor error parameters are calculated using the Allan variance algorithm, a
widely used method for modeling the random errors of inertial devices. By analyzing the
output results of inertial devices, a series of error characteristics, such as random wandering
error and the dynamic error of gyroscopes and accelerometers, can be calculated.
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To calculate the error characteristics of the IMU of the M600 platform, the output
values of the gyroscope and accelerometer of the stationary M600 UAV were first recorded
for a period of 5 h, and the output data are exhibited in Figures 16 and 17.
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Figure 16. The results of the three-axis acceleration output of the M600 UAV at rest.

As shown in Figure 16, the accelerations along the three-axis directions were respec-
tively measured by the UAV sensors under the UAV body coordinate system, where the x-,
y-, and z-axes respectively indicate the forward, right, and downward directions of the UAV.
It can be seen that the output of the UAV accelerometer still exhibited large fluctuations in
the stationary state of the UAV.
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Figure 17. The results of the three-axis angular velocity output of the M600 UAV at rest.

As shown in Figure 17, the angular velocity output of the UAV was also found to
have large fluctuations. Because the attitude angle of the UAV must be obtained from the
angular velocity integration, the angular velocity accuracy of the UAV will have a large
impact on the attitude calculation of the UAV.

From Figures 16 and 17, it can be seen that there were large errors in both the accel-
eration and angular velocity measurements of the UAV. These errors will cause further
errors in the UAV position and attitude measurements, which will affect the accuracy of
TIR video geo-registration.

The acceleration and angular velocity data output from the UAV IMU after Allan
variance calculation are reported in Table 5.

Table 5. The sensor error parameters obtained using Allan variance calculation.

Parameter Name x-Axis y-Axis z-Axis

Angular Random Walk (×10−4 rad/
√

s) 1.6828 1.9601 1.6542
Speed Random Walk

(
×10−2 m/

√
s
)

1.2917 1.2996 1.2921
Gyro Dynamic Bias (×10−6 rad/s) 1.5289 37.010 2.2793

Acceleration Meter Dynamic Bias (×10−3 m/s2) 6.0546 2.8561 7.9284
Gyro Correlation Cycle 7000 100 9000

Acceleration Meter Correlation Cycle 20 600 10,000

4.5. UAV Attitude Data Enhancement Results

The improved extended Kalman filter algorithm was realized based on an open-
source toolbox for processing integrated navigation systems named NaveGo [25,29], and
initialized using the parameters reported in Table 5. After initializing the algorithm, the
UAV attitude data were calculated by the improved extended Kalman filter algorithm, as
exhibited in Figure 18.
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Figure 18. The UAV attitude data after processing by the improved extended Kalman filter algorithm.

As presented in Figure 18, relative to the original values of the UAV three-axis attitude,
the UAV three-axis attitude was corrected to different degrees after adding RTK positioning
and dual-antenna heading angle data. The correction values of the heading direction are
presented in Figure 19. The heading axis data were used to further calculate the camera
heading angle, and the result is shown in Figure 20. The corrected camera heading angle
could then be used for the high-precision AR geo-registration of the UAV TIR video stream.
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4.6. High-Precision Geo-Registration Results of UAV TIR Video

The camera poses and positions obtained by processing via the improved extended
Kalman filter algorithm can be used to register the UAV TIR video. The manufacturer of the
video transmitting devices provides a delay value via testing. In this research, the onboard
video link has a latency of 50 ms according to the manual of the UAV [30]. This latency
may vary during the flight according to the distance between the UAV and the ground
station, the radio inference, and other factors. For multi rotor wing UAVs, the working
distance will not be too long; thus, this latency from the manual will be suitable in actual
operations. The geo-registration of the UAV TIR video was performed according to the
method described in the authors’ previous study [14], and some screenshots of the AR
video stream obtained after registration are provided in Figure 21.
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As shown in Figure 21, the features in the UAV TIR video were not significantly
misaligned with the vector map, indicating that the conversion relationship from the world
coordinate system to the screen coordinate system can be correctly calculated using the
corrected data.

5. Assessment and Discussion
5.1. Geo-Registration Accuracy Assessment

A practical assessment of the registration accuracy can be conducted by locating
the ground target in the registered video. A good registration accuracy means that the
localization result of the ground target in the registered video should match the actual
position of the object to the greatest extent. The process of localizing the ground target is the
inverse of the geo-registration algorithm described in the authors’ previous publication [14],
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i.e., the coordinates of the target on the screen (u, v) are known, and the process of finding
the coordinates of the ground point in the world coordinate system (X, Y, Z) is defined as:

X
Y
Z
1

 = M−1
W−S

 u
v
1

 (23)

where MW−S = MP−S MC−P MW−C is the transformation matrix from the world coordinate
system to the screen coordinate system. Equation (23) represents the ray that connects
the lens optical center, the projection plane, and the actual position of the ground target.
Intersecting this ray with the terrain means to use known u, v, M−1

W−S, and making Z = 0,
yields the ground position (X, Y) corresponding to the point on the screen. Because the
target area in this study is relatively flat, the plane Z = 0 is used as the approximate the
terrain of the ground.

The accuracy of the AR geo-registration of the UAV TIR video was evaluated based
on the ground control points used in Section 4.3, which are ground targets with signif-
icant angular point characteristics, and the positions were accurately measured using
differential GPS receivers. During the test, the corresponding points were selected from
the geo-registered TIR video, and the ground coordinate values calculated according to
Equation (23) were recorded. Each point was measured three times, and the measurement
screen of some of the control points is shown in Figure 22.
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For a comparison of the accuracy, the positioning results and the coordinates of
the reference point were converted to a plane coordinate system in meters according to
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Gaussian projection, and the three measurements were used to calculate the RMSE as the
positioning error for the point:

eRMS =

√√√√√∑
npoints
j=1

(
Posgt − Posresult

j

)2

npoints
(24)

where Posgt is the control point location, Posresult
j is the jth measurement of the ground

target in the TIR video, npoints is the number of measurements at that point, and npoints = 3.
The measurements are exhibited in Table 6, and to determine the statistical significance
of the differences between the test results, a t-test was performed on the three sets of
measurements. The p-value results are reported in Table 7.

Table 6. The comparison of the positioning error of geo-registration using raw attitude data and
filtered data.

Data
Number

Original GPS
and Original Attitude (m)

RTK GPS and Original
Attitude (m)

Our Previous
Method (m)

The Proposed
Method (m)

1 4.15 2.86 1.37 1.02
2 4.84 3.74 2.38 1.17
3 3.18 3.59 2.00 1.40
4 2.93 2.45 1.32 0.95
5 1.92 2.67 1.40 0.93
6 2.37 2.78 1.53 0.80
7 2.96 2.99 1.55 0.55
8 3.83 3.11 1.34 1.06
9 1.93 2.01 2.03 0.93
10 3.30 1.90 1.67 0.87
11 2.70 2.27 1.23 1.39
12 2.77 2.58 1.24 0.95
13 3.46 1.58 1.61 0.87
14 2.82 1.58 1.35 1.41
15 2.42 1.86 1.37 1.56
16 4.03 2.03 1.35 1.23
17 4.32 2.92 1.30 1.52
18 2.62 2.17 1.20 0.77
19 3.90 1.93 1.46 1.20
20 3.84 2.26 1.22 1.25

average 3.21 2.46 1.50 1.09

Table 7. The p-value results of the t-test between each measurement.

Original GPS
and Original Attitude

RTK GPS and
Original Attitude

Our Previous
Method

The Proposed
Method

Original GPS
and Original

Attitude
- 0.0008 - -

RTK GPS and
Original
Attitude

0.0008 - 0.0001 0.0001

Our Previous
Method - 0.0001 - 0.0005

The Proposed
Method - 0.0001 0.0005 -

The data exhibited in Table 6 show that there was a significant improvement in ground
point positioning results using both the RTK positioning data and filtered camera heading data.
The p-value results presented in Table 7 show that there was a highly significant statistical
difference between the data at the 95% confidence level for the three sets of measurements.

According to Figure 23, large and unstable positioning errors occurred when using
geo-registering with raw attitude data. A certain pattern was identified in the direction of
the positioning error, but the absolute value of the error varied significantly in the same
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direction. The average RMSE was 3.2149 m, which is less than the theoretically calculated
value. Because the average value within the FOV is used when theoretically calculating
ECamPosition3D

reg and ECamHeight
reg , the larger error value at the far side of the FOV increases the

estimated values of ECamPosition3D
reg and ECamHeight

reg . In the actual measurement, to facilitate
the identification of ground target points in the video, the positioning operation of ground
target points usually occurs closer to the camera in the FOV, causing the positioning error
in the actual measurement to be less than the estimated value.
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Figure 23. The comparison of the positioning results with the control points using raw attitude data.

Figure 24 reveals that after using the RTK localization results, the accuracy of the
localization of the ground targets in the videos was improved. Relative to Figure 23, the
directions of some of the localization results were different from the standard values, and
the errors were significantly reduced with significant directionality. The RMSE was reduced
to 2.4630 m. The improvement in the positioning accuracy using RTK positioning data was
less than the theoretical prediction in the calculation of the registration error due to the
different factors in Table 2, as the error of positioning the ground targets using the original
GPS with the camera attitude was less than the theoretically calculated value.
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Figure 24. The comparison of the positioning results with the control points using raw attitude data
and RTK data.

Figure 25 presents the result of the method proposed in the authors’ previous re-
search [14]. It can be seen from the figure that the localization accuracy was improved, but
was not quite stable; thus, both excellent and poor results were achieved simultaneously.
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Figure 25. The positioning results obtained using the method described in the authors’ previous work [14].

Figure 26 exhibits the localization results of geo-registration using the UAV attitude
data enhanced by the proposed method. Both the localization accuracy and the distribution
of errors were found to be significantly improved. This means that after replacing the
original camera heading data with the filtered camera heading data, the geo-registration and
target localization accuracy were further improved, and the average RMSE was reduced to
1.0905 m. The reduction in the error was found to be roughly consistent with the theoretical
predictions in Section 3.5.
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5.2. Evaluation of the Airborne Gimbal Stabilization Effect

As mentioned previously, during the flight of the UAV, the onboard gimbal keeps the
camera attitude angle stable in the camera traverse and pitch directions. This causes the
onboard camera to follow the fuselage rotation in the heading angle direction. Therefore,
it is considered that the camera attitude angle is relatively stable in the pitch and roll
directions. The main source of the camera attitude angle error is the heading error. To
confirm the stabilization capability of the airborne gimbal in the pitch and roll directions,
the stability of the airborne gimbal was evaluated.

As displayed in Figure 27, a checkerboard calibration plate was fixed vertically on a
wall, and the onboard camera was pointed at the checkerboard. The airframe was rotated
in three directions, namely the pitch, roll, and heading directions, and a video of a certain
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duration was captured. The recorded video was extracted at 10 fps to obtain a series of still
images containing the calibration plate.
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The acquired still images were calibrated by the MATLAB Camera Calibration compo-
nent [30], and the results are presented in Figure 28.
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Figure 28. The calibration for obtaining the position of the calibration plate relative to the camera.

As shown in Figure 28, the attitude change in the calibration plate relative to the
camera calculated by the calibration operation was primarily in the heading direction, and
there was no obvious change in the pitch and roll directions due to the stabilization of the
gimbal. The attitude angle of the calibration plate relative to the camera is exhibited in
Figure 29. The attitude angle of the camera relative to the calibration plate calculated from
the image containing the calibration plate exhibited a 30◦ change in the heading direction
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with random body movement, while there was only a slight fluctuation of about 1◦ in the
pitch and roll axes.

Remote Sens. 2022, 14, x FOR PEER REVIEW 29 of 35 
 

 

 

Figure 29. The change in the attitude angle of the calibration plate with respect to the camera. 

The data reported in Table 8 demonstrate that the UAV gimbal can effectively stabi-

lize the camera motion in the pitch and roll directions. The camera pitch and roll data 

provided by the UAV flight controller can therefore be directly used in AR geo-registra-

tion. Furthermore, in the error analysis, the influence of pitch and roll angle errors can be 

ignored, and focus can be placed on the influence of the camera heading angle errors on 

geo-registration. 

Table 8. The standard deviation of the attitude angle in each direction obtained by calibration. 

Direction Pitch Yaw Roll 

std (°) 0.4839 13.8857 0.2704 

5.3. Assessment and Correction of Lens Distortion 

The display of AR information on the screen adheres to the ideal central projection 

model. Camera lens distortion, which deforms the imaging of the camera, will increase 

the error of geo-registration. To ensure the accuracy of the geo-registration of TIR videos 

and the positioning of ground points based on the registration results, the lens error of the 

TIR camera must be calibrated and corrected. The calibration and correction of the lens 

error were performed using a checkerboard. However, because TIR cameras image objects 

based on temperature, a unique checkerboard was required. 

As displayed in Figure 30, the black squares on a plain checkerboard were covered 

with copper foil tape, allowing the board to exhibit the appearance of squares in the TIR 

image. The TIR images taken during the calibration process are shown in Figure 31. 

Figure 29. The change in the attitude angle of the calibration plate with respect to the camera.

The standard deviation of the attitude angle in each direction is reported in Table 8.
The standard deviation of the relative attitude angle between the calibration plate and
the camera was less than 1◦ in both the pitch and roll directions. However, the standard
deviation was more significant in the heading direction, reaching 13.8857◦, because the
camera followed the fuselage movement and the heading angle changed to a greater degree.

Table 8. The standard deviation of the attitude angle in each direction obtained by calibration.

Direction Pitch Yaw Roll

std (◦) 0.4839 13.8857 0.2704

The data reported in Table 8 demonstrate that the UAV gimbal can effectively stabilize
the camera motion in the pitch and roll directions. The camera pitch and roll data provided
by the UAV flight controller can therefore be directly used in AR geo-registration. Further-
more, in the error analysis, the influence of pitch and roll angle errors can be ignored, and
focus can be placed on the influence of the camera heading angle errors on geo-registration.

5.3. Assessment and Correction of Lens Distortion

The display of AR information on the screen adheres to the ideal central projection
model. Camera lens distortion, which deforms the imaging of the camera, will increase the
error of geo-registration. To ensure the accuracy of the geo-registration of TIR videos and
the positioning of ground points based on the registration results, the lens error of the TIR
camera must be calibrated and corrected. The calibration and correction of the lens error
were performed using a checkerboard. However, because TIR cameras image objects based
on temperature, a unique checkerboard was required.

As displayed in Figure 30, the black squares on a plain checkerboard were covered
with copper foil tape, allowing the board to exhibit the appearance of squares in the TIR
image. The TIR images taken during the calibration process are shown in Figure 31.
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The captured images were calibrated using the MATLAB Camera Calibration compo-
nent [31], as shown in Figure 32.
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Figure 32. Checkerboard corner points detected during calibration.

The camera distortion parameters obtained from the calibration are reported in Table 9.

Table 9. The aberration parameters of the TIR camera obtained by calibration.

Parameter Name Parameter Value

Radial distortion (k1, k2) 0.0540, 0.3462
tangential distortion (p1, p2) −0.0037, 0.0076

Principle point location 349.3325, 251.8215
Lens focal distance 803.5593, 797.6270

As shown in Figure 33, the average reprojection error of the participating calibration
images was about 0.51 pixels, and the maximum reprojection error did not exceed 0.8 pixels;
thus, the calibration results were considered to be of high accuracy. As shown in Table 9,
the pixel position errors caused by the deviation in the image principal point position in the
horizontal and vertical directions were respectively 27.5725 and 3.044 pixels. The relative
position of the calibration plate from the calibration calculation is shown in Figure 34.
The corrected values of the lens correction for the pixel position in the TIR image can be
calculated using the radial aberration and tangential aberration equations, as respectively
given by Equations (26) and (27):{

x0 = x
(
1 + k1r2 + k2r4)

y0 = y
(
1 + k1r2 + k2r4) (25)

{
x0 = x +

[
2p1xy + p2(r2 + 2x2)]

y0 = y +
[
2p2xy + p1(r2 + 2y2)] (26)

where (x0, y0) is the pixel position before the aberration correction, and (x, y) is the pixel
position after the aberration correction. (x0, y0) and (x, y) are the normalized pixel coordi-
nates divided by the camera focal length value in pixels. Moreover, r is the distance from
the normalized pixel point to the optical center. According to Equations (25) and (26), the
maximum values of the pixel position error generated by radial aberration in the horizontal
and vertical directions were respectively 11.72 and 9.37 pixels, and the maximum values of
the pixel position error generated by tangential aberration in the horizontal and vertical
directions were respectively 1.59 and 0.73 pixels.
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Figure 34. The relative position of the calibration plate from the calibration calculation.

The error parameters in Table 9 were used in further AR registration operations
to correct the TIR images for lens distortion, and the corrected results are presented in
Figure 35. The corrected results are shown on the right side, and the blank portion of the
image boundary area after significant distortion is marked in red.

5.4. The Effect of a Sudden Change in the Body Attitude

During the flight, a sudden change such as a wind shear may make the UAV body has
a sudden change. We consider this issue in terms of two aspects:

• As mentioned in Section 3, the input GNSS position has a median filter to deal with a
sudden position change in the UAV body.

• A sudden change means that the effect may have a short impact time. Thus, the error
caused by the sudden change may also last for a very short time, which means that
the working state of the EKF will quickly return to being steady. In our consideration,
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this can be tolerated during the process. The registration can quickly return to normal
and continue to provide accurate results.
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Figure 35. The calibration results of TIR images, the change after the calibration is marked by the
red frame.

6. Conclusions

This study presented a new geo-registration algorithm in which AR technology was
used to superimpose geographic information onto UAV TIR video to enhance the accuracy
of geo-registration of UAV TIR images via the use of high-precision RTK fixation on
dual-antenna directional data in the context of nighttime emergency rescue and other
operations. The traditional extended Kalman filter algorithm was optimized to achieve
the high accuracy of RTK, and the RTK positioning results were considered to be plausible
values to be updated in each cycle. The improved extended Kalman filter algorithm can
accept the directional results of dual-antenna RTK as the measured values for input.

For the experimental validation of the proposed algorithm, TIR video of the experi-
mental area were augmented with the proposed algorithm using the existing vector maps
of the experimental area and the real-time flight status data of the UAV. The positions of
the ground targets in the video that had been geo-registered with AR were determined,
and then compared with the actual positions of the targets. Compared with the use of the
positioning and camera attitude data provided by the UAV flight control, the registration
error of the UAV TIR video stream was found to be reduced from 3.22 to 2.46 m using RTK
positioning, and the geographic error was further reduced to 1.09 m using the heading data
calculated by the improved extended Kalman filter algorithm. Thus, the registration error
was reduced by a total of 66.15%, and the geo-registration accuracy of the UAV TIR video
stream was significantly improved.

The experimental results proved that the proposed augmentation of UAV attitude
data using high-precision RTK positions and dual-antenna heading data via an improved
extended Kalman filter algorithm can effectively improve the accuracy of the attitude data
of low-cost UAVs, based on which the high-precision geo-registration of UAV TIR video
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streams can be achieved. By performing the high-precision AR geo-registration of UAV TIR
video streams, the effect of the application of AR technology to low-cost UAV TIR video
streams can be effectively enhanced to provide better geographic information support for
emergency rescue operations at night.
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